CS 677: Big Data

Spark Streaming

Today's Schedule

= Discretized Streams

« Fault Tolerance

CS 677: Big Data

Today's Schedule

= Discretized Streams

« Fault Tolerance

CS 677: Big Data

Streams

As we discussed before, pretty much any big data problem can be

viewed as a streaming problem

You'll rarely have all your data instantly in memory, so you will have to
stream it from somewhere

Disk

Network

Kafka, storm, etc?

Stream processing systems operate on this data while it is in flight

CS 677: Big Data 4

Spark Streaming

Spark was originally not designed to be a stream processing system

Focused on batch jobs

However, RDDs lend themselves fairly well to a particular type of
streaming: microbatches

Don't operate on each individual item streaming into the system

Instead, collect small batches over a window of time and process

them instead

CS 677: Big Data 5

Creating a StreamingContext

. ssc = StreamingContext(sc, N)
. Where sc is your SparkContext

. Nis the batch interval (number of seconds between microbatches)

. Once your pipeline is set up, you can execute it with:

. ssc.start()

. The computation will run forever, at least until you stop it with:

. ssc.stop(stopSparkContext=False)

« Without the parameter, your entire context is shut down and your driver will

need to be restarted

CS 677: Big Data 6

Setting the Batch Interval

You can specify very small batch intervals

However, you should tune your batch interval based on how fast the
stream can be processed
Small interval = more processing, but more “up to date”

Large interval = less processing, less frequent updates

Use the web interface to check that the batch processing time is

less than the batch interval

CS 677: Big Data

DStreams

Microbatches are represented as DStreams

(discretized streams)

For each time step (specified by the user), Spark

generates a new RDD that represents the microbatch
RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4

DStream = = Qata from | <.jata from | (.:Iata from <':lata from >
timeOto1l time 1to 2 time2to3 time3to4

Source: Spark Streaming Programming Guide

CS 677: Big Data

WordCount with DStreams

lines lines from lines from lines from lines from
DStream timeOto 1l time 1to 2 time 2to 3 time3to 4
flatMap
operation
words words from words from words from words from
DStream timeOto 1l time 1to 2 time 2to 3 time3to 4

Source: Spark Streaming Programming Guide

CS 677: Big Data

Transformations

Okay, so a DStream is a collection of RDDs gathered over time as data

streams into the system...

...50 that means they have roughly the same capabilities!
Transformations are largely the same
Even their laziness
We don't have terminal actions because the stream is assumed to be
infinite

However, we DO have output operations like writing to a file, printing, etc.

CS 677: Big Data 10

Stateful Streaming

= In many cases, you'll want your streaming jobs to maintain state

information

« Watching trends over time, catching and handling anomalies, etc.

= There are two primary ways to do this:

= updateStateByKey

« foreachRDD

CS 677: Big Data

11

updateStateByKey

Can be used to maintain state throughout the stream as

a separate DStream

Sort of like a continuously-running reduce operation

Takes a user function as a parameter

Current RDD state

Previous (potentially aggregated) RDD state

CS 677: Big Data

12

foreachRDD

Kind of like a streaming version of .collect() but generally not

as dangerous to use

(stream batches tend to be on the smaller side)

Applies a user function to each RDD in a DStream

on the driver

Good for doing lightweight updates, drawing visualizations, etc.

CS 677: Big Data

13

Windowed Computations

= You can also apply operations over sliding windows of data

(spanning multiple RDDs) rather than just the individual RDDs you

get every time unit

time 1
original
DStream
windowed
DStream
window
at time 1

time 2 time 3 time 4 time 5

window-based
operation

window window
attime 3 attime 5

Source: Spark Streaming Programming Guide

CS 677: Big Data

Today's Schedule

= Discretized Streams

« Fault Tolerance

CS 677: Big Data

15

Fault Tolerance

Handling failures tends to be more important in a streaming setup

After all, you can't just go back and read the data from the disk! It

may be lost completely

Some stream sources, such as Kafka and HDFS do allow replay in

the case of lost events

If you are going to maintain state (e.g., with updateStateByKey)

then you need to set up checkpointing

CS 677: Big Data 16

Checkpointing

. To set a checkpoint directory:

= ssc.checkpoint("hdfs://location/to/store")

. For our purposes, you may choose to skip checkpointing to HDFS

« Not the end of the world if we lose datal

CS 677: Big Data

17

Event Processing Guarantees

All streaming systems must choose event processing guarantees
At most once: Records are processed either once or not at all.

At least once: Records are processed one or more times. More

reliable, but must deal with duplicates.

Exactly once: Records are processed once with no data loss or

duplicates.

CS 677: Big Data 18

Fault Tolerance: Input

With files, HDFS, or Kafka, inputs are guaranteed to be processed exactly

once
With a general data stream, reliable receivers verify data has been
received

In this case, records are processed at least once

Unreliable receivers that do not verify receipt will result in loss of all

buffered data if a failure occurs

In this case, records are processed at most once

CS 677: Big Data

19

Fault Tolerance: Output

Output operations are processed at least once

This includes writing to files or even applying a

foreachRDD operation

Extra processing needs to be done if duplicates

cannot be present in the output data

CS 677: Big Data

20

What's Next?

Much like RDDs, there is more to the story here
Structured Streaming allows DataSet-like functionality over streams
The tradeoff: latency and fault tolerance

Structured Streaming:

Exactly-once delivery

High latency (could be hundreds of milliseconds)

DStreams:
At-least-once delivery

Latencies in the low milliseconds

CS 677: Big Data

21

