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ABSTRACT
This paper “peeks under the covers” at the subsystems that
provide the basic functionality of a leading content deliv-
ery network. Based on our experiences in building one of
the largest distributed systems in the world, we illustrate
how sophisticated algorithmic research has been adapted to
balance the load between and within server clusters, man-
age the caches on servers, select paths through an overlay
routing network, and elect leaders in various contexts. In
each instance, we first explain the theory underlying the
algorithms, then introduce practical considerations not cap-
tured by the theoretical models, and finally describe what is
implemented in practice. Through these examples, we high-
light the role of algorithmic research in the design of com-
plex networked systems. The paper also illustrates the close
synergy that exists between research and industry where
research ideas cross over into products and product require-
ments drive future research.

1. INTRODUCTION
The top-three objectives for the designers and operators

of a content delivery network (CDN) are high reliability,
fast and consistent performance, and low operating cost.
While many techniques must be employed to achieve these
objectives, this paper focuses on technically interesting al-
gorithms that are invoked at crucial junctures to provide
provable guarantees on solution quality, computation time,
and robustness to failures. In particular, the paper walks
through the steps that take place from the instant that a
browser or other application makes a request for content
until that content is delivered, stopping along the way to
examine some of the most important algorithms that are
employed by a leading CDN.

One of our aims, as we survey the various algorithms, is
to demonstrate that algorithm design does not end when
the last theorem is proved. Indeed, in order to develop fast,
scalable, and cost-effective implementations, significant in-
tellectual creativity is often required to address practical
concerns and messy details that are not easily captured by
the theoretical models or that were not anticipated by the
original algorithm designers. Hence, much of this paper fo-
cuses on the translation of algorithms that are the fruits of
research into industrial practice. In several instances, we
demonstrate the benefits that these algorithms provide by
describing experiments conducted on the CDN.

A typical request for content begins with a DNS query
issued by a client to its resolving name server (cf. Figure 1).
The resolving name server then forwards the request to the
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Figure 1: A CDN serves content in response to a
client’s request.

CDN’s authoritative name server. The authoritative name
server examines the network address of the resolving name
server, or, in some cases, the edns-client-subnet provided by
the resolving name server [9], and, based primarily on this
address, makes a decision about which of the CDN’s clusters
to serve the content from. A variant of the stable marriage
algorithm makes this decision, with the aim of providing
good performance to clients while balancing load across all
clusters and keeping costs low. This algorithm is described
in Section 2.

But DNS resolution does not end here. The task of indi-
cating which particular web server or servers within the clus-
ter will serve the content is delegated to a second set of name
servers. Within the cluster, load is managed using a consis-
tent hashing algorithm, as described in Section 3. The web
server address or addresses are returned through the resolv-
ing name server to the client so that the client’s application,
such as a browser, can issue the request to the web server.
The web servers that serve content to clients are called edge
servers as they are located proximal to clients at the “edges”
of the Internet. As such, Akamai’s CDN currently has over
170,000 edge servers located in over 1300 networks in 102
countries and serves 15-30% of all Web traffic.

When an edge server receives an HTTP request, it checks
to see if the requested object is already present in the server’s
cache. If not, the server begins to query other servers in



the following order. First it asks the other servers in the
same cluster, who share a LAN. If none of these servers
have the object, it may ask a “parent” cluster. If all else
fails, the server may issue a request for the object to an
origin server operated by the content provider, who is a
customer of the CDN. As new objects are brought into the
CDN’s edge server, it may be necessary to evict older items
from the cache. Section 4 explains how algorithms based on
Bloom filters are used to decide which objects to cache and
which not to.

Often, CDNs deliver content that is not cacheable. Exam-
ples include dynamic web sites, web applications, and live
video streaming. In this scenario, the CDN’s edge server
acts as a “front end” for a web site, but must forward re-
quests for uncacheable content to the content provider’s ori-
gin. Using the CDN servers as relays in an “overlay routing
network”, however, can actually reduce download time and
increase availability. The idea is that exploring multiple
overlay paths between the origin and the edge servers and
picking the best ones can provide paths with lower latency
and higher throughput. Further, the multiple paths provide
redundancy in case of path failures, enhancing availability.
In Section 5, we explain how multi-commodity flow pro-
vides an algorithmic framework for constructing good over-
lay routing networks.

A CDN is a large distributed system where individual
servers and networks can fail at any time. The system has to
be built to be resilient to such failures and should continue to
function with only minimal degradation in performance. A
CDN has dozens of software components that collect data,
analyze it, and make key decisions based on it. Two ex-
amples described above are global and local load-balancing
decisions, which are computed using real-time data feeds in
time scales of minutes or seconds. A common strategy em-
ployed by the CDN for fault tolerance is to compute the
solution independently on several machines, and then to ap-
ply a leader-election algorithm to determine which machine
should distribute its solution to other CDN components that
depend on it. Because different machines typically compute
solutions at different times and with slightly different inputs,
there may be slight differences in the solutions. Section 6 de-
scribes several variants of leader election algorithms. There
are multiple algorithms because different responses to net-
work partitions are desired in different contexts.

In each section, an effort is made to describe an abstract
version of the problem to be solved along with one or more
algorithms for solving the problem. Typically, however,
there are practical considerations not captured in the ab-
stract model. Hence in each section we also present the most
important practical considerations and explain how they im-
pact the actual implementations. Our focus is primarily on
the algorithms employed by a CDN. For a broader look at
the systems architecture of Akamai’s CDN, the reader is re-
ferred to [10] and [24]. For deeper discussion of Akamai’s
overlay networks, the reader is referred to [30].

2. STABLE ALLOCATIONS
Global load balancing is the process of mapping clients to

the server clusters of the CDN. Rather than making load bal-
ancing decisions individually for the billions of clients around
the world, cluster assignments are made at the granularity
of map units. Each map unit can be viewed as the tuple
〈IP address prefix, traffic class〉, where the first element of

the tuple is a set of client IP addresses and the second ele-
ment describes the type of traffic accessed by those clients.
The IP addresses of a specific map unit are intended to be
“proximal” to each other in the Internet and can be viewed
as a single unit from the perspective of load balancing, i.e.,
they are likely to experience similar performance when as-
signed to the same CDN cluster. The second tuple of a map
unit is the traffic class that the clients of the map unit access.
A traffic class indicates the type of content service accessed
by the users. There are tens of traffic classes such as video,
web content, applications, software downloads, etc., each of
which has distinctive properties. As a simple example, the
map unit 〈1.2.3.4/24, video〉 corresponds to the set of clients
in a specific /24 prefix who are accessing videos. Note that
the same set of users accessing web content form a differ-
ent map unit 〈1.2.3.4/24,web〉. If the block of IP addresses
is too coarse, then assigning the map unit to a single clus-
ter may produce suboptimal performance for some of those
addresses. But if the granularity is too fine, there will be
many map units, leading to scalability issues. Dividing the
clients of the global Internet into prefixes at the right level
of granularity is a complex problem in its own right, but be-
yond the scope of this paper. In all, it is customary to have
tens of millions of map units to capture all of the clients and
traffic classes of the trillions of requests per day served by
Akamai.

Global Load Balancing. The goal of global load bal-
ancing is to assign each map unit Mi, 1 ≤ i ≤ M , to a
server cluster Cj , 1 ≤ j ≤ N , such that the clients repre-
sented by each map unit can download the requested con-
tent from their assigned cluster with high availability and
performance. For each map unit, the candidate clusters are
ordered in descending order of preference where a higher
preference indicates better predicted performance for the
clients of that map unit. For example, a candidate cluster
with a higher preference might be one with lower latency,
lower packet loss, and higher throughput to the clients in
the map unit. Likewise, each server cluster Cj has pref-
erences regarding which map units it would like to serve.
A number of factors dictate a cluster’s preferences for map
units, including the contract terms under which the cluster
was deployed, whether the IP addresses are local to the au-
tonomous system (AS) in which the cluster is deployed, etc.
For example, a cluster deployed in an upstream provider ISP
may prefer to serve clients in the ISP’s downstream customer
ISPs.

