
Distributed Computation
CS 677: Big Data

Lecture 9

▪ Distributed computation overview

▪ Hardware platforms

▪ Supercomputers

▪ Beowulf clusters

▪ Grid computing, cloud computing

▪ Computation Engines

▪ MPI

▪ Bulk Synchronous Parallel

▪ MapReduce

Today’s Schedule

CS 677: Big Data 2

▪ Distributed computation overview

▪ Hardware platforms

▪ Supercomputers

▪ Beowulf clusters

▪ Grid computing, cloud computing

▪ Computation Engines

▪ MPI

▪ Bulk Synchronous Parallel

▪ MapReduce

Today’s Schedule

CS 677: Big Data 3

▪ In our storage systems discussions, we’ve focused on

spreading data out over cluster(s)

▪ As you can imagine, we also need to take advantage of

distributed computations to ensure we can process

all that data efficiently

▪ The basic idea behind distributed computations is to

divide and conquer our problems

▪ …but this is a bit different than usual multi-process /

multi-core / parallel computing / etc.

Distributed Computation

CS 677: Big Data 4

These tasks are concerned with the following:

1. Communication

▪ Getting/sharing data, coordinating with other tasks

2. Computation

▪ Applying transformations to the data, moving it from

State A to State B

3. Storage

▪ Retrieving the initial data state, storing modified state

Distributed Task Elements

CS 677: Big Data 5

▪ We need to tailor our tasks for this kind of environment

▪ Principle 1: Reduce communication

▪ Communication in a distributed system is latency-

prone, even with a fast interconnect

▪ Much slower than in-memory access

▪ Principle 2: Break computations into pieces that can run

independently

▪ Try to avoid data/computation dependencies, e.g.,

Task 3 requires Task 2 to complete, Task 2 requires

Task 1…

Principles of Distributed Computation [1/2]

CS 677: Big Data 6

▪ Principle 3: Avoid excessive round trips to storage

▪ You should never be accessing data more than once,

if at all!

▪ Indexes can help avoid data that you don’t want

▪ Writes are even slower than reads

▪ Don’t write too much intermediate state data to the

disk if simply recomputing it will be cheaper

Principles of Distributed Computation [2/2]

CS 677: Big Data 7

▪ What are the features we need for a minimum viable

computation engine?

▪ Discuss with your neighbor

▪ …

▪ Very basic: create a shell script that will ssh to your

cluster machines, launch the computation, and then

collect the results from stdout

▪ This has a long list of shortcomings…

Building It

CS 677: Big Data 8

▪ Distributed computation overview

▪ Hardware platforms

▪ Supercomputers

▪ Beowulf clusters

▪ Grid computing, cloud computing

▪ Computation Engines

▪ MPI

▪ Bulk Synchronous Parallel

▪ MapReduce

Today’s Schedule

CS 677: Big Data 9

CDC 6600

CS 677: Big Data 10

▪ 60-bit CPU, ten 12-bit I/O processors

▪ 3 megaFLOPS

▪ Memory: 128K 60-bit words

▪ Dual video display console

▪ Pretty cool: vector system instead of raster

▪ Storage: 2 MB

▪ Could add magnetic drum storage for expansion!

▪ Yours for ~$10m

CDC 6600: Tech Specs

CS 677: Big Data 11

Field Trip: IBM 1401

CS 677: Big Data 12

▪ Pioneered by Seymour Cray, ~1960s

▪ Observed that simply making the CPU much faster

wasn’t all that beneficial

▪ Still have to wait for other components to catch up

▪ (Assuming the CPU drives everything)

▪ Instead, Cray designed a system that linked 10 simple

computers

▪ Each of the 10 PPUs were responsible for shuffling

data in and out of memory

Supercomputing

CS 677: Big Data 13

▪ Original supercomputers used custom hardware to

accelerate performance and allow parallelism

▪ Over time, more off-the-shelf components were used

instead

▪ Huge leaps in performance of commodity CPUs

▪ There are still some advantages over a standard cluster:

▪ Better interconnects (e.g., Infiniband)

