
Hadoop MapReduce

CS 677: Big Data

Lecture 10

▪ The spec for Project 2 is up!

▪ We will build our own MapReduce implementations to

go with Project 1

▪ Today we’ll look at Hadoop’s implementation of the

MapReduce paradigm

▪ What better way to come up with our design than to

look at the competition?

Project 2

CS 677: Big Data 2

▪ You can gain a lot of insight about what’s going on in the

world with social media

▪ A deep, dark cesspit of sorrow!

▪ Good places to mine for information and influence

elections: Twitter, TikTok, Reddit, Facebook … etc?

▪ Let’s look at one example using Reddit comments

Motivation: Social Media

CS 677: Big Data 3

▪ Reddit is broken into a huge number of communities

called subreddits

▪ As an example, let’s scan through posts under

/r/politics

▪ In 2016

▪ Every time we see a mention of Obama, Trump, or

Hillary, we’ll increment a counter

▪ Question: What does this look like over time?

2016 US Presidential Election

CS 677: Big Data 4

2012 – 2016

CS 677: Big Data 5

2015 – 2016

CS 677: Big Data 6

▪ Hadoop MapReduce Components

▪ Application Scheduling

▪ Hadoop Tips

Today’s Schedule

CS 677: Big Data 7

▪ Hadoop MapReduce Components

▪ Application Scheduling

▪ Hadoop Tips

Today’s Schedule

CS 677: Big Data 8

▪ Last week, we covered the general MapReduce

programming paradigm

▪ Let’s dig a little deeper into the most popular

implementation of MapReduce: Hadoop!

▪ (So we can steal their good ideas for P2)

MapReduce: The Hadoop Flavor

CS 677: Big Data 9

▪ We’ve studied the various parts of HDFS already…

▪ NameNode, DataNode, SecondaryNameNode

▪ What about the compute side of things?

▪ “MapReduce 2.0,” a.k.a. YARN (Yet Another Resource

Negotiator)

NodeManager

▪ ResourceManager

▪ ApplicationManager

▪ NodeManager

Components

CS 677: Big Data 10

▪ A NodeManager instance runs on each compute node

in the cluster

▪ Receives instructions from the ResourceManager on

what to run

▪ Includes a copy of your application .jar

▪ Each YARN application is run inside a container on the

NodeManager

▪ Note: no relation to Linux containers / Docker / etc.

▪ More like an isolated JVM instance

NodeManager

CS 677: Big Data 11

▪ One ResourceManager is required to operate a YARN

cluster

▪ You’ll set the hostname/port of the ResourceManager

in the Hadoop config

▪ Also must start the ResourceManager from the

correct host!

▪ Not the case for NodeManagers, DataNodes, etc.

▪ Handles cluster management, assigning tasks,

scheduling, etc.

ResourceManager

CS 677: Big Data 12

▪ Maintaining the list of NodeManagers (compute nodes)

▪ Client/admin RPC functionality

▪ Liveliness monitor: tracks NM heartbeats

▪ Access control, permissions, security

▪ Task scheduling

RM Responsibilities

CS 677: Big Data 13

▪ When you run a YARN job, it is managed by… you

guessed it, the ApplicationManager!

▪ The AM runs inside a container on one of the compute

nodes

▪ Tracks job status, monitors execution, reports the

results back to you

ApplicationManager

CS 677: Big Data 14

▪ HDFS and Yarn are decoupled

▪ If you change the HDFS config, you only need to restart

it (not yarn!)

▪ In fact, you can run Yarn + MR on a different distributed

file system if you want

▪ Spark, another distributed computation engine, can run

on YARN

▪ Several systems can do this, in fact!

HDFS + Yarn

CS 677: Big Data 15

▪ Hadoop MapReduce Components

▪ Application Scheduling

▪ Hadoop Tips

Today’s Schedule

CS 677: Big Data 16

▪ The ResourceManager supports three scheduling

algorithms:

1. FIFO

2. Fair Scheduling

3. Capacity Scheduling

▪ What scheduler you use depends on your organization’s

needs

▪ If you are the only user of the cluster, then FIFO usually

works fine

Scheduling Algorithms

CS 677: Big Data 17

▪ Goal: on average, applications/jobs should be given an equal

share of resources

▪ If Job A is running and Job B is submitted, the tasks for Job B

will start running once some of Job A’s tasks finish

▪ Tasks are allocated by rotating through pending applications

▪ Everyone gets a fair share (over time)

▪ By default, the fair scheduler bases its scheduling decisions on

memory usage

▪ Can be configured to use CPU as well

Fair Scheduling

CS 677: Big Data 18

▪ Organizations generally run Hadoop clusters that can

operate near their peak required capacity

▪ Especially important if providing service-level

agreements (SLAs)

▪ This deployment strategy is inefficient when the cluster

is not always running at maximum capacity

▪ …but we don’t want to share it with anyone because

then resources might be tied up when we need them!