Map units originate demand while the clusters have ca-
pacity to serve that demand. With each map unit Mi a
demand di is associated, which represents the amount of
content accesses that clients belonging to that map unit are
likely to generate. Demands can vary rapidly in real-time as
clients access more (or less) content.“Flash crowds,” where
the demands from certain map units sharply increase are not
uncommon. Each cluster Cj also has a notion of capacity
cj that represents the maximum demand that the cluster
can serve. Capacity is dictated by how much processing
power, memory and disk capacity, and network bandwidth
the servers in the cluster possess. The goal of global load
balancing is to assign map units to clusters such that pref-
erences are accounted for and capacity constraints are met.

Stable Allocations. Stable allocations [14] is a classi-
cal algorithmic paradigm that forms the basis for assigning
map units to clusters in global load balancing. The simplest
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Figure 2: Each map unit has a preference order of
clusters from where to download content, while each
cluster has a preference order of which map units to
serve content. A stable marriage (marked in bold) is
a matching of map units to clusters such that no un-
matched pair prefer each other over their matched
partners.

example of stable allocations is the stable marriage prob-
lem, which was first studied by Gale and Shapley in 1962 in
the provocatively titled paper “College admissions and the
stability of marriage” [12]. Since the original work, stable
marriage and related stable allocation problems have been
used to match students to schools in New York city [2], med-
ical interns to hospitals [27], and organ donors to patients
[28]. Notably, Roth and Shapley won the Nobel Prize in
Economics in 2012 for their work on stable allocation.

In our exposition, we start with the simplest form of stable
allocation (Section 2.1), extend these results to more com-
plex forms that appear in the CDN context (Section 2.2),
and finally describe the real-world complexities of an oper-
ational system that go beyond the algorithmic models (Sec-
tion 2.3).

2.1 The Stable Marriage Problem
The stable marriage problem is often described as the task

of matching men and women for marriage. There is an equal
number of men and women, each seeking a partner of the
opposite sex. The stable marriage problem can model a
simple case of global load balancing where each map unit
is a man with unit demand for content, each cluster is a
woman with unit capacity to server content, and the number
of map units, M , equals the number of clusters, N . An
illustrative example is shown in Figure 2. Each map unit
orders the clusters by preference, e.g., M1 prefers cluster
C2, followed by C1, and then C3. Likewise, each cluster has
a preferential list of map units, e.g., cluster C1 prefers map
unit M2, followed by M1, and then M3. As in real-world
match-making, not everyone can have their top choice! It
is easy to see in our example that not every map unit can
obtain the top-rated cluster C2. Nor can every cluster get
its top choice, since two clusters rate M1 highest.

A stable marriage is a matching of men to women where
there is no pair of participants that both prefer each other to
the partners that they are matched to. Given an assignment

of map units to clusters, an unmatched pair Mi and Cj is
said to be blocking if

1. Mi prefers Cj over its current partner Cj′ , and

2. Cj prefers Mi over its current partner Mi′ .

Note that the elements of a blocking pair have an incentive
to switch away from their current partners to marry each
other. An assignment that matches all map units with clus-
ters such that there are no blocking pairs is said to be stable.
As can be seen from the example, the assignment of M1 to
C2, M2 to C1, and M3 to C3 is stable.

The notion of stability is a natural way to account for the
preferences of all participants. Finding a stable marriage
is achieved by a simple and distributed algorithm called the
Gale-Shapley algorithm [12]. The algorithm works in rounds
where men propose and women (provisionally) accept, form-
ing an “engagement.” Initially, all men and women are
“free.” As the rounds progress they become engaged, al-
though engagements are sometimes broken. In each round,
each free man proposes to the most preferred woman that he
has not already proposed to, whether or not she is already
engaged. Among the proposals received in a round, a free
woman accepts the one from the man she most prefers. If a
woman is already engaged, she accepts a new proposal, and
breaks her previous engagement, only if she receives a pro-
posal from a man who she prefers over her current fiancee. If
there are multiple such proposals, she accepts the one from
the most preferred man. The algorithm terminates when
everyone is engaged. The fundamental theorem of stable
marriage follows.

Theorem 2.1 ([14]). The Gale-Shapley algorithm ter-
minates with a matching that is stable after no more than N2

proposals, where N is number of men (and women). All pos-
sible executions of the algorithm with men as the proposers
yield the same matching where each man has the most pre-
ferred partner that he can have in any stable marriage.

The stable marriage produced by Gale-Shapley is often called
“man-optimal” since each man is married to the most pre-
ferred woman that he could be married to in any stable
marriage. It may also be termed “woman-pessimal” be-
cause each woman is married to the least preferred man that
she could be married to in any stable marriage. Our load
balancing algorithm produces a “map-unit-optimal” stable
marriage as map units play the role of the proposers. Thus,
the solution provides each map unit with the most preferred
cluster possible in any stable marriage, a property that fits
well with the CDN’s mission of maximizing performance for
clients.

2.2 Algorithmic Extensions
Global load balancing uses a generalized form of the Gale-

Shapley algorithm described in Section 2.1. A list of of gen-
eralizations needed to model our load balancing problem
more closely is provided below.

1) Unequal number of map units and clusters. In our prob-
lem, there are vastly more map units than clusters, i.e., tens
of millions of map units versus thousands of clusters.

2) Partial preference lists. Given that there are tens of
millions of map units and thousands of clusters, it is un-
necessarily expensive to measure and rank every cluster for
each map unit. It suffices to rank only those clusters that



are expected to provide a minimum level of performance.
In fact, it may suffice to measure and rank for each map
unit the top dozen or so clusters that are likely to provide
the best performance. Likewise, the clusters need only ex-
press preferences for the subset of the map units that are
likely candidates for assignment. For instance, a map unit
in Boston may never need to rank a cluster in Tokyo and
vice versa, since they are unlikely to be paired up.

3) Modeling integral demands and capacities. While the
canonical stable marriage problem considers unit value de-
mands and capacity, it can be extended to the case in which
capacity and demand are expressed as arbitrary integers.
For each map unit, we estimate the content access traffic
generated by its clients and represent that as a demand
value. Likewise, for each cluster, we can estimate its ca-
pacity, which is the amount of demand it can serve.

The above variants can be solved by generalizing the Gale-
Shapley algorithm in straightforward ways. A survey of
these common variants with further references can be found
in [15]. The extension of stable marriage to a many-to-many
problem where a man can marry many wives (polygamous)
and a woman can marry many husbands (polyandrous) is
also relevant [6].

2.2.1 Resource Trees
With the above extensions, our model for the global load

balancing problem is better, but it still inadequate in an im-
portant regard. A server cluster cannot be accurately mod-
eled as a single resource whose capacity can be represented
as a single number. Instead, a server cluster has a number
of different resources and interrelated resource constraints.
These resources that include processing power, memory and
disk capacity, and network bandwidth. Further, the capa-
bilities of the servers may restrict what traffic classes they
may serve. For example, the amount of video traffic that
a cluster can serve may be separately constrained from the
amount of web traffic that it might serve.
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Figure 3: An example of a resource tree with capac-
ities shown in black. The residual capacities after
assigning a video map unit with 20 units of demand
requiring 20 Bps and 5 Fps is shown in blue.

We illustrate the resource constraints of a cluster using a
simple example. Suppose a server cluster has two resources,
each with a separate capacity. First is a network resource

that constrains the rate at which data can be sent out of the
cluster modeled by a capacity expressed in the units of bytes
per second (Bps). The second models all other resources of
the server using a single number expressed in the units of
“flytes” per second (Fps). The flyte capacity captures all
non-network server resources such as the processor, memory,
and disk. Besides raw resource constraints, the cluster may
have limits on how much of each traffic class it can serve.
As an example, assume that the cluster can serve three traf-
fic classes: video, web, and applications, each with its own
capacity limitations. The different resource constraints can
be expressed as a tree as shown in Figure 3. The leaves of
the tree bound the maximum number of Fps that can be
used for each traffic class. The parent node B bounds the
maximum number of Fps that can be served from the cluster
across all traffic classes. The root node A bounds the total
network traffic (in Bps) that can be sent from the cluster.

