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▪ As we discussed before, pretty much any big data problem can be 

viewed as a streaming problem 

▪ You’ll rarely have all your data instantly in memory, so you will have to 

stream it from somewhere 

▪ Disk 

▪ Network 

▪ Kafka, storm, etc? 

▪ Stream processing systems operate on this data while it is in flight

Streams
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▪ Spark was originally not designed to be a stream processing system 

▪ Focused on batch jobs 

▪ However, RDDs lend themselves fairly well to a particular type of 

streaming: microbatches 

▪ Don’t operate on each individual item streaming into the system 

▪ Instead, collect small batches over a window of time and process 

them instead

Spark Streaming
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▪ ssc = StreamingContext(sc, N) 

▪ Where sc is your SparkContext 

▪ N is the batch interval (number of seconds between microbatches) 

▪ Once your pipeline is set up, you can execute it with: 

▪ ssc.start() 

▪ The computation will run forever, at least until you stop it with: 

▪ ssc.stop(stopSparkContext=False) 

▪ Without the parameter, your entire context is shut down and your driver will 

need to be restarted

Creating a StreamingContext
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▪ You can specify very small batch intervals 

▪ However, you should tune your batch interval based on how fast the 

stream can be processed 

▪ Small interval = more processing, but more “up to date” 

▪ Large interval = less processing, less frequent updates 

▪ Use the web interface to check that the batch processing time is 

less than the batch interval

Setting the Batch Interval
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▪ Microbatches are represented as DStreams 

(discretized streams) 

▪ For each time step (specified by the user), Spark 

generates a new RDD that represents the microbatch

DStreams
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Source: Spark Streaming Programming Guide 
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Source: Spark Streaming Programming Guide 
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▪ Okay, so a DStream is a collection of RDDs gathered over time as data 

streams into the system… 

▪ …so that means they have roughly the same capabilities! 

▪ Transformations are largely the same 

▪ Even their laziness 

▪ We don’t have terminal actions because the stream is assumed to be 

infinite 

▪ However, we DO have output operations like writing to a file, printing, etc.

Transformations
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▪ In many cases, you’ll want your streaming jobs to maintain state 

information 

▪ Watching trends over time, catching and handling anomalies, etc. 

▪ There are two primary ways to do this: 

▪ updateStateByKey 

▪ foreachRDD

Stateful Streaming
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▪ Can be used to maintain state throughout the stream as 

a separate DStream 

▪ Sort of like a continuously-running reduce operation 

▪ Takes a user function as a parameter 

▪ Current RDD state 

▪ Previous (potentially aggregated) RDD state

updateStateByKey
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▪ Kind of like a streaming version of .collect() but generally not 

as dangerous to use 

▪ (stream batches tend to be on the smaller side) 

▪ Applies a user function to each RDD in a DStream 

on the driver 

▪ Good for doing lightweight updates, drawing visualizations, etc.

foreachRDD
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▪ You can also apply operations over sliding windows of data 

(spanning multiple RDDs) rather than just the individual RDDs you 

get every time unit

Windowed Computations
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Source: Spark Streaming Programming Guide 
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▪ Handling failures tends to be more important in a streaming setup 

▪ After all, you can’t just go back and read the data from the disk! It 

may be lost completely 

▪ Some stream sources, such as Kafka and HDFS do allow replay in 

the case of lost events 

▪ If you are going to maintain state (e.g., with updateStateByKey) 

then you need to set up checkpointing

Fault Tolerance
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▪ To set a checkpoint directory: 

▪ ssc.checkpoint(”hdfs://location/to/store") 

▪ For our purposes, you may choose to skip checkpointing to HDFS 

▪ Not the end of the world if we lose data!

Checkpointing
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▪ All streaming systems must choose event processing guarantees 

▪ At most once: Records are processed either once or not at all.  

▪ At least once: Records are processed one or more times. More 

reliable, but must deal with duplicates. 

▪ Exactly once: Records are processed once with no data loss or 

duplicates.

Event Processing Guarantees
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▪ With files, HDFS, or Kafka, inputs are guaranteed to be processed exactly 

once 

▪ With a general data stream, reliable receivers verify data has been 

received 

▪ In this case, records are processed at least once 

▪ Unreliable receivers that do not verify receipt will result in loss of all 

buffered data if a failure occurs 

▪ In this case, records are processed at most once

Fault Tolerance: Input

19



CS 677: Big Data

▪ Output operations are processed at least once 

▪ This includes writing to files or even applying a 

foreachRDD operation 

▪ Extra processing needs to be done if duplicates 

cannot be present in the output data

Fault Tolerance: Output
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▪ Much like RDDs, there is more to the story here 

▪ Structured Streaming allows DataSet-like functionality over streams 

▪ The tradeoff: latency and fault tolerance 

▪ Structured Streaming: 

▪ Exactly-once delivery 

▪ High latency (could be hundreds of milliseconds) 

▪ DStreams: 

▪ At-least-once delivery 

▪ Latencies in the low milliseconds

What’s Next?
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