Capacity Scheduling [1/2]

CS 677: Big Data 19

▪ The capacity scheduler enables organizations to have a

shared cluster with resource guarantees

▪ Each org gets a fraction of the cluster resources, e.g.,

30%

▪ If nobody is using the other available resources, then

your application can use them as well!

▪ However, both hard and soft limits can be applied

▪ Perhaps you want to ensure 10% head room is always

available for a certain org, or disallow orgs to go

beyond their allocated share

Capacity Scheduling [2/2]

CS 677: Big Data 20

▪ Applications can also have priorities assigned to allow

finer-grained control over what runs first

▪ Applies to all three algorithms:

▪ FIFO: higher priority jobs will run first

▪ Fair: priority determines the weight of the applications,

increasing their share of the resources

▪ Capacity: within a queue, higher priority applications

are run first

▪ Note: does not impact other organizations

Priorities

CS 677: Big Data 21

▪ Rather than trying to figure out why a task has failed, Hadoop

launches speculative tasks

▪ Also known as backup tasks (Google terminology)

▪ These are task duplicates that are scheduled to run on different

machines than their original copy

▪ The other machine might be overloaded, may just be slower

than average, etc.

▪ Which result do you keep? The one that finishes first!

▪ For some large jobs, Google found it took 44% longer to finish

without speculative execution. Only a small percentage of

duplicates are launched for each job

Speculative Execution

CS 677: Big Data 22

▪ Hadoop MapReduce Components

▪ Application Scheduling

▪ Hadoop Tips

Today’s Schedule

CS 677: Big Data 23

▪ The block placement strategy in HDFS is unfortunately

not always very smart

▪ It makes some assumptions that may hurt

performance in our case

▪ Run: hdfs balancer -threshold 1

▪ You can increase the bandwidth for this, but probably

should just let it run for a while

Rebalancing

CS 677: Big Data 24

▪ Hadoop is a little weird: it operates on local files by

default if you haven’t configured HDFS yet

▪ Once HDFS is set up, it assumes the files are coming

from there

▪ You can still refer to local files, though:

▪ Specify file:///home/username/file as an input or

output to use non-HDFS paths

Operating on Local Files

CS 677: Big Data 25

▪ If you have a hung job blocking your run queue, you will

need to kill it

▪ To do this: yarn application –kill <app_id>

▪ App IDs are shown in yarn top or near the top of your

job output

Cleaning Up

CS 677: Big Data 26

You can use the LazyOutputFormat to avoid writing empty

files during the reduce phase

import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;

. . .

LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);

Being Lazy

CS 677: Big Data 27

Let’s assume you populate a HashMap with values during

the map phase. You can then emit a condensed version

during cleanup:

@Override
protected void cleanup(Context context)
throws IOException, InterruptedException {
 for (Text geohash : hottest.keySet()) {
 Double temp = hottest.get(geohash);
 context.write(geohash, new DoubleWritable(temp));
 }
}

Cleanup() Method

CS 677: Big Data 28

▪ There is also a setup() method you can override

▪ Not as useful as cleanup(), but can be used to initialize

things before the task begins

Setup() Method

CS 677: Big Data 29

▪ Abusing the setup() and cleanup() methods

(especially cleanup()) tends to circumvent the

framework

▪ Example: I’m going to stick everything in a hashmap, and

then emit a bunch of k,v pairs at the end

▪ This can work… but MR already is basically doing this

for you

▪ Plus: what happens if you can’t fit the hashmap in

memory?

Hrm…

CS 677: Big Data 30

▪ You don’t have to re-encode output data as text or

JSON

▪ If you are going to emit multiple values, encapsulate

them in a custom writable

▪ Public members are totally fine. No need for fancy

constructors, etc.

▪ This will improve performance and reduce the amount

of duplicate work you do

Custom Writables

CS 677: Big Data 31

▪ You aren’t stuck with simple <line_no, text> KV pairs

▪ You can design your own input format, or extend an

existing one

▪ For example: NLineInputFormat when you want to read

multiple lines at a time

Custom Input Formats

CS 677: Big Data 32

▪ You can also write your own output formats

▪ Not too much work – implement some methods

▪ Here’s how you can write your own format that doesn’t

produce empty files:

http://whiteycode.blogspot.it/2012/06/hadoop-

removing-empty-output-files.html

Custom Output Formats

CS 677: Big Data 33

http://whiteycode.blogspot.it/2012/06/hadoop-removing-empty-output-files.html

