CS 677 Big Data
Stream Sampling

Lecture 12



Data Reduction via Sampling

= One way to make the dataset more manageable is to
generate a representative sample and analyze it
= |If the rules aren't working in your favor, change the
rules!
= The key is knowing when you can sample and what
algorithms work best

CS 677:Big Data



Today's Schedule

Sampling Overview

Stream Sampling

Gap Sampling

Reservoir Sampling

CS 677:Big Data



Today's Schedule

Sampling Overview

Stream Sampling

Gap Sampling

Reservoir Sampling

CS 677: Big Data



Sampling

Ok, so we can mostly agree that one great way to deal
with big data is to make it less "big”
Dividing up the problem into smaller pieces is one way
to do this
Another simple way to achieve this: sample from our

dataset
If the sample is representative, then it will serve as a
good stand-in for the actual, large dataset

Sample vs. census: asking some instead of all

CS 677:Big Data



HmMm...

= ...Isn't this cheating?!
= Wait! Don't submit your course drop forms yet!

= We can actually do a pretty good job with just a small
sample

CS 677:Big Data



Approximation

What's an easy way to speed up processing 1 ZB of
data? Ignore almost all of it!

Let’s take a step back and think for a second here,
though... What are we losing?

A big one: less-represented data points are likely
going to be lost

We have to be careful what conclusions we draw

CS 677:Big Data



Sampling Algorithms

You might be sitting there in horror right now, thinking “Is

Matthew really going to talk about generating a random
sample for 3 hours?”

(Yes, in this hypothetical situation class actually goes
longer than usual just to torture you)

Luckily, we get to cover some big data-specific
algorithms:
Stream sampling

Gap sampling

Reservoir sampling

CS 677:Big Data



Implementing our Sample

The nalve approach: if we have 100 data points and

want a 10% sample, randomly select 10
Sampling with replacement: put the selected data

points back into the dataset after each selection
Thought experiment: what dataset does this make
sense for?

In code: pick 10 unique indices, grab the data. Done!

What about in a distributed setting?
Oh, right, that's where things start to get difficult...

CS 677:Big Data



Distributed Ssampling

To get started, we can just divide up the work and
sample X% from each data partition

Combine the samples into one bigger sample

This is pretty decent. [t works... unless we don't know

how many records we're going to get at each task
Maybe we don't even know the total number of inputs
we're going to get
Streaming data!

CS 677:Big Data

10



More Complications

Let's say we can find out how many records will be
assigned to each mapper (or distributed task)

We may still want additional filtering, for instance

removing invalid readings
Now we need to know the number of records to
remove, and the number of incoming records

Adding more constraints makes this even more difficult

CS 677:Big Data

11



Multiple Passes

We can go through the data as a preprocessing step to
determine these parameters, then sample it

The problem: this takes time
We are relying on spinning rust to get this work done

Avoid making multiple passes over the data!

CS 677:Big Data

12



Your Options

1. Don't touch the data at all
2. Only touch the data once

3. Wait a really, really, really long time

CS 677:Big Data

13



An Aside: Streaming Data

| have already mentioned that almost all big data
problems can be viewed as streaming data problems

The reason for this is simple: most of the time you can't

make multiple passes over the data
It's too big to do that efficiently!

S0, when you're dealing with a VERY large dataset, reach
for streaming algorithms

CS 677:Big Data 14



Reconfiguring our Algorithm

Alright, so we can't assume we know the number of
records handled by each task

Instead, we can reduce the amount of state information
required

Basically, can we forget about everything we've done in
the past but still sample accurately when we're looking
at a single data point?

CS 677:Big Data

15



Today's Schedule

Sampling Overview

Stream Sampling

Gap Sampling

Reservoir Sampling

CS 677: Big Data

16



Stream Sampling

Inspect each data point in isolation, and flip a coin
Heads = sample it

Tails = ignore it
This gives us a 50% sample

If we want a 10% sample, select a random number from

0.0to 1.0
Only keep the data point if the random number is 0.0

to 0.1
(or whatever range represents 10% of the possible
values)

CS 677:Big Data 17



Stream Sampling: Pros and Cons

= Pros:
= Easy to write; conceptually simple

= No need for any extra information

= Cons:

= Invokes the random number generator a lot
= Actually can add up over time

= We have to parse every input

= We won't get an exact sample
= May be a bit more or less than say, 10%

CS 677:Big Data

18



Today's Schedule

Sampling Overview

Stream Sampling

Gap Sampling

Reservoir Sampling

CS 677:Big Data

19



Gap Sampling

To reduce the amount of data we parse, let's skip over

records that won't be sampled
Works for a stream of unknown size

Start by skipping a random amount of records. If we
want a 10% sample, skip O to 10 records

After sampling the first data point, just keep skipping
ahead by 10 records

Decide you want a 50% sample instead? Skip every
other record.

