CS 677 Big Data
Bloom Filters

Lecture 13

Moving on...

We've introduced Spark, and we'll start using it soon

In the meantime, let's look at some algorithms/data
structures specifically designed for big data

Inspiration: Spark has a method called .countApprox()

CS 677:Big Data

Today's Schedule

= Bloom Filters

= Configuring a Bloom Filter

CS 677:Big Data

Today's Schedule

= Bloom Filters

= Configuring a Bloom Filter

CS 677:Big Data

Setting the Scene

Imagine, if you will, a centralized component that has an

index of all the data in a distributed system
It simplifies things, but at what cost?

Single point of failure
Lots of memory is required to store the file system
namespace

f we are Google (in other words, rich EZ EZ EZ), we can

buy a very fancy machine to take care of this

Based on your tuition, we probably should have this at
USF... &

CS 677:Big Data

What if there was another way?

We don't have the hardware for a truly Google-scale
"‘NameNode" / “Controller”, etc.

Instead, we can store our index on a large disk, but that
IS going to be slow

Given a request for a file, let's predict whether we
actually have it stored somewhere or not without

consulting our index
What is the probability that a node contains the
data?

We'll do this with a data structure called bloom filters

CS 677:Big Data

Bloom Filter [1/2]

Compact data structure to test for set membership
Supports two functions:
put(data) :places some information in the filter
get(data) :reportsthe probability of whether or not

the data was put in the filter

May produce false positives but never false negatives
If the bloom filter says it wasn't inserted, then it
definitely wasn't!

CS 677:Big Data

Bloom Filter [2/2]

= Bloom filters give us two answers:
= Maybe (with a probability)

= Definitely not

= You can think of it as a HashSet that throws away the
keys
= We can't get the data back
out of the bloom filter,
butitis very compact
INn memory!

CS 677:Big Data

Use Cases [1/3]

When is a data structure that throws away data actually

useful? Surprisingly quite often!

Perhaps we can't store the entire set in memory
NameNode index

Word dictionary for spell checking (embedded
devices)

“‘Malicious websites” list: don't keep the entire list,
check if a URL might be malicious, then look up in an
online database

CS 677:Big Data

Use Cases [2/3]

Generating a unigue name or |ID for something: if the

bloom filter replies “definitely not,” then you know it's

unique!

Preventing caches from including "one hit wonders”
~75% of the unique URLs you click are one-time visits

Only cache URLs that were accessed at least once

before (second request)
No need to store entire list of URLs visited

CS 677:Big Data

10

Use Cases [3/3]

= Acting as a gatekeeper to a high-latency hardware (such
as hard disks —avoid HDD accesses if they're not
actually needed!)

CS 677:Big Data

11

Content

Delivery: Akamal

90.00
—88.00
X 86.00
& 84.00
@ 82.00
+ 80.00 X3

74.00

70.00

17-Feb 27-

Bloom Filter Enabled

- *9 I
T 78.00 O T + 2 A e
@ 76.00 * ey 3@ O\ E R VA

vq‘o‘}

*
L J %E Q L
@ 72.00 A &‘5 v .

= 09¢ 93

Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May

Date

L

The bloom filter provides a better hit rate because “one hit wonders” are no

longer using up space in the cache.

CS 677:Big Data

How it Works: put()

Create a bit array of m bits

For each put(key) operation, hash the key k times
Where k is the number of hash functions we're using

There is a formula to determine how many we need...
stay tuned

Map each hashed value to its corresponding index in

the bit array
hash % m

Set these bitsto 1

CS 677:Big Data 13

How it Works: get)

For each get(key) operation, hash the key k times

Map each hashed value to its corresponding index in

the bit array
(same as put() so far)

if any of the bits at these indexes are set to 0, then key
IS definitely not in the set

If all the bits are setto 1, then key might be in the set

CS 677:Big Data 14

A Picture

{x,y, z}

1{]0;1{1{170}]0;0|{0(0]1]0|1]|]0]0]1

w

Source: https://en.wikipedia.org/wiki/Bloom_filter

CS 677:Big Data

15

Interactive Demo

https://www.jasondavies.com/bloomfilter/

CS 677: Big Data

16

https://www.jasondavies.com/bloomfilter/

Building a Bloom Filter [1/2]

= To implement a bloom filter, we need:
= An array of bits

= Multiple hash functions

= When putting an item in the filter, the data is passed to
the hash functions

= The hash space of each function is mapped to our
array of bits

CS 677:Big Data

17

Bullding a Bloom Filter [2/2]

We take the position in the hash space, map it to our

array of bits, and then set the corresponding bit to 1
Repeat for all hash functions

To perform a lookup, we repeat the process
If all the positions in the bit array are set to 1, then we
can return a "maybe”

if any of the positions are a 0, then we return "no”
Short-circuits the lookup process

CS 677:Big Data 18

Collisions

If the size of our bit array is small, then there is a good
chance of collisions

Two inputs map to the same bit:
hash(my_dog.jpg) => bit #3

hash(secret _passwords.txt) => bit #3
This is the source of uncertainty in bloom filters

How do we decide how large to make our filters?

