
IPFS - Content Addressed, Versioned, P2P File System
(DRAFT 3)

Juan Benet
juan@benet.ai

ABSTRACT
The InterPlanetary File System (IPFS) is a peer-to-peer dis-
tributed file system that seeks to connect all computing de-
vices with the same system of files. In some ways, IPFS
is similar to the Web, but IPFS could be seen as a sin-
gle BitTorrent swarm, exchanging objects within one Git
repository. In other words, IPFS provides a high through-
put content-addressed block storage model, with content-
addressed hyper links. This forms a generalized Merkle
DAG, a data structure upon which one can build versioned
file systems, blockchains, and even a Permanent Web. IPFS
combines a distributed hashtable, an incentivized block ex-
change, and a self-certifying namespace. IPFS has no single
point of failure, and nodes do not need to trust each other.

1. INTRODUCTION
There have been many attempts at constructing a global

distributed file system. Some systems have seen signifi-
cant success, and others failed completely. Among the aca-
demic attempts, AFS [6] has succeeded widely and is still
in use today. Others [7, ?] have not attained the same
success. Outside of academia, the most successful systems
have been peer-to-peer file-sharing applications primarily
geared toward large media (audio and video). Most no-
tably, Napster, KaZaA, and BitTorrent [2] deployed large
file distribution systems supporting over 100 million simul-
taneous users. Even today, BitTorrent maintains a massive
deployment where tens of millions of nodes churn daily [16].
These applications saw greater numbers of users and files dis-
tributed than their academic file system counterparts. How-
ever, the applications were not designed as infrastructure to
be built upon. While there have been successful repurpos-
ings1, no general file-system has emerged that offers global,
low-latency, and decentralized distribution.

Perhaps this is because a “good enough” system for most
use cases already exists: HTTP. By far, HTTP is the most
successful “distributed system of files” ever deployed. Cou-
pled with the browser, HTTP has had enormous technical
and social impact. It has become the de facto way to trans-
mit files across the internet. Yet, it fails to take advantage
of dozens of brilliant file distribution techniques invented in
the last fifteen years. From one prespective, evolving Web
infrastructure is near-impossible, given the number of back-
wards compatibility constraints and the number of strong

1For example, Linux distributions use BitTorrent to trans-
mit disk images, and Blizzard, Inc. uses it to distribute
video game content.

parties invested in the current model. But from another per-
spective, new protocols have emerged and gained wide use
since the emergence of HTTP. What is lacking is upgrading
design: enhancing the current HTTP web, and introducing
new functionality without degrading user experience.

Industry has gotten away with using HTTP this long be-
cause moving small files around is relatively cheap, even for
small organizations with lots of traffic. But we are enter-
ing a new era of data distribution with new challenges: (a)
hosting and distributing petabyte datasets, (b) computing
on large data across organizations, (c) high-volume high-
definition on-demand or real-time media streams, (d) ver-
sioning and linking of massive datasets, (e) preventing ac-
cidental disappearance of important files, and more. Many
of these can be boiled down to “lots of data, accessible ev-
erywhere.” Pressed by critical features and bandwidth con-
cerns, we have already given up HTTP for different data
distribution protocols. The next step is making them part
of the Web itself.

Orthogonal to efficient data distribution, version control
systems have managed to develop important data collabo-
ration workflows. Git, the distributed source code version
control system, developed many useful ways to model and
implement distributed data operations. The Git toolchain
offers versatile versioning functionality that large file distri-
bution systems severely lack. New solutions inspired by Git
are emerging, such as Camlistore [?], a personal file stor-
age system, and Dat [?] a data collaboration toolchain
and dataset package manager. Git has already influenced
distributed filesystem design [9], as its content addressed
Merkle DAG data model enables powerful file distribution
strategies. What remains to be explored is how this data
structure can influence the design of high-throughput ori-
ented file systems, and how it might upgrade the Web itself.

This paper introduces IPFS, a novel peer-to-peer version-
controlled filesystem seeking to reconcile these issues. IPFS
synthesizes learnings from many past successful systems.
Careful interface-focused integration yields a system greater
than the sum of its parts. The central IPFS principle is
modeling all data as part of the same Merkle DAG.

2. BACKGROUND
This section reviews important properties of successful

peer-to-peer systems, which IPFS combines.

2.1 Distributed Hash Tables
Distributed Hash Tables (DHTs) are widely used to coor-

dinate and maintain metadata about peer-to-peer systems.