CS 677:Big Data

20



Gap Pros and Cons

Pros:
We can actually avoid processing records! (Speed!)

Cons:

To be a true random sample, all data points must have an
opportunity to be picked
We only kind of satisfy this constraint
We can modify this slightly. Instead of moving ahead 10
records, we could add some random noise to make sure we
move ahead by an average of 10 records
Once again, we might not get the exact sample size we're
hoping for

CS 677:Big Data

21



Today's Schedule

Sampling Overview

Stream Sampling

Gap Sampling

Reservoir Sampling

CS 677:Big Data

22



Reservoir Sampling

Useful when the size of the incoming stream is unknown
or there are memory constraints

Initialize as a fixed size array on creation
Limits memory usage

As data points stream in, place them at random array
iIndexes

Over time, update the array less and less
Ensures long-term representativeness

CS 677:Big Data

23



INntuition: Elimination Game

Let's say I'm going to give one lucky winner an "A" in the
class, right now

I'll pick two students and have them flip a coin
Heads: Student 1 survives, Student 2 is eliminated

Tails: Student 2 survives, Student 1 is eliminated
Then I'll pick the next “challenger” for the coin flip

The last student standing (i.e., not eliminated) is the
winner and receives an A

Ready to play? Are the rules fair?

CS 677:Big Data 24



—liminated!

No, the rules aren't fair!
(When are they?!)

The first two students have the worst chance of survival

Even if you are the luckiest person on earth, there isanot a

great chance you'll win 17 coin flips
Unless you are using a trick coin...

So the last student to play has a HUGE advantage
A more intuitive example: arm wrestling competition with the
same rules

How do we fix this issue?

CS 677:Big Data 25



Reservoir Algorithm

Online sampling technique that creates representative random
samples when:

The number of incoming data points in unknown
The total dataset cannot fit in main memory

Fixed size (n)

When data points arrive, they are assigned a random insertion
key (k) in the range [0, 1]

fk < % where C'is the total number of observations, the data
point replaces a random entry in the reservoir
The probability of replacement decreases over time

CS 677:Big Data 26



Reservoir sampling Extensions

Reservoir sampling can be augmented by allowing
sample weights to increase the likelihood of certain data

points being placed in the array
We may place a greater weight on samples from a
particular sensor, for instance

Additionally, storing the insertion key when placing data

INn the reservoir allows merging later
To determine which elements go in the merged arrays,
just sort by insertion key

CS 677:Big Data

27



Distributed Reservoirs

Each map task maintains a reservoir of size n
Insert each record into the reservoir

If the record gets stored in the reservoir, also store its
insertion key (the random number associated with it)

At the end of the Map phase, emit n entries, plus their
Insertion keys

During the reduce (on a single reducer) keep the
elements with the smallest insertion keys

CS 677:Big Data 28



Representativeness

While reservoir sampling provides a replacement for our
standard random sampling procedure, it does have
weaknesses

The sample must fit into memory (generally acceptable)

Outliers or uncommon values will be under-represented

CS 677:Big Data 29



Stratified Sampling

Sometimes the outliers are actually more interesting
than the common cases!

Here, we can use stratified sampling to produce a
sample that better represents all populations rather
than just the majority

Observe the distribution of data points, and then create

Sub-reservoirs across the distribution
Uncommon data points now have their own reservoir
and won't be overpowered by the majority

CS 677:Big Data 30



Needle In a Haystack

= Ultimately, if | ask you to find a specific record, sampling
won't help

= There's a good chance it won't even be in your sample

= Sampling is appropriate for quickly gaining aggregate
knowledge

CS 677:Big Data

31



Saving Subsets

If you're strategic, you can build smaller subsets of the

overall dataset
Use these samples to do initial exploratory analyses

Done frequently with data warehousing systems such

as Hive
Build summary tables that answer certain “business
guestions” as a background batch process

CS 677:Big Data

32



To Conclude

If you can still get a reasonably correct answer
|deally a 100% correct answer...

And you will probably reuse the sample more than once

Then sample! (And use one of these Big Data-oriented
algorithmsl!)

CS 677:Big Data

33