CS 677:Big Data

19

Today's Schedule

= Bloom Filters

= Configuring a Bloom Filter

CS 677:Big Data

20

Sizing a Bloom Filter

A reasonable starting point: bit arrays sized at 20% of
your input size

If we can accept more uncertainty, we can maintain
smaller bit arrays in memory

Fewer than 10 bits per element are required for a 1%
false positive probability, independent of the size or
number of elements in the set

— Bonomi et al.,, "An Improved Construction for
Counting Bloom Filters”

CS 677:Big Data

21

False Positive Rate vs. Bits [1/2]

False Positive Rate Bits per Element
S50% 1.44
10% 4.79
2% 8.14
1% 9.58
0.1% 14.38
0.01% 19.17

(*Assuming that an optimal number of hash functions is used.)

Source: https://corte.si/posts/code/bloom-filter-rules-of-thumb/index.html

CS 677:Big Data 22

False Positive Rate vs. Bits [2/2]

bits

14

12

10

0 : ' : : : : : : : probability
0 01 02 03 04 05 06 07 08 09 1

Source: https://corte.si/posts/code/bloom-filter-rules-of-thumb/index.html

CS 677:Big Data 23

Caveat: False Positive Rate

= New research from 2020 shows the FPR from the
original paper was incorrect

= See schedule page for details...

CS 677:Big Data 24

Resizing a Bloom Flilter

If our false positive probability starts to go up, we need
to resize the bloom filter

Kind of not really possible...
Generally accomplished by creating a new bloom filter

and then inserting the values back in
Do we actually have the original data?

Big downside in situations where we can't predict how
many values we'll see

This is really expensive! Avoid at all costs.

CS 677:Big Data 25

Choosing Hash Functions

Most of the examples we've dealt with have three hash

functions, but that's not optimal

Let's think about the trade-off here...
More hash functions means decreased false
positives

It also means you need more bits per element
The rule of thumb is ~(0.6 to 0.7) * bits per element

Usually we'll have more than 3 hash functions, but

remember that hash functions are expensive!
Shoot for optimal but dial back if not fast enough

CS 677:Big Data 26

Bloom Filter Calculator

= We can play with values of m, k, and p here:
= https://hur.st/bloomfilter/

CS 677:Big Data

27

https://hur.st/bloomfilter/

Hash Algorithms

As you can imagine, using cryptographic hash functions
doesn't buy us anything extra here

MD5, SHA-1 are going to be slow, but they are at least
uniformly distributed (and sometimes these are
hardware accelerated, so...)

It's better to use a hash function that's designed to be
uniform and fast

murmur3 is one good candidate

CS 677:Big Data 28

Speeding up Hashing

= We can use the Kirsch-Mitzenmacher Optimization to

greatly reduce hashing costs
= Create two hash functions and then combine them for
each “virtual” hash function

def generateHashes(obj):
hl = murmur3_hash(obj)
he = murmur3_hash(obj, hl) # (seed)
for 1 in range(3):
hash[i] = hl + (i * h2)

CS 677:Big Data

29

https://www.cs.usfca.edu/~mmalensek/cs677/schedule/papers/kirsch2008better.pdf

Deletions

With the standard algorithm we've discussed, we can't
delete elements from the set

Why not?
How could we modify the algorithm to allow deletes?

Answer. counting bloom filters. Each cell in our array

becomes a counter instead
Deletions decrement the counter

If the counter drops to O, that's the same as having
the bit switched from 1 to O (nothing therel)

CS 677:Big Data 30

Thought Experiment: P1

Could we use bloom filters in P17 There are a couple ways.
Allowing efficient single storage node search

Insert file paths in the bloom filter as they are stored in the

system
(When the controller receives a heartbeat informing them of
new chunk data)

When doing a retrieval, consult the in-memory bloom filter

before accessing the on-disk index
Bloom filter responds with “not found"? Then no need to hit
the disk!

CS 677:Big Data

31