For example, the BitTorrent MainlineDHT tracks sets of
peers part of a torrent swarm.

2.1.1 Kademlia DHT
Kademlia [10] is a popular DHT that provides:

1. Efficient lookup through massive networks: queries on
average contact dlog2(n)e nodes. (e.g. 20 hops for a
network of 10, 000, 000 nodes).

2. Low coordination overhead: it optimizes the number
of control messages it sends to other nodes.

3. Resistance to various attacks by preferring long-lived
nodes.

4. Wide usage in peer-to-peer applications, including
Gnutella and BitTorrent, forming networks of over 20
million nodes [16].

2.1.2 Coral DSHT
While some peer-to-peer filesystems store data blocks di-

rectly in DHTs, this “wastes storage and bandwidth, as data
must be stored at nodes where it is not needed” [5]. The
Coral DSHT extends Kademlia in three particularly impor-
tant ways:

1. Kademlia stores values in nodes whose ids are“nearest”
(using XOR-distance) to the key. This does not take
into account application data locality, ignores “far”
nodes that may already have the data, and forces“near-
est” nodes to store it, whether they need it or not.
This wastes significant storage and bandwith. Instead,
Coral stores addresses to peers who can provide the
data blocks.

2. Coral relaxes the DHT API from get_value(key) to
get_any_values(key) (the “sloppy” in DSHT). This
still works since Coral users only need a single (work-
ing) peer, not the complete list. In return, Coral can
distribute only subsets of the values to the “nearest”
nodes, avoiding hot-spots (overloading all the nearest
nodes when a key becomes popular).

3. Additionally, Coral organizes a hierarchy of separate
DSHTs called clusters depending on region and size.
This enables nodes to query peers in their region first,
“finding nearby data without querying distant nodes”[5]
and greatly reducing the latency of lookups.

2.1.3 S/Kademlia DHT
S/Kademlia [1] extends Kademlia to protect against ma-

licious attacks in two particularly important ways:

1. S/Kademlia provides schemes to secure NodeId gener-
ation, and prevent Sybill attacks. It requires nodes to
create a PKI key pair, derive their identity from it,
and sign their messages to each other. One scheme
includes a proof-of-work crypto puzzle to make gener-
ating Sybills expensive.

2. S/Kademlia nodes lookup values over disjoint paths,
in order to ensure honest nodes can connect to each
other in the presence of a large fraction of adversaries
in the network. S/Kademlia achieves a success rate of
0.85 even with an adversarial fraction as large as half
of the nodes.

2.2 Block Exchanges - BitTorrent
BitTorrent [3] is a widely successful peer-to-peer fileshar-

ing system, which succeeds in coordinating networks of un-
trusting peers (swarms) to cooperate in distributing pieces
of files to each other. Key features from BitTorrent and its
ecosystem that inform IPFS design include:

1. BitTorrent’s data exchange protocol uses a quasi tit-
for-tat strategy that rewards nodes who contribute to
each other, and punishes nodes who only leech others’
resources.

2. BitTorrent peers track the availability of file pieces,
prioritizing sending rarest pieces first. This takes load
off seeds, making non-seed peers capable of trading
with each other.

3. BitTorrent’s standard tit-for-tat is vulnerable to some
exploitative bandwidth sharing strategies. PropShare [8]
is a different peer bandwidth allocation strategy that
better resists exploitative strategies, and improves the
performance of swarms.

2.3 Version Control Systems - Git
Version Control Systems provide facilities to model files

changing over time and distribute different versions efficiently.
The popular version control system Git provides a power-
ful Merkle DAG 2 object model that captures changes to a
filesystem tree in a distributed-friendly way.

1. Immutable objects represent Files (blob), Directories
(tree), and Changes (commit).

2. Objects are content-addressed, by the cryptographic
hash of their contents.

3. Links to other objects are embedded, forming a Merkle
DAG. This provides many useful integrity and work-
flow properties.

4. Most versioning metadata (branches, tags, etc.) are
simply pointer references, and thus inexpensive to cre-
ate and update.