The resource tree allows us to express a hierarchy of con-
straints on the mix of traffic that a cluster is able to serve.
A map unit is assigned to a leaf of the tree and it consumes
resources on each node in its leaf-to-root path. For instance,
a unit of demand from a map unit accessing video exhausts
f Fps and b Bps at each node in the path from the leaf C
to the root A, where f and b are scale factors. Each traf-
fic class has its own scale factor. For instance, a unit of
demand from a video map unit will consume a lot of Bps
but not a lot of Fps, since video traffic is network intensive.
In contrast, a banking application served by the cluster will
exhaust a lot of Fps but not many Bps, since such traffic is
processor intensive but the traffic sent out is small.

To continue our example of Figure 3, suppose 20 units of
demand from a video map unit are assigned to the cluster,
where the scale factor dictates that each unit of video de-
mand requires 0.25 Fps and 1 Bps. The residual capacity of
the cluster can now be calculated by following the leaf-to-
root path and decrementing the consumed values, as shown
in the figure. More map units can be assigned to the cluster
as long as there is sufficient residual capacity left in all nodes
in the corresponding leaf-to-root path.

The Gale-Shapley algorithm can be generalized to the
more general situation where each cluster has a resource tree
with capacity associated with each node of the tree [13]. To
illustrate how the generalized algorithm works using the ex-
ample in Figure 3, suppose that a second map unit with 26
units of application traffic is assigned to the cluster, where
each unit of demand requires 1 Fps and 0.2 Bps. Adding the
new map unit to the cluster requires an additional 26 Fps
and 26× 0.25 = 6.5Bps in its leaf-to-root path. This addi-
tion will cause a capacity violation at node B of the tree, but
no capacity violation at node A or node E. Suppose that the
cluster has a higher preference for map units with applica-
tion traffic, rather than video traffic. The algorithm looks at
the first node in the leaf-to-root path where there is a capac-
ity violation and evicts a lower preference map unit in favor
of the higher preference one. In our case, 4 units of video
demand are evicted to create 1 Fps of capacity at node B to
accommodate the additional 26 units of application traffic
demand. By iteratively performing such reassignments the
algorithm converges to a stable allocation of map units.

2.3 Implementation Challenges
While algorithms provide a conceptual framework for a

problem solution, numerous architectural and system chal-



lenges also need to be addressed, some of which we list be-
low.

1) Complexity and scale. A key challenge is the complex-
ity and scale of global load balancing across tens of millions
of map units and thousands of clusters for over a dozen traf-
fic classes with more complex resource trees than the simple
example we provide in Figure 3.

2) Time to solve. The map unit assignment must be re-
computed every 10 to 30 seconds, as network performance
and client demand change on short time scales. Network
links can become congested or fail in seconds, changing the
preference order of map units. Server capacities can vary
at a similar granularity as demand rises and falls. Further,
global and local events can cause flash crowds where demand
for some map units shoots up, requiring quick reassignment
to other clusters. The generalized Gale-Shapley algorithm
has a strong advantage in that its run time is nearly-linear in
the product of the number of map units and the maximum
length of the map unit preference lists. It is also amenable to
a distributed implementation where map unit assignments
can proceed in parallel.

3) Demand and capacity estimation. The demand of a
map unit is an estimate of the downloading activity that
we are likely to see from its clients. Further, the actual
server resources consumed by a unit of demand, i.e., the
scale factors, are often difficult to estimate and only become
measurable after the demand is assigned to a cluster, thus
requiring a tight feedback loop to estimate demand and ca-
pacity based on past history.

4) Incremental and persistent allocation. While our algo-
rithmic model assumes that a stable allocation is performed
from scratch in each cycle, it is undesirable to do so for two
reasons. First, typically only a small fraction of map units
need to be reassigned, e.g., map units that have experienced
significant changes in demand or preference since the last
cycle. Second, recomputing the entire stable allocation can
result in a very different solution than the previous one, even
if the demands and preferences have not changed in major
ways. A map unit reassigned from (say) cluster A to clus-
ter B for which it has similar preference causes unnecessary
havoc, because cluster A has already cached the content re-
quested by the map unit clients, while cluster B may not
have cached different content, causing cache misses when
clients are switched to cluster B. This phenomenon calls for
a “sticky” solution that changes assignments only when the
preference differences are sufficiently large. A particularly
harmful form of impersistence is oscillation, in which the
global load balancer moves cyclically between different so-
lutions as a result of small changes in input values.

The above challenges require additional innovations, push-
ing us into realms where the clean, provable algorithmic
models no longer hold. Nevertheless, global load balancing
is a good example of a problem in which algorithmic and ar-
chitectural innovations reinforce each other and neither can
exist without the other.

3. CONSISTENT HASHING
Consistent hashing [17, 22] is used by the CDN to balance

the load within a single cluster of servers. Consistent hash-
ing was the first algorithmic innovation in Akamai’s CDN
and the patents on consistent hashing (e.g., [18]) formed
an important component of the start-up company’s initial
portfolio of licensed intellectual property.

In a traditional hash table, objects from a universe U are
mapped to a set of buckets B. For example, if U is the set
of positive integers, and B is the set of integers [0, n − 1],
then the mapping U → B might be achieved using a simple
hash function h such as h(x) = ((ax + b) mod P ) mod n,
where P is a prime number such that P ≥ n, a is chosen
at random from [1, P − 1], and b is chosen at random from
[0, P −1]. This hash function maps elements of U uniformly
(over the random choices of a and b) to the buckets B and
also provides pairwise independence, i.e., for any x1, x2 ∈ U ,

Pr[h(x1) = y1&h(x2) = y2] = Pr[h(x1) = y1] Pr[h(x2) = y2].

When a hash table is used in a sequential computer pro-
gram, an arbitrary subset S ⊂ U of O(n) objects of interest
are inserted into the buckets of B, i.e., each element x ∈ S
is inserted into bucket h(x). Using an array of linked lists to
represent the buckets, operations such as inserting an object
into a bucket, removing an object from a bucket, or testing
whether an object is already in a bucket can be implemented
in a straightforward manner so that the expected time per
operation is constant. Alternative data structures that sup-
port these operations, such as balanced search trees, typi-
cally require Θ(logn) time per operation (but may support
additional operations).

In the CDN setting, an object is a file such as a JPEG
image or HTML page, and a bucket is the cache of a distinct
web server. A new complication arises in this context: a
server may fail, in which case it can no longer fulfill its role
as a bucket. Unfortunately, the class of hash functions like
h(x) above, which map elements of U directly to buckets
B, provides no efficient mechanism for dealing with the loss
of a bucket. Simply remapping all of the objects in the
lost bucket to another bucket is not ideal because then one
bucket stores double the expected load. On the other hand,
balancing the load by renumbering the existing buckets and
rehashing the elements using a new hash function has the
disadvantage that many objects will have to be transferred
between buckets.

SERVER

OBJECT

Figure 4: Consistent hashing first maps both objects
and buckets (servers) to the unit circle. An object
is then mapped to the next server that appears on
the circle in clockwise order.

Consistent hashing solves this problem in a clever way. In-



stead of mapping objects directly to buckets, both objects
and buckets are first mapped to the unit circle. As shown
in Figure 4, each object is then mapped to the next bucket
that appears in clockwise order on the unit circle. This ap-
proach provides a more graceful mechanism for dealing with
the loss of a bucket: if a bucket fails then the objects that
were formerly mapped to the bucket are instead mapped to
the next bucket that appears in clockwise order on the unit
circle. Similarly, if a new bucket is added, e.g., the failed
server comes back on-line, the only objects that have to be
moved are those that are mapped to the new bucket.

A simple enhancement to consistent hashing that improves
the balance of objects among the buckets is to map each
bucket to multiple locations on the unit circle. For example,
each of the n buckets might be mapped to logn instances.
The expected load for each instance is 1/ logn the load for
a bucket, but the expected load for a bucket is the same
as if there was only one instance. The distribution of load,
however, is much more tightly centered around the expecta-
tion. As before, an object is mapped to the next instance of
a bucket that appears in clockwise order on the unit circle.
If a server fails, all of the corresponding bucket’s instances
are removed from the unit circle. The objects that were in
the bucket are now remapped across a set of buckets rather
than to a single bucket.

