CS 677 Big Data

Distributed Computation

Lecture 9

Today's Schedule

= Distributed computation overview

= Hardware platforms
= Supercomputers

= Beowulf clusters

= Grid computing, cloud computing

= Computation Engines
= MPI

= Bulk Synchronous Parallel

= MapReduce

CS 677:Big Data

Today's Schedule

Distributed computation overview

Hardware platforms
Supercomputers

Beowulf clusters

Grid computing, cloud computing

Computation Engines
MPI

Bulk Synchronous Parallel

MapReduce

CS 677:Big Data

Distributed Computation

In our storage systems discussions, we've focused on
spreading data out over cluster(s)

As you can imagine, we also need to take advantage of
distributed computations to ensure we can process
all that data efficiently

The basic idea behind distributed computations is to

divide and conquer our problems
...but this is a bit different than usual multi-process /
multi-core / parallel computing / etc.

CS 677:Big Data

Distributed Task Elements

These tasks are concerned with the following:

1. Communication
= (Getting/sharing data, coordinating with other tasks

2. Computation
= Applying transformations to the data, moving it from
State A to State B

3. Storage
= Retrieving the initial data state, storing modified state

CS 677:Big Data

Principles of Distributed Computation [1/2]

We need to tailor our tasks for this kind of environment

Principle 1: Reduce communication
Communication in a distributed system is latency-

prone, even with a fast interconnect
Much slower than in-memory access

Principle 2: Break computations into pieces that can run
independently
Try to avoid data/computation dependencies, e.g.,

Task 3 requires Task 2 to complete, Task 2 requires
Task 1...

CS 677:Big Data

Principles of Distributed Computation [2/2]

= Principle 3: Avoid excessive round trips to storage
= You should never be accessing data more than once,
if at all
= Indexes can help avoid data that you don't want

= Writes are even slower than reads
= Don't write too much intermediate state data to the
disk if simply recomputing it will be cheaper

CS 677:Big Data

Sullding It

What are the features we need for a minimum viable
computation engine?
Discuss with your neighbor

Very basic: create a shell script that will ssh to your
cluster machines, launch the computation, and then

collect the results from stdout
This has a long list of shortcomings...

CS 677:Big Data

Today's Schedule

Distributed computation overview

Hardware platforms
Supercomputers

Beowulf clusters

Grid computing, cloud computing

Computation Engines
MPI

Bulk Synchronous Parallel

MapReduce

CS 677:Big Data

Data

9

B

O
O
©
©
O
O
O

CS 677

CDC 6600: Tech Specs

60-bit CPU, ten 12-bit /O processors
3 megaFLOPS
Memory: 128K 60-bit words

Dual video display console
= Pretty cool: vector system instead of raster

Storage: 2 MB
= Could add magnetic drum storage for expansion!

Yours for ~$10m

CS 677:Big Data

11

Field Trip: IBM 1401

CS 677:Big Data 12

Supercomputing

Pioneered by Seymour Cray, ~1960s

Observed that simply making the CPU much faster

wasn't all that beneficial
Still have to wait for other components to catch up

(Assuming the CPU drives everything)

Instead, Cray designed a system that linked 10 simple

computers
Each of the 10 PPUs were responsible for shuffling
data in and out of memory

CS 677:Big Data 13

System Design

Original supercomputers used custom hardware to
accelerate performance and allow parallelism

Over time, more off-the-shelf components were used

INnstead
Huge leaps in performance of commodity CPUs

There are still some advantages over a standard cluster:
Better interconnects (e.g., Infiniband)

Better integration

CS 677:Big Data 14

Top500

= Alist of the top 500 supercomputers is available at:
https://www.top500.0rg

= Current #1: Frontier
= 8,730,112 Cores

= Peak performance exceeding one ExaFlop/s

= Oak Ridge National Laboratory
= See also: Green500 https://www.top500.0rg/green500/

CS 677:Big Data

15

https://www.top500.org/
https://www.top500.org/green500/

Beowulf Clusters

Over the years, many big computing tasks have

migrated away from supercomputing platforms
At the same time, supercomputers look more and
more like clusters

"Beowulf” terminology coined in 1994 @ NASA

Grab a bunch of commodity PCs, install software like

OpenMPI, MPICH
"Supercomputer” on the cheap!

We'll talk about MPI in a minute...

CS 677:Big Data

16

Grid Computing

Thus far we've focused on communications and data
transfer

Grid computing aims to provide processing resources
at scale

Modeled after the electric grid: use resources as you
need them

Better utilization of hardware between organizations
(for instance, universities)

CS 677:Big Data 17

Hardware

Grids are “super virtual computers” created by
combining a large amount of machines

Connected by commodity/standard networking

hardware such as Ethernet
May span large geographic regions

Like a traditional cluster but span across organizations

Loosely coupled

CS 677:Big Data

18

Making 1t Work

This may sound like a recipe for disaster!

Extreme heterogeneity
However, grid middleware helps handle the heavy
lifting for us

When launching an application on a grid, we can specify

type of resources we need
Software libraries, architectures, particular hardware
features, etc.

CS 677:Big Data

19

Cloud Computing

Then cloud computing (ahem Amazon) came along...