5. Version changes only update references or add objects.

6. Distributing version changes to other users is simply
transferring objects and updating remote references.

2.4 Self-Certified Filesystems - SFS
SFS [12, 11] proposed compelling implementations of both

(a) distributed trust chains, and (b) egalitarian shared global
namespaces. SFS introduced a technique for building Self-
Certified Filesystems: addressing remote filesystems using
the following scheme

/sfs/<Location>:<HostID>

where Location is the server network address, and:

HostID = hash(public_key || Location)

Thus the name of an SFS file system certifies its server.
The user can verify the public key offered by the server,
negotiate a shared secret, and secure all traffic. All SFS
instances share a global namespace where name allocation
is cryptographic, not gated by any centralized body.
2Merkle Directed Acyclic Graph – similar but more general
construction than a Merkle Tree. Deduplicated, does not
need to be balanced, and non-leaf nodes contain data.



3. IPFS DESIGN
IPFS is a distributed file system which synthesizes suc-

cessful ideas from previous peer-to-peer sytems, including
DHTs, BitTorrent, Git, and SFS. The contribution of IPFS
is simplifying, evolving, and connecting proven techniques
into a single cohesive system, greater than the sum of its
parts. IPFS presents a new platform for writing and de-
ploying applications, and a new system for distributing and
versioning large data. IPFS could even evolve the web itself.

IPFS is peer-to-peer; no nodes are privileged. IPFS nodes
store IPFS objects in local storage. Nodes connect to each
other and transfer objects. These objects represent files and
other data structures. The IPFS Protocol is divided into a
stack of sub-protocols responsible for different functionality:

1. Identities - manage node identity generation and ver-
ification. Described in Section 3.1.

2. Network - manages connections to other peers, uses
various underlying network protocols. Configurable.
Described in Section 3.2.

3. Routing - maintains information to locate specific
peers and objects. Responds to both local and re-
mote queries. Defaults to a DHT, but is swappable.
Described in Section 3.3.

4. Exchange - a novel block exchange protocol (BitSwap)
that governs efficient block distribution. Modelled as
a market, weakly incentivizes data replication. Trade
Strategies swappable. Described in Section 3.4.

5. Objects - a Merkle DAG of content-addressed im-
mutable objects with links. Used to represent arbi-
trary datastructures, e.g. file hierarchies and commu-
nication systems. Described in Section 3.5.

6. Files - versioned file system hierarchy inspired by Git.
Described in Section 3.6.

7. Naming - A self-certifying mutable name system. De-
scribed in Section 3.7.

These subsystems are not independent; they are integrated
and leverage blended properties. However, it is useful to de-
scribe them separately, building the protocol stack from the
bottom up.

Notation: data structures and functions below are speci-
fied in Go syntax.

3.1 Identities
Nodes are identified by a NodeId, the cryptographic hash3

of a public-key, created with S/Kademlia’s static crypto puz-
zle [1]. Nodes store their public and private keys (encrypted
with a passphrase). Users are free to instatiate a “new” node
identity on every launch, though that loses accrued network
benefits. Nodes are incentivized to remain the same.

type NodeId Multihash

type Multihash []byte

// self-describing cryptographic hash digest

type PublicKey []byte

3Throughout this document, hash and checksum refer
specifically to cryptographic hash checksums of data.

type PrivateKey []byte

// self-describing keys

type Node struct {

NodeId NodeID

PubKey PublicKey

PriKey PrivateKey

}

S/Kademlia based IPFS identity generation:

difficulty = <integer parameter>

n = Node{}

do {

n.PubKey, n.PrivKey = PKI.genKeyPair()

n.NodeId = hash(n.PubKey)

p = count_preceding_zero_bits(hash(n.NodeId))

} while (p < difficulty)

Upon first connecting, peers exchange public keys, and
check: hash(other.PublicKey) equals other.NodeId. If
not, the connection is terminated.

Note on Cryptographic Functions.
Rather than locking the system to a particular set of func-

tion choices, IPFS favors self-describing values. Hash di-
gest values are stored in multihash format, which includes
a short header specifying the hash function used, and the
digest length in bytes. Example:

<function code><digest length><digest bytes>

This allows the system to (a) choose the best function for
the use case (e.g. stronger security vs faster performance),
and (b) evolve as function choices change. Self-describing
values allow using different parameter choices compatibly.

3.2 Network
IPFS nodes communicate regualarly with hundreds of other

nodes in the network, potentially across the wide internet.
The IPFS network stack features:

• Transport: IPFS can use any transport protocol,
and is best suited for WebRTC DataChannels [?] (for
browser connectivity) or uTP(LEDBAT [14]).