3.1 Popular Objects
An important practical consideration not addressed in the

original consistent hashing work, but described in [16], is
that some web objects may be far more popular than oth-
ers. In some circumstances, such as a flash-crowd event, a
single object may be so popular that it is not possible for
a single server within a cluster to satisfy all of the requests
for the object. Instead, the object must be served by more
than one server. A straightforward extension to consistent
hashing would be to map a popular object to the next k
servers that appear in clockwise order on the unit circle,
where k is a function of the popularity of the object. One
disadvantage of this approach, however, is that if two very
popular objects happen to hash to nearby positions on the
unit circle, the buckets that they map to will overlap, and
may have difficulty handling the requests for both objects
simultaneously.

The approach taken by the CDN is to use a separate map-
ping of the buckets to the unit circle for each object. This
modification to consistent hashing preserves the property
that when a bucket is removed, the only objects that must
be moved to different buckets are the ones that were for-
merly in the removed bucket, and when a bucket is added,
the only objects that must be moved are the ones that are
now mapped to the new bucket.

Suppose that there are two popular objects, each of which
is to be mapped to k buckets. Regardless of whether the
buckets are mapped to the unit circle using the same hash
function for both objects or different hash functions, the ex-
pected number of buckets containing both objects is Θ(k2/n).
But the distributions are very different. For example, if the
same hash function is used, the probability that at least
k/2 buckets receive both popular objects is Θ(k/n). On
the other hand, if different hash functions are used, then
each of the k instances of the second object is independently
mapped to a bucket containing the first object with proba-
bility at most k/n. Thus, the probability that at least k/2

of these instances map to buckets containing the first ob-
ject is at most

(
k

k/2

)
(k/n)k/2, which is at most (2ek/n)k/2

(sometimes a loose upper bound), which is typically less
than Θ(k/n), as long as k < n/2e.

3.2 Consistent Hashing in Practice
Although an object is a single file to be served by a web

server, the CDN does not hash each object independently.
Instead, when a content provider signs up as a customer
of the CDN, they are granted one or more serial numbers.
The content provider’s objects are grouped together by se-
rial number, and all objects with the same serial number are
hashed to the same bucket (or same set of buckets, if popu-
lar). The advantage of grouping a content provider’s objects
together arises when multiple objects must be fetched by the
browser in order to render a single web page. If these ob-
jects were all independently hashed to different servers, the
browser would have to open a separate HTTP connection
to each server. By mapping the objects to the same set of
servers, the browser can make a persistent HTTP connec-
tion to just one randomly-chosen server in the set, and then
fetch all of the objects from that server. The overhead for
establishing and ramping up a new TCP connection is thus
paid only once, rather than once per object.

We are now in a position to provide a concrete exam-
ple of how the CDN employs consistent hashing in prac-
tice. Suppose that the serial numbers assigned to content
providers range from 1 to 2048 and that the CDN has as-
signed the serial number 212 to a customer that operates
the web site www.example.com. In order to use the CDN
to deliver the images that appear on its web pages, the cus-
tomer creates a new domain name images.example.com, and
then uses the DNS CNAME mechanism to indicate that im-
ages.example.com is an alias for the canonical domain name
a212.g.akamai.net. (The “g” in this domain name stands for
“general,” a domain name used by the CDN for delivering
static objects.) In this example, the customer embeds the
URL http://images.example.com/logo.jpg in the HTML for
the web page http://www.example.com so that the browser
will fetch the web site’s logo from the CDN.

When an authoritative name server operated by the CDN
receives a request to resolve the name a212.g.akamai.net
from a resolving name server, it first determines which clus-
ter should serve the ensuing HTTP requests from browsers
sharing this resolving name server. The cluster is chosen
using the algorithm described in Section 2. Once the cluster
has been selected, consistent hashing is used to determine
which server or servers within the cluster should serve ob-
jects under serial number 212. In this example the four
servers in the chosen cluster have been assigned the IP ad-
dresses 192.168.1.1 through 192.168.1.4. (Although these
addresses are private, in practice the CDN’s servers almost
always use public addresses.) For each serial number there
is a random map of the buckets to the unit circle. The
map can be represented as an ordered list of servers, e.g.,
for serial number 212 the map might be 212: 192.168.1.3
192.168.1.1 192.168.1.4 192.168.1.2. (Since each serial num-
ber has its own random mapping of buckets to the unit cir-
cle, we can assume that the serial number itself is mapped
to position 0.) Depending on the current popularity of the
content being served under serial number 212, the authori-
tative name server for the CDN returns the first k addresses
on this list, skipping any servers that are not operational.



The k servers in the DNS response are listed in random order
to help spread the load among them.

4. BLOOM FILTERS
Bloom filters are used to approximately represent dynam-

ically evolving sets in a space efficient manner. Bloom filters
were first introduced by Burton Bloom [7] and have found
numerous elegant applications in networking [8]. Bloom fil-
ters are useful in content delivery in two different contexts:
content summarization and content filtering. We illustrate
both uses and focus on a simple example of content filter-
ing that offers significant benefits in the form of better disk
resource usage and performance.

4.1 The Basics
Suppose that we want to store a set S = {e1, e2, · · · , en}

in a manner that allows us to efficiently insert new elements
into the set and answer membership queries of the form “Is
element e in set S?”. A simple data structure is a hash func-
tion h that maps elements to a hash table T [1 · · ·m], where
each table entry stores a binary value that is initialized to
0. When an element e is inserted into set S, we simply set
the entry with index h(e) to 1, i.e., we set T [h(e)] to 1. To
check if e ∈ S, we simply need to check if T [h(e)] is 1. Note
that “false positives” are possible with this solution when
an element e′ 6∈ S “collides” with an element e ∈ S, i.e.,
when h(e) = h(e′). In this case, the membership query for
e′ will return the incorrect answer, i.e., we will conclude that
e′ ∈ S when it is not. Note that a“false negative” cannot
occur since when we conclude that an element is not in S
we are always correct.

Bloom filters are a generalization of the simple hash table
solution described above. Rather than use one hash func-
tion, a Bloom filter uses multiple hash functions h1, h2, · · · , hk

to reduce the probability of a false positive. As before, we
have a table T [1 · · ·m] where each T [i] can store a binary
value and all entries are initialized to 0. When an element
e is inserted into set S the bits T [hi(e)], 1 ≤ i ≤ k, are set
to 1. To check if e ∈ S, we need to check if T [hi(e)] = 1,
for all 1 ≤ i ≤ k. False positives are still possible with
this solution, but the likelihood is smaller since an element
e′ 6∈ S will be mistakenly believed to belong to S only if
other elements have set the bits T [hi(e

′)] to 1 for all k hash
functions hi.

It is instructive to quantify the tradeoff between the false
positive probability p, the number of elements n, the number
of bits m, and the number of hash functions k. For simplic-
ity, assume that for any element e and hash function hi,
hi(e) is distributed independently and uniformly over the
range of values 1 to m (although in practice weaker hash
functions might be used). For any 1 ≤ l ≤ m, we evaluate
the probability that T [l] = 0, after inserting all n elements
of S into the table. For each e ∈ S and 1 ≤ i ≤ k, the
probability that hi(e) 6= l is (1 − 1/m). The probability
that T [l] = 0 after inserting all n elements with k probes
each is simply (1 − 1/m)kn. Thus, the probability that an
entry T [l] = 1 after n insertions is simply 1− (1− 1/m)kn.
A false positive occurs when e′ 6∈ S but T [hi(e

′)] = 1, for all
1 ≤ i ≤ k. Although not strictly true, we assume that the
probabilities that the different entries T [l] are set to 1 are
independent. Thus, the false positive probability p can be

approximated as follows.

p =
(

1− (1− 1/m)kn
)k

≈ (1− e−kn/m)k. (1)

(The reader is referred to a standard reference such as [23]
for a more rigorous derivation of the relationship between p,
m, n, and k.) For a given n and m, one can find the k that
minimizes the probability p by differentiating the right-hand
side of Equation 1 with respect to k and setting it to zero.
Solving for k provides the following.

k ≈ (ln 2) · (m/n). (2)

That is, k should be chosen to be roughly proportional to
the ratio of the size of the hash table and the number of
elements that you expect to be placed in the Bloom filter.
Plugging in the value of k from Equation 2 into Equation 1,
we get the following relation.

p ≈ 2−k ≈ 2−
m ln 2

n . (3)

As we will see, the above equation is key for sizing the Bloom
filter for specific applications.

