CS 677: Big Data

Spark

Lecture 16



Today's Schedule

Some Spark Background

Operations

Persistence

Spark Programming Tips

CS 677:Big Data



Today's Schedule

Some Spark Background

Operations

Persistence

Spark Programming Tips

CS 677:Big Data



Diverging Paths

= MR was the first step on an ongoing journey

= There are two roads to follow to keep improving things
IN this space:
= Computation

= Storage

CS 677:Big Data



Storage

GFS/HDES were not exactly groundbreaking but made
distributed file systems mainstream

Kicked off research in storage systems / databases:

NoSQL! Whoo!
Wait a minute...

NewSQL?! Hooray!

The conclusion: we need more than blob storage
...users expect database-like properties

CS 677:Big Data



Computation

Why are we writing everything to disk in between
phases?

Machine learning algorithms don't map well to this
Process

‘MR everything” forces us into some awkward scenarios
from a programming perspective

Even Java isn't great for these types of computational
use cases

CS 677:Big Data



Now What?

Google basically no longer uses MapReduce
But the paradigm itself is still alive and well

Spark, Flink, etc. have recently become popular

Hadoop, like many “cool” technologies, was over-

prescribed
It's still a great option for processing gigantic amounts
of data in a batch fashion

CS 677:Big Data



Put Away Your Pitchforks...

df.rdd
filter(
lambda row: row.geohash.startswith(prefixes))
.map (
lambda row: (
timestamp_to_month(row.Timestamp),
row.relative_humidity_zerodegc_isotherm))
.reduceByKey (
lambda humidityl, humiditye?:
(humidityl + humidity2) / 2.0)
.collect()

CS 677:Big Data



Why Spark

Spark augments MapReduce paradigm by adding
several built-in functions and supporting in-memory
computations

Development is chugging along, whereas Hadoop is
more or less in maintenance mode

Huge leap in features and speed from 1.0x to 3.0
Inputs are represented as RDDs, which have two
primary operations:

Transformations

Actions

CS 677:Big Data



Today's Schedule

Some Spark Background

Operations

Persistence

Spark Programming Tips

CS 677:Big Data

10



Transformations

Applied to RDDs to produce new RDD states
We're modifying the lineage, not doing computations
(yet)

Examples:
Splitting each line in the RDD into words

Incrementing each number

Removing rows that match certain conditions

Important: transformations are lazy. They are only
applied when a terminal action is present!

CS 677:Big Data

11



Actions

Return something to the driver or produce some type of
terminal result

Cause computations to execute

Could be a count of matching records

.count()

Or actual row values
.take(50)

Or even saving the result of several transformations to
HDFES or the local file system

CS 677:Big Data

12



Shuffle

Many actions will result in shuffle operations

The mechanism here is very similar to MapReduce
In fact, there is a Map and Reduce phase

Let's say Spark needs to create a new RDD after doing
our classic word count job

It has to do a reduction based on keys (the words) and

add up the values (counts)
This is an "all-to-all" operation

CS 677:Big Data 13



Transformations

map (applies a function to each row of the RDD)
filter (only keeps rows that satisfy a condition)
sort

distinct

join

intersection / union / cartesian

group / reduce / aggregate / sort by key

CS 677:Big Data

14



Actions

reduce (apply a reduction. Given two elements, the
function supplied should return a single element)

count (retrieve the number of rows in the RDD)
take (get the first N rows of the RDD)
foreach (apply a function to each row)

collect (transfers the RDD to the driver)
AVOID if possible!

Also: save AsXXXX(...)

CS 677:Big Data

15



Today's Schedule

Some Spark Background

Operations

Persistence

Spark Programming Tips

CS 677: Big Data

16



Persistence [1/2]

There are two main ways to “checkpoint” RDDs in your
Spark jobs

rdd.cache() — persists the RDD in memory. Good for
storing the outcomes of several transformations for

further manipulation
Fast... but will use memory, of course

rdd.persist() — the more advanced form of persistence

CS 677:Big Data 17



Persistence [2/2]

= You can pass several options to rdd.persist():
- MEMORY_ONLY

MEMORY_AND_DISK
DISK_ONLY
OFF_HEAP (experimental)

etc

CS 677: Big Data

18



Parsistence Alternatives

saveAsTextFile

saveAsSequenceFile() (Java + Scala)

saveAsObjectFile() (Java + Scala)

saveAsPickleFile (Python)

CS 677:Big Data

19



Today's Schedule

Some Spark Background

Operations

Persistence

Spark Programming Tips

CS 677:Big Data

20



Pittall 1: The Driver

Don't put too much strain on your application’s driver
(Jupyter, ipython, spark shell, etc.)

If you are constantly transferring data to the driver and
processing it there, you're subverting the framework

One thing | see frequently: .collect(), then iterating

through the data, then producing a new RDD
Bad idea!

CS 677:Big Data 21



Pitfall 2: Caching

Caching is awesome!
Except whenitisn't.
If you cache too much data, you'll run out of memory

You should only cache an RDD if your logic branches
from a particular point and you want to do different
transformations on it (or iterative processing)

CS 677:Big Data

22



Pitfall 3: Global State

Just like with MapReduce, MPI, BSP, etc. you have to be
careful with global state

Let's say you pass a function to .map() that operates on

a global variable in your code
This might work fine on your local machine, but what
about when you run on the cluster?

When distributed, the individual workers don't know
about that global state anymore — they have their own

copy

CS 677:Big Data

23



Pitfall 4. Magic

Spark unfortunately is not magic
It might seem like magic after using MapReduce

But be careful! It can still crash, run out of memory, and if
you use the programming model incorrectly it can be
quite slow!

CS 677:Big Data

24



