CS 677: Big Data

Hadoop MapReduce

Lecture 10

Project 2

The spec for Project 2 is up!

We will build our own MapReduce implementations to
go with Project 1

Today we'll look at Hadoop's implementation of the
MapReduce paradigm

What better way to come up with our design than to
look at the competition?

CS 677:Big Data

Motivation: Social Media

You can gain a lot of insight about what's going on in the
world with social media
A deep, dark cesspit of sorrow!

Good places to mine for information and influence
elections: Twitter, TikTok, Reddit, Facebook ... etc?

Let's look at one example using Reddit comments

CS 677:Big Data

2016 US Presidential Election

Reddit is broken into a huge number of communities
called subreddits

As an example, let's scan through posts under

/r/politics
INn 2016

Every time we see a mention of Obama, Trump, or
Hillary, we'll increment a counter

Question: What does this look like over time?

CS 677:Big Data

201220170

CS 677:Big Data

450000

400000

350000

300000

250000

200000

150000

100000

Obama, Hillary, Trump Mentions - /r/politics

e=@==(Obama ==@=Hillary ==@==Trump

2075 -2016

Obama, Hillary, Trump Mentions - /r/politics

500000

375000

250000

125000

0
2015-01 2015-03 2015-05 2015-07 2015-09 2015-11 2016-01 2016-03 2016-05 2016-07 2016-09 2016-11

Obama # Hillary # Trump

CS 677:Big Data

Today's Schedule

= Hadoop MapReduce Components
= Application Scheduling
= Hadoop Tips

CS 677:Big Data

Today's Schedule

- Hadoop MapReduce Components
= Application Scheduling
= Hadoop Tips

CS 677:Big Data

MapReduce: The Hadoop Flavor

= Last week, we covered the general MapReduce
programming paradigm

= Let's dig a little deeper into the most popular

implementation of MapReduce: Hadoop!
= (S0 we can steal their good ideas for P2)

CS 677:Big Data

Components

We've studied the various parts of HDFS already...
NameNode, DataNode, SecondaryNameNode

What about the compute side of things?

‘MapReduce 2.0," a.k.a. YARN (Yet Another Resource
Negotiator)

NodeManager
ResourceManager

ApplicationManager

NodeManager

CS 677:Big Data

10

NodeManager

A NodeManager instance runs on each compute node
In the cluster

Receives instructions from the ResourceManager on
what to run

Includes a copy of your application jar

Each YARN application is run inside a container on the
NodeManager

Note: no relation to Linux containers / Docker / etc.

More like an isolated JVM instance

CS 677:Big Data

11

ResourceManager

One ResourceManager is required to operate a YARN
cluster
You'll set the hosthame/port of the ResourceManager
iNn the Hadoop config

Also must start the ResourceManager from the
correct host!
Not the case for NodeManagers, DataNodes, etc.

Handles cluster management, assigning tasks,
scheduling, etc.

CS 677:Big Data

12

RM Responsibilities

Maintaining the list of NodeManagers (compute nodes)

Client/admin RPC functionality

Liveliness monitor:; tracks NM heartbeats

Access control, permissions, security

Task scheduling

CS 677:Big Data

13

ApplicationManager

= When you run a YARN job, it is managed by... you
guessed it, the ApplicationManager!

= The AM runs inside a container on one of the compute
nodes

= Tracks job status, monitors execution, reports the
results back to you

CS 677:Big Data

14

HDFS + Yarn

HDFES and Yarn are decoupled

If you change the HDFS config, you only need to restart
it (hot yarn!)

In fact, you can run Yarn + MR on a different distributed
file system if you want

Spark, another distributed computation engine, can run

on YARN
Several systems can do this, in fact!

CS 677:Big Data

15

Today's Schedule

= Hadoop MapReduce Components
= Application Scheduling
= Hadoop Tips

CS 677:Big Data

16

Scheduling Algorithms

= The ResourceManager supports three scheduling

algorithms:
1. FIFO

2. Fair Scheduling
3. Capacity Scheduling

= What scheduler you use depends on your organization’s

needs
= |f you are the only user of the cluster, then FIFO usually
works fine ‘&

CS 677:Big Data

17

Fair Scheduling

Goal: on average, applications/jobs should be given an equal
share of resources

If Job A'is running and Job B is submitted, the tasks for Job B

will start running once some of Job As tasks finish
Tasks are allocated by rotating through pending applications

Everyone gets a fair share (over time)

By default, the fair scheduler bases its scheduling decisions on

memory usage
Can be configured to use CPU as well

CS 677:Big Data 18

Capacity Scheduling [1/2]

Organizations generally run Hadoop clusters that can

operate near their peak required capacity
Especially important if providing service-level
agreements (SLAS)

This deployment strategy is inefficient when the cluster

IS not always running at maximum capacity
...but we don't want to share it with anyone because
then resources might be tied up when we need them!

