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▪ The spec for Project 2 is up!

▪ We will build our own MapReduce implementations to

go with Project 1

▪ Today we’ll look at Hadoop’s implementation of the

MapReduce paradigm

▪ What better way to come up with our design than to

look at the competition?

Project 2
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▪ You can gain a lot of insight about what’s going on in the

world with social media

▪ A deep, dark cesspit of sorrow!

▪ Good places to mine for information and influence

elections: Twitter, TikTok, Reddit, Facebook … etc?

▪ Let’s look at one example using Reddit comments

Motivation: Social Media
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▪ Reddit is broken into a huge number of communities

called subreddits

▪ As an example, let’s scan through posts under

/r/politics

▪ In 2016

▪ Every time we see a mention of Obama, Trump, or

Hillary, we’ll increment a counter

▪ Question: What does this look like over time?

2016 US Presidential Election
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2012 – 2016
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2015 – 2016
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▪ Hadoop MapReduce Components

▪ Application Scheduling

▪ Hadoop Tips

Today’s Schedule
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▪ Last week, we covered the general MapReduce

programming paradigm

▪ Let’s dig a little deeper into the most popular

implementation of MapReduce: Hadoop!

▪ (So we can steal their good ideas for P2)

MapReduce: The Hadoop Flavor
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▪ We’ve studied the various parts of HDFS already…

▪ NameNode, DataNode, SecondaryNameNode

▪ What about the compute side of things?

▪ “MapReduce 2.0,” a.k.a. YARN (Yet Another Resource

Negotiator)

NodeManager

▪ ResourceManager

▪ ApplicationManager

▪ NodeManager

Components
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▪ A NodeManager instance runs on each compute node

in the cluster

▪ Receives instructions from the ResourceManager on

what to run

▪ Includes a copy of your application .jar

▪ Each YARN application is run inside a container on the

NodeManager

▪ Note: no relation to Linux containers / Docker / etc.

▪ More like an isolated JVM instance

NodeManager
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▪ One ResourceManager is required to operate a YARN

cluster

▪ You’ll set the hostname/port of the ResourceManager

in the Hadoop config

▪ Also must start the ResourceManager from the

correct host!

▪ Not the case for NodeManagers, DataNodes, etc.

▪ Handles cluster management, assigning tasks,

scheduling, etc.

ResourceManager
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▪ Maintaining the list of NodeManagers (compute nodes)

▪ Client/admin RPC functionality

▪ Liveliness monitor: tracks NM heartbeats

▪ Access control, permissions, security

▪ Task scheduling

RM Responsibilities
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▪ When you run a YARN job, it is managed by… you

guessed it, the ApplicationManager!

▪ The AM runs inside a container on one of the compute

nodes

▪ Tracks job status, monitors execution, reports the

results back to you

ApplicationManager
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▪ HDFS and Yarn are decoupled

▪ If you change the HDFS config, you only need to restart

it (not yarn!)

▪ In fact, you can run Yarn + MR on a different distributed

file system if you want

▪ Spark, another distributed computation engine, can run

on YARN

▪ Several systems can do this, in fact!

HDFS + Yarn
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▪ The ResourceManager supports three scheduling

algorithms:

1. FIFO

2. Fair Scheduling

3. Capacity Scheduling

▪ What scheduler you use depends on your organization’s

needs

▪ If you are the only user of the cluster, then FIFO usually

works fine 

Scheduling Algorithms
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▪ Goal: on average, applications/jobs should be given an equal

share of resources

▪ If Job A is running and Job B is submitted, the tasks for Job B

will start running once some of Job A’s tasks finish

▪ Tasks are allocated by rotating through pending applications

▪ Everyone gets a fair share (over time)

▪ By default, the fair scheduler bases its scheduling decisions on

memory usage

▪ Can be configured to use CPU as well

Fair Scheduling
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▪ Organizations generally run Hadoop clusters that can

operate near their peak required capacity

▪ Especially important if providing service-level

agreements (SLAs)

▪ This deployment strategy is inefficient when the cluster

is not always running at maximum capacity

▪ …but we don’t want to share it with anyone because

then resources might be tied up when we need them!