▪ Better integration

System Design

CS 677: Big Data 14

▪ A list of the top 500 supercomputers is available at:

https://www.top500.org

▪ Current #1: Frontier

▪ 8,730,112 Cores

▪ Peak performance exceeding one ExaFlop/s

▪ Oak Ridge National Laboratory

▪ See also: Green500 https://www.top500.org/green500/

Top500

CS 677: Big Data 15

https://www.top500.org/
https://www.top500.org/green500/

▪ Over the years, many big computing tasks have

migrated away from supercomputing platforms

▪ At the same time, supercomputers look more and

more like clusters

▪ “Beowulf” terminology coined in 1994 @ NASA

▪ Grab a bunch of commodity PCs, install software like

OpenMPI, MPICH

▪ ”Supercomputer” on the cheap!

▪ We’ll talk about MPI in a minute…

Beowulf Clusters

CS 677: Big Data 16

▪ Thus far we’ve focused on communications and data

transfer

▪ Grid computing aims to provide processing resources

at scale

▪ Modeled after the electric grid: use resources as you

need them

▪ Better utilization of hardware between organizations

(for instance, universities)

Grid Computing

CS 677: Big Data 17

▪ Grids are “super virtual computers” created by

combining a large amount of machines

▪ Connected by commodity/standard networking

hardware such as Ethernet

▪ May span large geographic regions

▪ Like a traditional cluster but span across organizations

▪ Loosely coupled

Hardware

CS 677: Big Data 18

▪ This may sound like a recipe for disaster!

▪ Extreme heterogeneity

▪ However, grid middleware helps handle the heavy

lifting for us

▪ When launching an application on a grid, we can specify

type of resources we need

▪ Software libraries, architectures, particular hardware

features, etc.

Making it Work

CS 677: Big Data 19

▪ Then cloud computing (ahem Amazon) came along…

▪ Realizes many goals of the grid computing movement

▪ Also makes many of the same mistakes

▪ Talk to a grid computing researcher sometime

▪ Better: elasticity

▪ Expand and contract your resource pool as needed

Cloud Computing

CS 677: Big Data 20

▪ Distributed computation overview

▪ Hardware platforms

▪ Supercomputers

▪ Beowulf clusters

▪ Grid computing, cloud computing

▪ Computation Engines

▪ MPI

▪ Bulk Synchronous Parallel

▪ MapReduce

Today’s Schedule

CS 677: Big Data 21

▪ Getting back to the point: the basic idea behind

parallelism is divide and conquer

▪ To do this, we need to coordinate across processing

units in our cluster via messages

▪ We could use sockets

▪ Who even does that?!

▪ Wrong level of abstraction for high performance

computing (HPC) applications

▪ Every cluster/supercomputer is different

Message Passing

CS 677: Big Data 22

▪ Message passing is the most common paradigm for

programming distributed memory systems

▪ Processors coordinate their activities by sending

messages to each other across the network

▪ Infiniband

▪ Ethernet

▪ Message Passing Interface, or just MPI, gives us

communication primitives to do this

Message Passing Interface

CS 677: Big Data 23

▪ There are multiple implementations of MPI that target a

single standard

▪ This allows hardware-specific optimizations: your Cray

supercomputer probably ships with its own special

version of MPI

▪ Knows about the structure of the communication

interconnects

▪ This leads to better performance but also compatibility

issues and the usual arguments over the spec

MPI Standard

CS 677: Big Data 24

▪ MPI is great for coordinating supercomputing jobs

▪ Used extensively for atmospheric modeling,

simulations, etc.

▪ Servicing web requests, working with failures… not so

much.

▪ Could be decent for batch processing… although,

what about the file system?

▪ Built on a pull model: bring the data to the

computation

▪ We need other ways of dealing with these problems

MPI Use Cases

CS 677: Big Data 25

▪ Computing paradigm that consists of:

▪ Threads

▪ Network communication

▪ Synchronization

▪ Somewhat of a precursor to MapReduce

Bulk Synchronous Parallel

CS 677: Big Data 26

Barrier
Synchronisation

Local
Computation

Communication

Processors
Bulk Synchronous Parallel

CS 677: Big Data 27

▪ The good:

▪ Tasks execute independently

▪ Communication is structured

▪ Ultimately, everything gets synched back up!

