
Bloom Filters

CS 677: Big Data

Lecture 13

▪ We’ve introduced Spark, and we’ll start using it soon

▪ In the meantime, let’s look at some algorithms/data

structures specifically designed for big data

▪ Inspiration: Spark has a method called .countApprox()

Moving on…

CS 677: Big Data 2

▪ Bloom Filters

▪ Configuring a Bloom Filter

Today’s Schedule

CS 677: Big Data 3

▪ Bloom Filters

▪ Configuring a Bloom Filter

Today’s Schedule

CS 677: Big Data 4

▪ Imagine, if you will, a centralized component that has an

index of all the data in a distributed system

▪ It simplifies things, but at what cost?

▪ Single point of failure

▪ Lots of memory is required to store the file system

namespace

▪ If we are Google (in other words, rich), we can

buy a very fancy machine to take care of this

▪ Based on your tuition, we probably should have this at

USF…

Setting the Scene

CS 677: Big Data 5

▪ We don’t have the hardware for a truly Google-scale

“NameNode” / “Controller”, etc.

▪ Instead, we can store our index on a large disk, but that

is going to be slow

▪ Given a request for a file, let’s predict whether we

actually have it stored somewhere or not without

consulting our index

▪ What is the probability that a node contains the

data?

▪ We’ll do this with a data structure called bloom filters

What if there was another way?

CS 677: Big Data 6

▪ Compact data structure to test for set membership

▪ Supports two functions:

▪ put(data) : places some information in the filter

▪ get(data) : reports the probability of whether or not

the data was put in the filter

▪ May produce false positives but never false negatives

▪ If the bloom filter says it wasn’t inserted, then it

definitely wasn’t!

Bloom Filter [1/2]

CS 677: Big Data 7

▪ Bloom filters give us two answers:

▪ Maybe (with a probability)

▪ Definitely not

▪ You can think of it as a HashSet that throws away the

keys

▪ We can’t get the data back

out of the bloom filter,

but it is very compact

in memory!

Bloom Filter [2/2]

CS 677: Big Data 8

▪ When is a data structure that throws away data actually

useful? Surprisingly quite often!

▪ Perhaps we can’t store the entire set in memory

▪ NameNode index

▪ Word dictionary for spell checking (embedded

devices)

▪ “Malicious websites” list: don’t keep the entire list,

check if a URL might be malicious, then look up in an

online database

Use Cases [1/3]

CS 677: Big Data 9

▪ Generating a unique name or ID for something: if the

bloom filter replies “definitely not,” then you know it’s

unique!

▪ Preventing caches from including “one hit wonders”

▪ ~75% of the unique URLs you click are one-time visits

▪ Only cache URLs that were accessed at least once

before (second request)

▪ No need to store entire list of URLs visited

Use Cases [2/3]

CS 677: Big Data 10

▪ Acting as a gatekeeper to a high-latency hardware (such

as hard disks – avoid HDD accesses if they’re not

actually needed!)

Use Cases [3/3]

CS 677: Big Data 11

Content Delivery: Akamai

CS 677: Big Data 12

1. Create a bit array of bits

2. For each put(key) operation, hash the key times

▪ Where is the number of hash functions we’re using

▪ There is a formula to determine how many we need…

stay tuned

3. Map each hashed value to its corresponding index in

the bit array

▪

4. Set these bits to

How it Works: put()

m

k
k

hash % m

1

CS 677: Big Data 13

1. For each get(key) operation, hash the key times

2. Map each hashed value to its corresponding index in

the bit array

▪ (same as put() so far)

3. If any of the bits at these indexes are set to , then key

is definitely not in the set

4. If all the bits are set to , then key might be in the set

How it Works: get()

k

0

1

CS 677: Big Data 14

A Picture

CS 677: Big Data 15

https://www.jasondavies.com/bloomfilter/

Interactive Demo

CS 677: Big Data 16

https://www.jasondavies.com/bloomfilter/

▪ To implement a bloom filter, we need:

▪ An array of bits

▪ Multiple hash functions

▪ When putting an item in the filter, the data is passed to

the hash functions

▪ The hash space of each function is mapped to our

array of bits

Building a Bloom Filter [1/2]

CS 677: Big Data 17

▪ We take the position in the hash space, map it to our

array of bits, and then set the corresponding bit to

▪ Repeat for all hash functions

▪ To perform a lookup, we repeat the process

▪ If all the positions in the bit array are set to , then we

can return a “maybe”

▪ If any of the positions are a , then we return “no”

▪ Short-circuits the lookup process

Building a Bloom Filter [2/2]

1

1

0

CS 677: Big Data 18

▪ If the size of our bit array is small, then there is a good

chance of collisions

▪ Two inputs map to the same bit:

▪ hash(my_dog.jpg) bit #3

▪ hash(secret_passwords.txt) bit #3

▪ This is the source of uncertainty in bloom filters

▪ How do we decide how large to make our filters?