4.2 Content Summarization and Filtering
There are two key applications of Bloom filters to CDNs.

The first application is cache summarization where a Bloom
filter is used to succinctly store the set of objects stored
in a CDN server’s cache. Note that using a Bloom filter
for this purpose is much more space-efficient than storing a
list of URLS associated with the objects in cache. Cache
summarization can be used to locate which server cache has
which objects. For instance, if the CDN’s servers periodi-
cally exchange cache summaries, a server that does not have
a requested object in its cache can find it on other servers us-
ing their cache summaries. Cache summarization has been
well-studied in the academic literature [11]. It is also im-
plemented in popular web caching proxies like Squid, which
create cache summaries called “digests” [29]. For reasons of
efficiency, Squid uses a Bloom filter with k = 4 where a sin-
gle 128-bit MD5 hash of the object’s identifier is partitioned
into four 32-bit chunks and treated as four separate hashes.

Note that cache summarization requires the Bloom filter
to support deletion of elements in addition to insertions. In
particular, when an object is evicted from cache, it has to
removed from the Bloom filter as well. This requires a vari-
ant called counting Bloom filters where the table values are
no longer binary but are counters instead [11]. To insert
an element e into the set the entries T [hi(e)], 1 ≤ i ≤ k
are incremented. To delete an element, the k locations are
decremented. Testing for membership of a particular ele-
ment checks if the k locations are non-zero.

The second application for Bloom filters is what we call
cache filtering, in which a Bloom filter is used to determine
what objects to cache in the first place. To motivate the
need for cache filtering, we collected access logs from a sin-
gle cluster of Akamai’s CDN consisting of 45 servers that
cache and serve Web traffic. Using the logs, we studied the
relative popularity of the over 400 million distinct web ob-
jects that clients accessed from the servers over a period of
two days. As shown in Figure 5, nearly three-quarters of
the objects were accessed only once and 90% of the objects
were accessed fewer than four times during the two days.

In normal operation without cache filtering, a CDN’s server
caches each object that it serves by storing a copy of the ob-
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Figure 5: On a typical CDN server cluster serving
web traffic over two days, 74% of the roughly 400
million objects in cache were accessed only once and
90% were accessed less than four times.

ject in its disk cache. When the disk cache fills up, the
objects are evicted using a cache replacement policy. But
there is no reason to cache objects that are likely to be ac-
cessed only once and never accessed again. Such objects are
jocularly referred to as “one-hit-wonders”. Our popular-
ity analysis suggests that over three-quarters of the objects
are one-hit wonders and a significant amount of disk space
would be saved if they were not cached. In addition, the
number writes to disk would also be reduced significantly if
these objects were not cached.

Cache-on-second-hit rule. A simple cache filtering rule
that avoids caching one-hit-wonders is to cache an object
only when it is accessed for a second time within a specific
time period. The rule can be implemented by storing the set
of objects that have been accessed in a Bloom filter. When
an object is requested by an client, the server first checks to
see if the object has been accessed before by examining the
Bloom filter. If not, the object is fetched and served to the
client, but it is not cached. If the object has been accessed
before, it is fetched, served, and also stored in the server’s
disk cache.

The astute reader may have observed that as more ob-
jects are added to a Bloom filter and it starts to fill up, the
probability of false positives increases. A simple approach to
circumventing this issue is to have two Bloom filters, a pri-
mary and a secondary. All new objects are inserted into the
primary filter, until it is reaches a threshold for maximum
number of objects. At that point, the primary becomes the
secondary filter and a new filter with all entries initialized
to zero becomes the primary. As the old secondary filter is
discarded, objects that have not been accessed recently are
forgotten. When checking if an object has been accessed in
the recent past, both primary and secondary Bloom filters
need to be queried.

4.3 Empirical Benefits
To illustrate the benefits of the cache-on-second-hit rule

using Bloom filters, we describe a simple experiment con-
ducted by Ming Dong Feng using a cluster of about 47 pro-
duction servers serving live traffic on the field. Each server
has eight hard disks. The workload served by these servers
have a “cold footprint” consisting of web and videos from

social networking sites. Bloom filters that implement the
cache-on-second-hit rule were turned on on March 14th and
turned off on April 24th to create before, during, and after
scenarios for analysis. Measurements were made every few
tens of seconds and averaged across all machines every six
hours. Thus, our figures show multiple measurements per
day, enabling us to see both intra- and inter-day variations.

Figure 6 shows the average byte hit rate of the servers,
where byte hit rate is simply the percent of bytes served to
clients that were found in the server cache. For instance, a
byte hit rate of 75% would mean that for every 100 bytes
served to the client, 75 bytes were found in cache and 25
bytes had to be fetched from a peer, parent, or origin server.
Note that during the period when Bloom filtering was turned
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Figure 6: Byte hit rates increased when cache filter-
ing was turned on between March 14th and April
24th because not caching objects that are accessed
only once leaves more disk space to store more pop-
ular objects.

on, the byte hit rate increases from around 74% to 83%.
Most CDNs implement cache replacement algorithms such
as LRU, which evict less popular objects such as one-hit-
wonders when the cache is full. Filtering out the less pop-
ular objects and not placing them in cache at all provides
additional disk space for more popular objects and increases
the byte hit rate.

In Figure 7, we show the impact of Bloom filters on the
number of disk writes performed by the servers. The disk
related metrics we report are measured by a utility similar
to Linux’s iostat [1] which runs continually on production
servers and reports metrics relevant to disk performance.
Not having to store the one-hit-wonders in cache reduces
the aggregate rate of disk writes by nearly one-half. To be
more precise, the rate of disk writes drops from an average of
10209 writes per second to 5738 writes per second, a decrease
of 44%. One consequence of fewer disk writes is that the
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Figure 7: Turning on cache filtering decreases the
rate of disk writes by nearly one half because objects
accessed only once are not written to disk.

latency of accessing an object from disk decreases. As shown
in Figure 8, the average disk latency drops from an average



of 15.6 milliseconds to 11.9 milliseconds, a decrease of about
24%.
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Figure 8: The latency of reading content from disk
decreases when cache filtering is turned on, since
there are fewer competing disk writes.

4.4 Implementation Challenges
Thus far we have described cache filtering in its simplest

form as an illustrative example. Now we consider some real-
world issues in implementing cache filtering in a production
CDN.

1. Speeding up the Bloom filter. The Bloom filter imple-
mentation needs to be extremely fast because Bloom filter
operations are on the critical path for client-perceived CDN
performance, i.e., the time taken to perform these opera-
tions adds to the download time perceived by the client.
Rather than evaluating k different hashes, the approach of
using a single suitably-sized MD5 hash and partitioning the
bits into k hashes is often used in practice.

2. Sizing the Bloom filter. The Bloom filter implementa-
tion should be space efficient. In fact, space efficiency is the
main reason why Bloom filters are used in place of simpler
hash table based solutions. Note that server memory is a
valuable resource and is used to hold a “hot-object” cache
of the most popular objects. The Bloom filter must be sized
correctly since a filter that is too large wastes memory and a
filter that is too small yield a large false positive probability.