• Reliability: IPFS can provide reliability if underlying
networks do not provide it, using uTP (LEDBAT [14])
or SCTP [15].

• Connectivity: IPFS also uses the ICE NAT traversal
techniques [13].

• Integrity: optionally checks integrity of messages us-
ing a hash checksum.

• Authenticity: optionally checks authenticity of mes-
sages using HMAC with sender’s public key.

3.2.1 Note on Peer Addressing
IPFS can use any network; it does not rely on or assume

access to IP. This allows IPFS to be used in overlay networks.
IPFS stores addresses as multiaddr formatted byte strings
for the underlying network to use. multiaddr provides a way
to express addresses and their protocols, including support
for encapsulation. For example:



# an SCTP/IPv4 connection

/ip4/10.20.30.40/sctp/1234/

# an SCTP/IPv4 connection proxied over TCP/IPv4

/ip4/5.6.7.8/tcp/5678/ip4/1.2.3.4/sctp/1234/

3.3 Routing
IPFS nodes require a routing system that can find (a)

other peers’ network addresses and (b) peers who can serve
particular objects. IPFS achieves this using a DSHT based
on S/Kademlia and Coral, using the properties discussed in
2.1. The size of objects and use patterns of IPFS are similar
to Coral [5] and Mainline [16], so the IPFS DHT makes a
distinction for values stored based on their size. Small values
(equal to or less than 1KB) are stored directly on the DHT.
For values larger, the DHT stores references, which are the
NodeIds of peers who can serve the block.

The interface of this DSHT is the following:

type IPFSRouting interface {

FindPeer(node NodeId)

// gets a particular peer’s network address

SetValue(key []bytes, value []bytes)

// stores a small metadata value in DHT

GetValue(key []bytes)

// retrieves small metadata value from DHT

ProvideValue(key Multihash)

// announces this node can serve a large value

FindValuePeers(key Multihash, min int)

// gets a number of peers serving a large value

}

Note: different use cases will call for substantially differ-
ent routing systems (e.g. DHT in wide network, static HT
in local network). Thus the IPFS routing system can be
swapped for one that fits users’ needs. As long as the in-
terface above is met, the rest of the system will continue to
function.

3.4 Block Exchange - BitSwap Protocol
In IPFS, data distribution happens by exchanging blocks

with peers using a BitTorrent inspired protocol: BitSwap.
Like BitTorrent, BitSwap peers are looking to acquire a set
of blocks (want_list), and have another set of blocks to of-
fer in exchange (have_list). Unlike BitTorrent, BitSwap
is not limited to the blocks in one torrent. BitSwap oper-
ates as a persistent marketplace where node can acquire the
blocks they need, regardless of what files those blocks are
part of. The blocks could come from completely unrelated
files in the filesystem. Nodes come together to barter in the
marketplace.

While the notion of a barter system implies a virtual cur-
rency could be created, this would require a global ledger to
track ownership and transfer of the currency. This can be
implemented as a BitSwap Strategy, and will be explored in
a future paper.

In the base case, BitSwap nodes have to provide direct
value to each other in the form of blocks. This works fine

when the distribution of blocks across nodes is complemen-
tary, meaning they have what the other wants. Often, this
will not be the case. In some cases, nodes must work for
their blocks. In the case that a node has nothing that its
peers want (or nothing at all), it seeks the pieces its peers
want, with lower priority than what the node wants itself.
This incentivizes nodes to cache and disseminate rare pieces,
even if they are not interested in them directly.

3.4.1 BitSwap Credit
The protocol must also incentivize nodes to seed when

they do not need anything in particular, as they might have
the blocks others want. Thus, BitSwap nodes send blocks to
their peers optimistically, expecting the debt to be repaid.
But leeches (free-loading nodes that never share) must be
protected against. A simple credit-like system solves the
problem:

1. Peers track their balance (in bytes verified) with other
nodes.

2. Peers send blocks to debtor peers probabilistically, ac-
cording to a function that falls as debt increases.

Note that if a node decides not to send to a peer, the node
subsequently ignores the peer for an ignore_cooldown time-
out. This prevents senders from trying to game the proba-
bility by just causing more dice-rolls. (Default BitSwap is
10 seconds).