Collisions

=>
=>

CS 677: Big Data 19

▪ Bloom Filters

▪ Configuring a Bloom Filter

Today’s Schedule

CS 677: Big Data 20

▪ A reasonable starting point: bit arrays sized at 20% of

your input size

▪ If we can accept more uncertainty, we can maintain

smaller bit arrays in memory

▪ Fewer than 10 bits per element are required for a 1%

false positive probability, independent of the size or

number of elements in the set

▪ – Bonomi et al., “An Improved Construction for

Counting Bloom Filters”

Sizing a Bloom Filter

CS 677: Big Data 21

False Positive Rate vs. Bits [1/2]

CS 677: Big Data 22

False Positive Rate vs. Bits [2/2]

CS 677: Big Data 23

▪ New research from 2020 shows the FPR from the

original paper was incorrect

▪ See schedule page for details…

Caveat: False Positive Rate

CS 677: Big Data 24

▪ If our false positive probability starts to go up, we need

to resize the bloom filter

▪ Kind of not really possible…

▪ Generally accomplished by creating a new bloom filter

and then inserting the values back in

▪ Do we actually have the original data?

▪ Big downside in situations where we can’t predict how

many values we’ll see

▪ This is really expensive! Avoid at all costs.

Resizing a Bloom Filter

CS 677: Big Data 25

▪ Most of the examples we’ve dealt with have three hash

functions, but that’s not optimal

▪ Let’s think about the trade-off here…

▪ More hash functions means decreased false

positives

▪ It also means you need more bits per element

▪ The rule of thumb is ~(0.6 to 0.7) * bits per element

▪ Usually we’ll have more than 3 hash functions, but

remember that hash functions are expensive!

▪ Shoot for optimal but dial back if not fast enough

Choosing Hash Functions

CS 677: Big Data 26

▪ We can play with values of , , and here:

▪ https://hur.st/bloomfilter/

Bloom Filter Calculator

m k p

CS 677: Big Data 27

https://hur.st/bloomfilter/

▪ As you can imagine, using cryptographic hash functions

doesn’t buy us anything extra here

▪ MD5, SHA-1 are going to be slow, but they are at least

uniformly distributed (and sometimes these are

hardware accelerated, so…)

▪ It’s better to use a hash function that’s designed to be

uniform and fast

▪ murmur3 is one good candidate

Hash Algorithms

CS 677: Big Data 28

▪ We can use the Kirsch-Mitzenmacher Optimization to

greatly reduce hashing costs

▪ Create two hash functions and then combine them for

each “virtual” hash function

def generateHashes(obj):
 h1 = murmur3_hash(obj)
 h2 = murmur3_hash(obj, h1) # (seed)
 for i in range(3):
 hash[i] = h1 + (i * h2)

Speeding up Hashing

CS 677: Big Data 29

https://www.cs.usfca.edu/~mmalensek/cs677/schedule/papers/kirsch2008better.pdf

▪ With the standard algorithm we’ve discussed, we can’t

delete elements from the set

▪ Why not?

▪ How could we modify the algorithm to allow deletes?

▪ Answer: counting bloom filters. Each cell in our array

becomes a counter instead

▪ Deletions decrement the counter

▪ If the counter drops to 0, that’s the same as having

the bit switched from 1 to 0 (nothing there!)

Deletions

CS 677: Big Data 30

▪ Could we use bloom filters in P1? There are a couple ways.

▪ Allowing efficient single storage node search

▪ Insert file paths in the bloom filter as they are stored in the

system

▪ (When the controller receives a heartbeat informing them of

new chunk data)

▪ When doing a retrieval, consult the in-memory bloom filter

before accessing the on-disk index

▪ Bloom filter responds with “not found”? Then no need to hit

the disk!

Thought Experiment: P1

CS 677: Big Data 31