In practice, the sizing of the Bloom filter is done as fol-
lows. First, we decide how many objects n we are likely
to add to the Bloom filter while it is in use. Next, we de-
cide what false positive probability p we can tolerate, i.e.,
what is our tolerance to mis-classifying objects due to false
positives. Knowing n and p, the size of the Bloom filter m
can be evaluated using Equation 3. Further, knowing n and
m, the number of hash functions k can be evaluated using
Equation 2. To take a typical example, suppose that a sin-
gle server is likely to see n = 40 million objects and we are
willing to tolerate a false positive probability of 0.1%, then
solving Equation 3 we get a Bloom filter table with 575.1
million bits, or about 68.6 MBytes in size. This is a reason-
ably small size and would fit easily in server memory. Then,
using Equation 2, we would use k = 10 hash functions.

3. Complex cache filtering. Thus far, we have considered
only the simplest form of cache filtering, i.e., the cache-on-
second-hit rule. In addition to this rule, more complex rules
may need to be implemented in practice that take into con-
sideration other object popularity metrics and other charac-
teristics such as size. Further, cache filtering applies not just
to the disk cache, but also to the hot object cache in memory.
For instance, an object needs to have a much higher level of
popularity and also be small enough for it to be eligible to
be placed in memory. In general, there is content filtering

occurring at every level of the hierarchy of caches within a
CDN server, including memory, solid-state disks, and hard
disks. Implementing a hierarchy of complex cache filtering
rules with variants of Bloom filters is a key challenge.

5. OVERLAY ROUTING

ORIGIN
EDGE 

SERVERSOVERLAY CLIENTS

Figure 9: An overlay routing network enables fast
and reliable communication between origins and
edge servers. Different content (i.e., commodities)
represented by different colors are routed simulta-
neously from their respective origins to edge servers
who requested them. On receiving the content, the
edge servers serve it to their proximal clients.

Most web sites have some content that is either not cacheable
or cacheable for only short periods of time. Take, for exam-
ple, a banking portal. A significant part of the portal is per-
sonalized for individual users and cannot be cached, though
some page elements such as CSS, JavaScript, and images
may be common across users and can be cached. Besides dy-
namic web content, CDNs also host applications that users
can interact with in real-time where much of the interac-
tions cannot be cached. Further, in the world of media, live
streaming and teleconferencing are delivered by CDNs in
real-time and are uncacheable. Finally, even when content
can be cached, there are often time-to-live (TTL) parame-
ters that require the CDN to periodically refresh the con-
tent. An example is a stock chart that changes continually
and must be updated every few minutes.

A common framework that can capture all of the above
situations is shown in Figure 9. There are (i) origins that
create the content, (ii) edge servers that clients access to
consume the content, and (iii) an overlay network that is
responsible for transporting the content from the origins to
the edges. Clients request the content from a proximal edge
server, and the edge server in turn downloads the requested
content from the origin via the overlay network.

In the case of a web site, the origin is a collection of appli-
cation servers, databases, and web servers deployed by the
content provider in one or more data centers on the Internet.
In the case of a live stream, the origin denotes the servers
that receive the stream in real-time from the encoders cap-
turing the event. While the origin is usually operated by the
content provider, CDNs often deploy a middlebox called a



reverse proxy near the origin to provide more efficient end-
to-end transport between the origin and the edges. The
overlay network is a large collection1 of servers operated
by CDN that can be used as intermediate nodes for rout-
ing content from the origin to the edge servers. The edge
servers are operated by the CDN and are deployed in more
than a thousand data centers around the world, so as to be
proximal to clients.

5.1 The Overlay Construction Problem
The key problem in overlay routing is how to construct

an overlay to provide efficient communication between ori-
gins and edge servers. An overlay construction algorithm
takes as input (i) client demands, which dictate which ori-
gins need to send their content to which edge servers, and (ii)
real-time network measurements of latency, loss, and avail-
able bandwidth for the paths through the Internet between
origins, overlay servers, and edge servers. For each origin
that needs to communicate with a specific edge server, the
overlay construction algorithm returns a set of one or more
overlay paths that have high availability and performance.
An overlay path starts at an origin, passes through one2

or more intermediate servers in the overlay network, and
ends at an edge server as shown in Figure 9. Content is
sent from the origin to the edge server along one of more of
the constructed overlay paths. Note that overlay construc-
tion must be performed frequently as both client demand
and network characteristics change rapidly. Therefore, al-
gorithms for overlay construction must be very efficient.

5.2 Multicommodity Flow
A natural algorithmic framework for performing overlay

routing is to formulate it as a multicommodity flow prob-
lem. As shown in Figure 9, the origins, the overlay servers,
and the edge servers form the nodes of a flow network. The
links of the flow network are all possible pairs of nodes that
can communicate with each other, with each link having a
cost and a capacity. Each origin is the source of a distinct
commodity that needs to be routed to a set of edge servers.
Note that a commodity represents content hosted at an ori-
gin, i.e., a commodity could be the contents of a web site
or a stream of packets from a live video. The goal of over-
lay routing is to create routing paths for each commodity
from its origin to the edge servers, while obeying capacity
constraints and minimizing cost. Note that performance re-
quirements are often codified as cost such that minimizing
cost maximizes performance.

We now list key aspects of overlay construction that must
be modeled in our multicommodity flow formulation. Many
of these aspects make our problem different from the classi-
cal multicommodity flow studied in the literature, requiring
new algorithmic innovations.

1. Multipath transport. Overlays use multiple paths be-
tween each origin and edge to enhance reliability and perfor-
mance. There are two different modes in which these paths
can be used, depending on the application context. In one

1While overlay servers and edge servers are conceptually
distinct as shown here, a typical physical server may simul-
taneously play both roles in a CDN.
2A path from origin to the edge server that does not pass
through any intermediate overlay servers is called the direct
path. Overlays always use the direct path when no overlay
path is superior to it.

mode that is common for live video, the paths are used si-
multaneously with content sent across all the paths. Content
packets are encoded across these paths so that packets lost
on one path can be recovered at the edge server using pack-
ets from other paths. A second mode that is more common
in web delivery is to consider the multiple paths as candi-
dates and have the edge server choose the best performing
path among the candidates in real-time. To select the best
path, the edge server conducts periodic “races” between all
the candidate paths and chooses the one that provides the
fastest download time.

2. Role of overlay servers. Overlay servers may receive
content and send it in a replicated fashion to multiple re-
ceivers. They may also perform coding and decoding oper-
ations if network coding is used in the overlay. As a result
there is no conservation of flow that classical multicommod-
ity flow problems possess.

3. Cost function. Each link has an associated cost and
capacity. The cost function primarily encodes link perfor-
mance, though one could also incorporate the bandwidth
costs incurred in using that link. Link performance is char-
acterized differently for different application contexts. For
dynamic web content, the primary consideration is link la-
tency, which impacts the download time perceived by the
user. In this case, lower latency links have lower cost. In the
case of video streaming, link throughput is a more important
metric. A link with higher available bandwidth and lower
packet loss that is capable of supporting higher throughputs
is given a lower cost.

4. Capacity. Both node and link capacities are used to
reflect the amount of traffic demand that can be routed
through the node and link respectively. Capacity incorpo-
rates both server and network resources as well as contrac-
tual requirements that bound the amount of traffic that can
be sent.

5. Optimized transport protocols. CDNs often use opti-
mized transport protocols between nodes that they own and
operate. Thus, the communication between overlay servers
and edge servers are optimized. Often a reverse proxy is
present at the origin or proximal to it, allowing for origin
traffic to be optimized as well. The link performance model
that is incorporated as a cost reflects the functioning of these
protocols.

5.3 Algorithmic Solutions
The considerations listed above lead to different variants

of the overlay construction problem for different application
contexts. As a result, multiple algorithms are used in prac-
tice to solve these variants. We list two examples below.

1. Dynamic web content. Overlays that are more latency
sensitive such as those for routing dynamic web content use
customized algorithms for the well-studied all-pairs shortest-
path (APSP) problem. Note that overlay construction in-
volves both cost and capacity constraints. A first step to
constructing an APSP instance is to perform Lagrangian
relaxation (i.e., penalizing violations of constraints rather
than forbidding them) [3] to encode the capacity constraints
as a cost that can be added to existing link-performance-
dependent cost terms. Customized algorithms for APSP
can then be applied to compute the least cost paths be-
tween each origin-edge pair, i.e., the algorithm yields paths
that have the best performance without capacity violations.