Realizes many goals of the grid computing movement

Also makes many of the same mistakes
Talk to a grid computing researcher sometime

Better: elasticity
Expand and contract your resource pool as needed

CS 677:Big Data 20

Today's Schedule

Distributed computation overview

Hardware platforms
Supercomputers

Beowulf clusters

Grid computing, cloud computing

Computation Engines
MPI

Bulk Synchronous Parallel

MapReduce

CS 677:Big Data

21

Message Passing

Getting back to the point: the basic idea behind
parallelism is divide and conquer

To do this, we need to coordinate across processing
units in our cluster via messages

We could use sockets
Who even does that?! &

Wrong level of abstraction for high performance
computing (HPC) applications

Every cluster/supercomputer is different

CS 677:Big Data

22

Message Passing Interface

Message passing is the most common paradigm for
programming distributed memory systems

Processors coordinate their activities by sending

messages to each other across the network
Infiniband

Ethernet

Message Passing Interface, or just MPI, gives us
communication primitives to do this

CS 677:Big Data 23

MP| Standard

There are multiple implementations of MPI that target a
single standard

This allows hardware-specific optimizations: your Cray
supercomputer probably ships with its own special

version of MPI
Knows about the structure of the communication
interconnects

This leads to better performance but also compatibility
Issues and the usual arguments over the spec

CS 677:Big Data 24

MPI| Use Cases

MPIl is great for coordinating supercomputing jobs

Used extensively for atmospheric modeling,
simulations, etc.

Servicing web requests, working with failures... not so

much.
Could be decent for batch processing... although,

what about the file system?
Built on a pull model: bring the data to the
computation

We need other ways of dealing with these problems

CS 677:Big Data 25

Bulk Synchronous Parallel

= Computing paradigm that consists of:
= Threads

= Network communication

= Synchronization

= Somewhat of a precursor to MapReduce

CS 677:Big Data

26

Bulk Synchronous Parallel

Local
Computation

Communication

Barrier
Synchronisation

CS 677:Big Data

27

BSP: The Trade-0Offs

= The good:
= Tasks execute independently

= Communication is structured

= Ultimately, everything gets synched back up!

= The bad:
= Assumes that nothing needs to happen after the sync step

= We could potentially build a graph of these computations

= Synchronization: you're only as fast as your slowest worker

CS 677:Big Data

28

MapReduce

Distributed computing paradigm that pushes the BSP
idea forward

Two steps:
Map: filter, sort, produce local summaries, etc.

Reduce: combine to produce the final result(s)
Or, split-apply-combine
Based on the map() and reduce() procedures from
functional computing

CS 677:Big Data 29

MapReduce Innovations

Give the user a constrained framework and make them

fit their problem to it
Parallelism is automatic

Fault tolerance can be taken care of by the framework

Development time is reduced

Push computations to the data
(or: don't pull data to the computation)

If you can warp your brain to work with MR, then you
save yourself a lot of trouble!

CS 677:Big Data

30

<key, value> pairs

= The bread and butter of any MapReduce application is
simple <key, value> pairs
= Inputs
= Outputs
= Thisis restrictive

= Many times we have to rethink our problem in
‘MapReduce style”

CS 677:Big Data

31

Map

Receives an input <k, v> pair
From text files: <line_num, line_text>

Produces an intermediate <k, v> pair

Intermediate pairs are grouped by the framework and
then passed to the reducer over the network

Usually the map phase sets things up, filters out data,

performs pre-processing, etc.
There are some map only computations that can be
expressed without a reduce phase

CS 677:Big Data

32

Reduce

= Receives intermediate <k, v-group> entries (transferred
over the network)

= Merges the values together

= Output?
= You guessed it! <k, v> pairs!

CS 677:Big Data

33

Other Pleces of the Puzzle

Shuffling: transferring data between mappers and
reducers

Partitioning: determining which nodes process a given
key

Sorting: Keys are sorted to create groups

Combining: pre-sorting groups on the mapper to
reduce network communication

CS 677:Big Data 34

Data lypes

Everything is a byte array (aka String)

Most MapReduce implementations offer some
functionality to hide this fact from the developer

Automatically serializing numbers, for instance

In Hadoop, you can create your own data types to pass
as <k, v> pairs: custom writables

CS 677:Big Data 35

—xample Job: Popular URIs

= Map:
= Read log file
= Emit <URI, 1> pairs
= Reduce:
= Add up the counts for each URI
= Emit <URI, total> pairs

CS 677:Big Data

36

Building an Inverted Index

= Map:
= Read web page
= Emit <word, URI>
= Reduce:
= Sort by URI
= Emit <word, list(URI 1, URI 2, URI 3, ... URI N)>

CS 677:Big Data

37

The "Hello World" of MapReduce

Since printing “"Hello World" on a bunch of machines
Isn't all that impressive, we need something else

One of the most common examples: Word Count

This is a pleasingly parallel job:
Break our input file(s) up
Grab each occurrence of each word
Emit <word, #> tuples
Combine the tuples (sort by the key: word)

Emit final set of <word, #> tuples

CS 677:Big Data 38

WordCount

Data Flow

Input: <line_num, line>

DFS

Chunk_1

Chunk_2

Chunk_3

Chunk_4

Chunk_5

QOutput: <word, 1>

Input: <word, [1s]>
Output: <word, total>

CS 677:Big Data

o

\
—>: Map :\>% Reduce
—>: Map : >L Reduce
’: Map ?<:: Reduce
e

DFS

Output_1

Output_2

Output_3

39

WordCount: Map

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, new IntWritable(l));

CS 677:Big Data

40

WordCount: Reduce

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
¥

result.set(sum);
context.write(key, result);

CS 677:Big Data 41

Word Count

With just this information, we can analyze a lot!
What are the most common words in our languages?
How does the frequency of words change over time?

We can start updating our analysis to think about
sentiment, spelling changes, and more

CS 677:Big Data

42

A Few Observations

The input datatype is assumed to be text by default

We're emitting (outputting) <word, 1>
That's kind of weird, why not anything but <word, 1>7

There are less reducers than mappers, why not have the
same number?

Each mapper writes an output file to the DFS

CS 677:Big Data 43