Capacity Scheduling [1/2]
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▪ The capacity scheduler enables organizations to have a

shared cluster with resource guarantees

▪ Each org gets a fraction of the cluster resources, e.g.,

30%

▪ If nobody is using the other available resources, then

your application can use them as well!

▪ However, both hard and soft limits can be applied

▪ Perhaps you want to ensure 10% head room is always

available for a certain org, or disallow orgs to go

beyond their allocated share

Capacity Scheduling [2/2]
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▪ Applications can also have priorities assigned to allow

finer-grained control over what runs first

▪ Applies to all three algorithms:

▪ FIFO: higher priority jobs will run first

▪ Fair: priority determines the weight of the applications,

increasing their share of the resources

▪ Capacity: within a queue, higher priority applications

are run first

▪ Note: does not impact other organizations

Priorities
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▪ Rather than trying to figure out why a task has failed, Hadoop

launches speculative tasks

▪ Also known as backup tasks (Google terminology)

▪ These are task duplicates that are scheduled to run on different

machines than their original copy

▪ The other machine might be overloaded, may just be slower

than average, etc.

▪ Which result do you keep? The one that finishes first!

▪ For some large jobs, Google found it took 44% longer to finish

without speculative execution. Only a small percentage of

duplicates are launched for each job

Speculative Execution
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▪ The block placement strategy in HDFS is unfortunately

not always very smart

▪ It makes some assumptions that may hurt

performance in our case

▪ Run: hdfs balancer -threshold 1

▪ You can increase the bandwidth for this, but probably

should just let it run for a while

Rebalancing
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▪ Hadoop is a little weird: it operates on local files by

default if you haven’t configured HDFS yet

▪ Once HDFS is set up, it assumes the files are coming

from there

▪ You can still refer to local files, though:

▪ Specify file:///home/username/file  as an input or

output to use non-HDFS paths

Operating on Local Files
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▪ If you have a hung job blocking your run queue, you will

need to kill it

▪ To do this: yarn application –kill <app_id>

▪ App IDs are shown in yarn top  or near the top of your

job output

Cleaning Up
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You can use the LazyOutputFormat to avoid writing empty

files during the reduce phase

import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;

. . .

LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);

Being Lazy
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Let’s assume you populate a HashMap with values during

the map phase. You can then emit a condensed version

during cleanup:

@Override                                                
protected void cleanup(Context context)                  
throws IOException, InterruptedException {               
    for (Text geohash : hottest.keySet()) {              
        Double temp = hottest.get(geohash);              
        context.write(geohash, new DoubleWritable(temp));
    }                                                    
}                                  

Cleanup() Method
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▪ There is also a setup() method you can override

▪ Not as useful as cleanup(), but can be used to initialize

things before the task begins

Setup() Method
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▪ Abusing the setup()  and cleanup()  methods

(especially cleanup() ) tends to circumvent the

framework

▪ Example: I’m going to stick everything in a hashmap, and

then emit a bunch of k,v pairs at the end

▪ This can work… but MR already is basically doing this

for you

▪ Plus: what happens if you can’t fit the hashmap in

memory?

Hrm…
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▪ You don’t have to re-encode output data as text or

JSON

▪ If you are going to emit multiple values, encapsulate

them in a custom writable

▪ Public members are totally fine. No need for fancy

constructors, etc.

▪ This will improve performance and reduce the amount

of duplicate work you do

Custom Writables
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▪ You aren’t stuck with simple <line_no, text>  KV pairs

▪ You can design your own input format, or extend an

existing one

▪ For example: NLineInputFormat when you want to read

multiple lines at a time

Custom Input Formats
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▪ You can also write your own output formats

▪ Not too much work – implement some methods

▪ Here’s how you can write your own format that doesn’t

produce empty files:

http://whiteycode.blogspot.it/2012/06/hadoop-

removing-empty-output-files.html

Custom Output Formats
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