2. Live videos. For throughput sensitive traffic such as



live videos, a different approach may be employed. In par-
ticular, given the large amounts of data transported across
the overlay, particular attention must be paid to the vari-
ous capacity constraints in the overlay and the bandwidth
bottlenecks in the Internet. One approach is to formulate
a mixed integer program (MIP) that captures all the per-
formance, capacity, and bandwidth constraints. The MIP
often cannot be solved efficiently as it is NP-hard to so. To
overcome this problem, we can “relax” the integral variables
in the MIP so that they can take on real values, resulting in
a linear program (LP). The LP can then be solved efficiently
to yield a fractional solution that can then be “rounded” to
get an integral solution. The solution produced in this fash-
ion is of course not optimal. But, in some cases, the solution
can be shown to be near-optimal.

For a more in-depth treatment of an algorithmic solution
for constructing overlays for live streaming, the reader is
referred to [5, 4], while the system architecture of a live
streaming network is described in [19]. The algorithm pro-
duces an overlay using LP relaxation that is rounded to an
integral solution using GAP rounding. The overlay pro-
duced is guaranteed to be within a logarithmic factor of
optimal.

5.4 Empirical Benefits
The empirical benefits of an overlay network as described

above are two-fold. First, on a consistent basis, overlay
routing provides better user-perceived performance, such as
faster download times or fewer video stream rebuffers. The
improvement in performance is due to many factors that fa-
vor overlay paths from origins to edge servers to the direct
paths provided by the Internet. The overlay paths may have
lower latency and/or higher throughput depending on the
application context. The CDN can save the overhead of es-
tablishing TCP connections between different nodes within
the overlay by holding them persistently. The CDN may also
use optimized transport protocols between their nodes. Our
empirical results, however, do not separate out the benefits
of each effect.

A second benefit is what one could term as a catastro-
phe insurance. Catastrophic events such as a cable cut are
not rare on the Internet. During such an event, overlays
provide alternate paths when the direct path from origin to
edge is impacted, leading to outsized improvements in both
availability and performance.

There has been much work in quantifying the benefits of
overlays. A large-scale empirical study of Akamai’s routing
overlay is presented in [26]. The empirical observations re-
ported here are based on [30], which describes many different
overlay technologies at Akamai and their relative benefits.

5.4.1 Consistent benefits
The routing overlay provides significant and consistent

performance benefits by discovering and using better per-
forming overlay paths for communication, even when there
are no significant catastrophic network events. Figure 10,
which was reported in [30], shows the performance benefit
of an overlay for dynamic web content. During the operation
of the overlay measured in this experiment, each edge server
wanting to download content from an origin chooses the best
overlay path from a set of candidate overlay paths provided
by the overlay construction algorithm. In this experiment,
a web site hosted in an origin in Dallas was accessed by

Figure 10: A routing overlay provides significant
speedups by choosing better performing paths from
the origin to the client. Key: North America (NA),
Europe (EU), Asia.

“agents” deployed around the world that simulate clients by
downloading web content periodically using an embedded
browser3. For the experiment, the agents repeatedly down-
loaded a single dynamic (i.e., uncacheable) 38KB web page.
The agents downloaded the web content through Akamai’s
CDN, which uses the routing overlay, and also downloaded
the content directly from origin. Speedup is the ratio of the
download time of the file when downloaded directly from
the origin to the download time of the same file when down-
loaded using the routing overlay. Thus, speedup measures
the amount of benefit that the routing overlay is providing.
The results were then aggregated by continent and the av-
erage speedup is shown in the figure. Note that the speedup
is significant in all geographies. The speedup, however, in-
creases as the client (i.e., agent) moves farther away from
the origin. This is a natural consequence of the fact that
when the content needs to travel a longer distance from ori-
gin to edge there are more opportunities for optimizing that
communication using better overlay paths.

5.4.2 Catastrophe Insurance
Overlay routing provides substantially more benefit dur-

ing catastrophic events. In [30], performance measurements
collected during the occurrence of one such event are re-
ported. In April 2010, a large-scale Internet outage occurred
when a submarine communications cable system (called SEA-
ME-WE 4), which links Europe with the Middle East and
South Asia, was cut. The cable underwent repairs from 25
April to 29 April during which time several cable systems
were affected, severely impacting Internet connectivity in
many regions across the Middle East, Africa, and Asia.

Figure 11 shows the download time experienced by clients
in Asia using a routing overlay during the outage period in
comparison with the download time experienced by the same
clients without the overlay. Specifically, times were mea-
sured for agents distributed across India, Malaysia, and Sin-
gapore to download a dynamic (i.e., uncacheable) web page

3Agents are often used for repeated “apples-to-apples” per-
formance measurements of the same content over long time
periods, something real users would find too boring to do!



Figure 11: Performance of the routing overlay dur-
ing a cable cut.

approximately 70KB in size hosted at an origin in Boston.
The agents downloaded two versions of the web page - one
directly from the origin in Boston, and another through the
routing overlay. It can be seen that during the outage, the
performance of the download directly from the Boston origin
to Asia was very slow. Downloads using the routing overlay,
however, did not experience much degradation on account
of alternate overlay paths being used.

6. LEADER ELECTION AND CONSENSUS
Leader election algorithms are employed ubiquitously by

the CDN in dozens of different distributed system compo-
nents. Because these algorithms are tricky to design and
implement correctly, the CDN has developed a leader elec-
tion software library. The algorithms in this library can
produce different leadership outcomes. For instance, some
algorithms guarantee that at least one server will be elected
as a leader, while others guarantee at most one. Leader elec-
tion is an instance of the more general problem of consensus.
There are numerous scenarios where general consensus pro-
tocols are key for the correct functioning of a CDN. For this
purpose, more complex algorithms such Paxos [20] are used
by multiple CDN components.

6.1 Leader Election
We start with the problem of leader election. Every decision-

making software component of the CDN is executed in a
replicated fashion on many servers that often reside in mul-
tiple data centers. Examples of components replicated in
this fashion include the global and local load balancers de-
scribed in the earlier sections. The key reason for replicating
the decision-making components is to ensure that the CDN
will continue to function even if some servers or even en-
tire data centers fail. In fact, such failures are common in
Internet-scale systems.

A server executing a decision-making component takes
real-time inputs from several sources and produces outputs
that are consumed by other components running on other
servers. When such a component is replicated across multi-
ple servers, each server independently collects the required
data and computes the outputs. Even if the software run-
ning on these servers is identical, the outputs produced by

each server could be different, since each server could be
using slightly different or even partial sets of inputs. There-
fore, it is necessary to select a server called the leader whose
output is used by other system components that require it.
The leader is determined in a distributed fashion using a
leader election algorithm. We now describe some of the key
assumptions and concepts that underlie leader election.

1) Failure model. The server failure model assumed by the
algorithm designers is that a server may cease to function
at any instant in time, and may likewise resume at any in-
stant, but will not operate in a malicious or Byzantine [21]
manner. (The consequences of server compromise go far
beyond any impact on leader election algorithms!) The net-
work may also fail at arbitrary times, but, by assumption,
only by preventing pairs of servers from communicating or
by introducing arbitrarily large packet delays. In particu-
lar, network failures may partition the servers into disjoint
subsets, where the servers in each subset can communicate
with each other, but servers in different subsets cannot.

2) Candidate set. The servers participating in a leader
election form the candidate set. The servers are always con-
figured to know the candidate set in advance, although there
is never a guarantee that every candidate server can com-
municate with every other candidate server. Ideally, servers
participating in a leader election algorithm should be con-
figured with the same candidate set or problems may arise.
For example, ties in voting for a leader are often broken by
simply choosing the candidate with the smallest numbered
IP address. If different participants have different candi-
date sets, there may not be an agreed-upon smallest address.
However, periods where different servers have different can-
didate sets is unavoidable. When a new configuration is re-
leased on the network, it is inevitable that some servers have
the latest candidate set while others have the older version.
The leader election algorithm must be designed such that it
does not produce adverse outcomes during such periods.