▪ The bad:

▪ Assumes that nothing needs to happen after the sync step

▪ We could potentially build a graph of these computations

▪ Synchronization: you’re only as fast as your slowest worker

BSP: The Trade-Offs

CS 677: Big Data 28

▪ Distributed computing paradigm that pushes the BSP

idea forward

▪ Two steps:

▪ Map: filter, sort, produce local summaries, etc.

▪ Reduce: combine to produce the final result(s)

▪ Or, split-apply-combine

▪ Based on the map() and reduce() procedures from

functional computing

MapReduce

CS 677: Big Data 29

▪ Give the user a constrained framework and make them

fit their problem to it

▪ Parallelism is automatic

▪ Fault tolerance can be taken care of by the framework

▪ Development time is reduced

▪ Push computations to the data

▪ (or: don’t pull data to the computation)

▪ If you can warp your brain to work with MR, then you

save yourself a lot of trouble!

MapReduce Innovations

CS 677: Big Data 30

▪ The bread and butter of any MapReduce application is

simple <key, value> pairs

▪ Inputs

▪ Outputs

▪ This is restrictive

▪ Many times we have to rethink our problem in

“MapReduce style”

<key, value> pairs

CS 677: Big Data 31

▪ Receives an input <k, v> pair

▪ From text files: <line_num, line_text>

▪ Produces an intermediate <k, v> pair

▪ Intermediate pairs are grouped by the framework and

then passed to the reducer over the network

▪ Usually the map phase sets things up, filters out data,

performs pre-processing, etc.

▪ There are some map only computations that can be

expressed without a reduce phase

Map

CS 677: Big Data 32

▪ Receives intermediate <k, v-group> entries (transferred

over the network)

▪ Merges the values together

▪ Output?

▪ You guessed it! <k, v> pairs!

Reduce

CS 677: Big Data 33

▪ Shuffling: transferring data between mappers and

reducers

▪ Partitioning: determining which nodes process a given

key

▪ Sorting: Keys are sorted to create groups

▪ Combining: pre-sorting groups on the mapper to

reduce network communication

Other Pieces of the Puzzle

CS 677: Big Data 34

▪ Everything is a byte array (aka String)

▪ Most MapReduce implementations offer some

functionality to hide this fact from the developer

▪ Automatically serializing numbers, for instance

▪ In Hadoop, you can create your own data types to pass

as <k, v> pairs: custom writables

Data Types

CS 677: Big Data 35

▪ Map:

▪ Read log file

▪ Emit <URI, 1> pairs

▪ Reduce:

▪ Add up the counts for each URI

▪ Emit <URI, total> pairs

Example Job: Popular URIs

CS 677: Big Data 36

▪ Map:

▪ Read web page

▪ Emit <word, URI>

▪ Reduce:

▪ Sort by URI

▪ Emit <word, list(URI 1, URI 2, URI 3, … URI N)>

Building an Inverted Index

CS 677: Big Data 37

▪ Since printing “Hello World” on a bunch of machines

isn’t all that impressive, we need something else

▪ One of the most common examples: Word Count

▪ This is a pleasingly parallel job:

▪ Break our input file(s) up

▪ Grab each occurrence of each word

▪ Emit <word, #> tuples

▪ Combine the tuples (sort by the key: word)

▪ Emit final set of <word, #> tuples

The “Hello World” of MapReduce

CS 677: Big Data 38

WordCount Data Flow

CS 677: Big Data 39

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, new IntWritable(1));
 }
}

WordCount: Map

CS 677: Big Data 40

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
}

WordCount: Reduce

CS 677: Big Data 41

▪ With just this information, we can analyze a lot!

▪ What are the most common words in our languages?

▪ How does the frequency of words change over time?

▪ We can start updating our analysis to think about

sentiment, spelling changes, and more

Word Count

CS 677: Big Data 42

▪ The input datatype is assumed to be text by default

▪ We’re emitting (outputting) <word, 1>

▪ That’s kind of weird, why not anything but <word, 1>?

▪ There are less reducers than mappers, why not have the

same number?

▪ …

▪ Each mapper writes an output file to the DFS

A Few Observations

CS 677: Big Data 43