CS 677:Big Data 19

Capacity Scheduling [2/2]

The capacity scheduler enables organizations to have a
shared cluster with resource guarantees

Each org gets a fraction of the cluster resources, eg.,
30%
If nobody is using the other available resources, then
your application can use them as well!

However, both hard and soft limits can be applied
Perhaps you want to ensure 10% head room is always

available for a certain org, or disallow orgs to go
beyond their allocated share

CS 677:Big Data 20

Priorities

Applications can also have priorities assigned to allow
finer-grained control over what runs first
Applies to all three algorithms:

FIFO: higher priority jobs will run first

Fair: priority determines the weight of the applications,
increasing their share of the resources
Capacity: within a queue, higher priority applications

are run first
Note: does not impact other organizations

CS 677:Big Data

21

Speculative Execution

Rather than trying to figure out why a task has failed, Hadoop
launches speculative tasks
Also known as backup tasks (Google terminology)

These are task duplicates that are scheduled to run on different
machines than their original copy

The other machine might be overloaded, may just be slower
than average, etc.

Which result do you keep? The one that finishes first!

For some large jobs, Google found it took 44% longer to finish
without speculative execution. Only a small percentage of
duplicates are launched for each job

CS 677:Big Data 22

Today's Schedule

= Hadoop MapReduce Components
= Application Scheduling
- Hadoop Tips

CS 677:Big Data

23

Rebalancing

The block placement strategy in HDFS is unfortunately

not always very smart
It makes some assumptions that may hurt
performance in our case

Run: hdfs balancer -threshold 1
You can increase the bandwidth for this, but probably
should just let it run for a while

CS 677:Big Data

24

Operating on Local Files

Hadoop is a little weird: it operates on local files by
default if you haven't configured HDFS yet

Once HDFS is set up, it assumes the files are coming
from there

You can still refer to local files, though:
Specify file:///home/username/file as aninputor
output to use non-HDFS paths

CS 677:Big Data

25

Cleaning Up

If you have a hung job blocking your run queue, you will
need to Kill it

To do this: yarn application -kill <app_id>

App IDs are shown in yarn top Or near the top of your

job output

CS 677:Big Data

26

Being Lazy

You can use the LazyOutputFormat to avoid writing empty
files during the reduce phase

import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;

LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);

CS 677:Big Data

27

Cleanup() Methoa

Let's assume you populate a HashMap with values during
the map phase. You can then emit a condensed version
during cleanup:

@0verride
protected void cleanup(Context context)
throws IOException, InterruptedException {
for (Text geohash : hottest.keySet()) {
Double temp = hottest.get(geohash);
context.write(geohash, new DoubleWritable(temp));

CS 677:Big Data

28

Setup() Method

= There is also a setup() method you can override

= Not as useful as cleanup(), but can be used to initialize
things before the task begins

CS 677:Big Data

29

Hrm...

Abusing the setup() and cleanup() methods

(especially cleanup()) tends to circumvent the
framework

Example: 'm going to stick everything in a hashmap, and
then emit a bunch of kv pairs at the end

This can work... but MR already is basically doing this
for you

Plus: what happens if you can't fit the hashmap in
memory?

CS 677:Big Data 30

Custom Writables

You don't have to re-encode output data as text or
JSON

If you are going to emit multiple values, encapsulate

them in a custom writable
Public members are totally fine. No need for fancy
constructors, etc.

This will improve performance and reduce the amount
of duplicate work you do

CS 677:Big Data 31

Custom Input Formats

= You aren't stuck with simple <line_no, text> KV pairs

= You can design your own input format, or extend an
existing one

= For example: NLinelnputFormat when you want to read
multiple lines at a time

CS 677:Big Data

32

Custom Output Formats

= You can also write your own output formats
= Not too much work — implement some methods

= Here's how you can write your own format that doesn't
produce empty files:

http://whiteycode.blogspot.it/2012/06/hadoop-
removing-empty-output-files.ntml

CS 677:Big Data

33

http://whiteycode.blogspot.it/2012/06/hadoop-removing-empty-output-files.html