3) Health. It is important that the elected leader is “healthy”
in terms of being able to perform its duties. A candidate
may be disqualified from participating in the election due
to “poor health.” Health is a numerical score that is com-
puted differently for different components. Generally, a can-
didate server is considered healthy if it has recent versions
of all the data feeds needed for its computation, has the
resources to execute the computation, and is able to com-
municate with other servers that require its outputs. For
instance, a server performing global load balancing cannot
be considered healthy if it does not have sufficiently recent
values for the map unit demands and cluster capacities that
are required to execute the stable marriage algorithm. A
leader is often chosen to be healthiest candidate, breaking
ties using their IP addresses. The aim is to prevent a server
from becoming the leader if it has an invalid, outdated, or
incomplete view of the data needed to make decisions.

4) Electoral process. Elections are triggered when there
is no current leader. All candidates broadcast health val-
ues with a fixed (but configurable) periodicity to every one
else. Note that each candidate not only broadcasts their own
health but also the latest health values for others it has heard
from. Each candidate chooses a leader using pre-determined
rules based on its own health value and the health values it
receives from others. The periodic broadcasts of health val-
ues serves a similar role as the heartbeats in the leader elec-
tion protocol of Raft [25]. Specifically, if the heart beat from



the current leader is not heard for a specified timeout period,
it is presumed “dead” and will trigger the election of a new
leader. The timeout value is chosen to be larger so as not to
trigger unnecessary leadership changes, e.g., heartbeat with
a 5-second periodicity could have a 60-second timeout.

5. Outcome requirements. There are two outcome require-
ments that are common in leader election within the CDN.
In an “at-most-one” election, at most one leader is desired
across the entire CDN. In this case, leadership requires an
absolute majority within the entire candidate set. In the
case of a network partition, it is possible that no leader is
chosen. Whereas in an “at-least-one” election, an absolute
majority is not required, we allow multiple leaders, one in
each partition. We now provide examples where these dif-
ferent outcomes are appropriate.

6.2 At-Least-One Leader Election
While the goal of a leader election algorithm is to select a

single global leader, in many circumstances it may be safe,
or even desirable, to allow each subset in a network partition
to elect its own leader. One example comes from the system
that uses consistent hashing to balance load within a cluster,
as described in Section 3. Each server in a cluster is con-
figured so that it has a list of the addresses of all servers in
the cluster, whether or not it can communicate with them.
Each server also has an identical copy of the mapping of
servers in the cluster to the unit circle for each serial num-
ber. Periodically (on a time scale of seconds) the servers
within a cluster try to contact each other to exchange infor-
mation about how much traffic (e.g., megabits per second)
they are serving for each serial number. If there is a parti-
tion within the cluster, then this information is exchanged
within subsets.

The assignment of servers to serial numbers is computed
as follows. Each server independently adds up the traffic
for each serial number. Then, based on the total traffic, the
server determines how many servers, k, to assign to the serial
number, and creates a list of the first k servers within the
subset that appear on the unit circle. The lists computed
by different servers in a subset should be nearly identical,
although there may be small differences based on the tim-
ings at which traffic measurements are taken or reported,
or based on different views of which servers are currently
on-line. Rather than use different solutions simultaneously
within a subset, however, a leader election algorithm is ap-
plied, and the leader distributes its solution to the other
members of the subset. The servers in the subset then
use the leader’s solution to answer DNS queries for domain
names such as a212.g.akamai.net.

In the event of a partition within a cluster, therefore, each
subset has its own leader and operates independently with-
out interfering with other subsets. This circumstance is not
ideal, however, because each subset may not have enough
storage capacity to cache all of the popular content that for-
merly was distributed across the entire cluster, so cache hit
rates may suffer. On the other hand, the servers in a subset
cannot direct clients to servers in other subsets, because the
other subsets may be completely inoperable. Fortunately,
partitions within a cluster are very rare, because the servers
within a cluster are almost always housed in the same room.

6.3 At-Most-One Leader Election
Perhaps surprisingly, there are circumstances in which it

is better for a leader election algorithm to fail to select any
leader rather than select different leaders for different sub-
sets in a network partition. (At-most-one-leader semantics
is achieved by requiring a majority of the candidates to vote
for the same leader.) Leader elections that produce at most
one leader is suitable for software components that obey
two criteria: (i) the periodicity with which the component
executes and produces a new output is flexible, i.e., it is rel-
atively safe for the other components of the CDN to operate
based on a slightly older output; (ii) the use of two different
versions of the output can lead to unpredictable or adverse
consequences.

As an example, consider the software component (called
“topology discovery” [9]), which explores the current struc-
ture of the Internet by performing network measurements
and then outputs a map unit definition table, which lists all
the map units, and assigns an identification number to each
map unit. Over time, as the structure of the Internet and its
users change, the map unit definitions also change. Several
components may share a common map unit definition ta-
ble to perform their functions. For instance, one component
uses the map unit definitions to compute the demand from
each map unit, while the global load balancer discussed in
Section 2 uses the map unit definitions and their demands
to route traffic to clusters. If there are two or more dif-
ferent map unit definition tables in the system, numerous
problems may arise, such as data and decisions meant for
one map unit accidentally being associated with or applied
to another. As with any other component, topology discov-
ery is performed in a replicated fashion on several servers.
However, for this component, if leader election produces no
leader and no output for a short period of time, it is safer
for other components to operate with a last-known-good ver-
sion of the map unit definition table than to operate with
potentially conflicting versions of it.

6.4 Consensus
There are many contexts where full-blown consensus al-

gorithms are required for the proper functioning of a CDN.
Consider the case of a CDN delivering an e-commerce Web
site. For better performance the user’s session state (such as
the contents of his/her shopping cart) can be stored in the
proximal edge server that is serving the user, rather than
at a centralized origin site. But, what would happen if that
server were to fail? It is not acceptable for the user to lose
his or her session state! Thus, there is a need for the session
state to be replicated across different servers and the copies
to be kept consistent, so that server failures do not disrupt
user transactions. There are several other such applications
within a CDN that require a distributed, replicated, fault-
tolerant store that supports atomic reads and writes. The
Paxos algorithm [20] has been implemented to provide such
functionality in the CDN, and the Raft [25] algorithm ap-
pears to be an attractive alternative.

7. CONCLUDING REMARKS
This paper explores the interaction between algorithmic

research and commercial distributed systems based on our
personal experiences in building one of the largest distributed
systems in the world, Akamai’s content delivery network.
While our examples are by no means comprehensive, we
hope that they illustrate how research influenced the design
of the CDN and how the system-building challenges inspired



more research.
Pasteur’s quadrants [31] provide an intuitive classification

of research based on whether its goal is a fundamental un-
derstanding (i.e., basic research), a particular use for society
(i.e., applied research), or both (i.e., use-inspired basic re-
search)4. Our examples illustrate the impact of research of
all three types.

Basic research in stable allocations began decades before
the first CDNs were built. Applying stable allocations to
networked systems, however, was never the intention of the
early researchers. Yet the framework provides an elegant
way to formulate and solve the global load-balancing prob-
lem. Moreover, the impact is not a one-way street. The
real-world implementation of the global load-balancing sys-
tem required modeling multiple capacity constraints, which
inspired further research, eventually leading to algorithms
in which constraints are expressed as resource trees.

In contrast to stable allocations, the algorithmic work on
consistent hashing is a classic example of use-inspired basic
research. A primary motivator of the research was in fact
load balancing within a CDN, although it has subsequently
found applications in numerous other contexts.

Finally, in our examples, developing the algorithms is not
the end, but the beginning. Much applied research is re-
quired to translate algorithmic ideas into practice. In some
cases, the simple tractable models used for analysis do not
adequately model the complexities of the real world. There-
fore, theorems of optimality may not strictly apply in prac-
tice. In most cases, the algorithm that is actually imple-
mented differs from the algorithms analyzed in the litera-
ture. In all examples, however, provably effective algorithms
provided the conceptual basis for the system that was built.
From this standpoint, an algorithm that proposes a con-
ceptually new way of thinking about a problem may be as
important as being the most efficient in its class.
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