3.4.2 BitSwap Strategy
The differing strategies that BitSwap peers might employ

have wildly different effects on the performance of the ex-
change as a whole. In BitTorrent, while a standard strat-
egy is specified (tit-for-tat), a variety of others have been
implemented, ranging from BitTyrant [8] (sharing the least-
possible), to BitThief [8] (exploiting a vulnerability and never
share), to PropShare [8] (sharing proportionally). A range
of strategies (good and malicious) could similarly be imple-
mented by BitSwap peers. The choice of function, then,
should aim to:

1. maximize the trade performance for the node, and the
whole exchange

2. prevent freeloaders from exploiting and degrading the
exchange

3. be effective with and resistant to other, unknown strate-
gies

4. be lenient to trusted peers

The exploration of the space of such strategies is future
work. One choice of function that works in practice is a
sigmoid, scaled by a debt retio:

Let the debt ratio r between a node and its peer be:

r =
bytes_sent

bytes_recv + 1

Given r, let the probability of sending to a debtor be:

P
(
send | r

)
= 1− 1

1 + exp(6− 3r)

As you can see in Figure 1, this function drops off quickly
as the nodes’ debt ratio surpasses twice the established credit.



r

P ( send | r )

0 1 2 3 4

1

Figure 1: Probability of Sending as r increases

The debt ratio is a measure of trust: lenient to debts between
nodes that have previously exchanged lots of data success-
fully, and merciless to unknown, untrusted nodes. This (a)
provides resistance to attackers who would create lots of
new nodes (sybill attacks), (b) protects previously successful
trade relationships, even if one of the nodes is temporarily
unable to provide value, and (c) eventually chokes relation-
ships that have deteriorated until they improve.

3.4.3 BitSwap Ledger
BitSwap nodes keep ledgers accounting the transfers with

other nodes. This allows nodes to keep track of history and
avoid tampering. When activating a connection, BitSwap
nodes exchange their ledger information. If it does not
match exactly, the ledger is reinitialized from scratch, losing
the accrued credit or debt. It is possible for malicious nodes
to purposefully “lose” the Ledger, hoping to erase debts. It
is unlikely that nodes will have accrued enough debt to war-
rant also losing the accrued trust; however the partner node
is free to count it as misconduct, and refuse to trade.

type Ledger struct {

owner NodeId

partner NodeId

bytes_sent int

bytes_recv int

timestamp Timestamp

}

Nodes are free to keep the ledger history, though it is
not necessary for correct operation. Only the current ledger
entries are useful. Nodes are also free to garbage collect
ledgers as necessary, starting with the less useful ledgers:
the old (peers may not exist anymore) and small.

3.4.4 BitSwap Specification
BitSwap nodes follow a simple protocol.

// Additional state kept

type BitSwap struct {

ledgers map[NodeId]Ledger

// Ledgers known to this node, inc inactive

active map[NodeId]Peer

// currently open connections to other nodes

need_list []Multihash

// checksums of blocks this node needs

have_list []Multihash

// checksums of blocks this node has

}

type Peer struct {

nodeid NodeId

ledger Ledger

// Ledger between the node and this peer

last_seen Timestamp

// timestamp of last received message

want_list []Multihash

// checksums of all blocks wanted by peer

// includes blocks wanted by peer’s peers

}

// Protocol interface:

interface Peer {

open (nodeid :NodeId, ledger :Ledger);

send_want_list (want_list :WantList);

send_block (block :Block) -> (complete :Bool);

close (final :Bool);

}

Sketch of the lifetime of a peer connection:

1. Open: peers send ledgers until they agree.

2. Sending: peers exchange want_lists and blocks.

3. Close: peers deactivate a connection.

4. Ignored: (special) a peer is ignored (for the duration
of a timeout) if a node’s strategy avoids sending

Peer.open(NodeId, Ledger).
When connecting, a node initializes a connection with a

Ledger, either stored from a connection in the past or a
new one zeroed out. Then, sends an Open message with the
Ledger to the peer.

Upon receiving an Open message, a peer chooses whether
to activate the connection. If – acording to the receiver’s
Ledger – the sender is not a trusted agent (transmission
below zero, or large outstanding debt) the receiver may opt
to ignore the request. This should be done probabilistically
with an ignore_cooldown timeout, as to allow errors to be
corrected and attackers to be thwarted.

If activating the connection, the receiver initializes a Peer
object with the local version of the Ledger and sets the
last_seen timestamp. Then, it compares the received Ledger

with its own. If they match exactly, the connections have
opened. If they do not match, the peer creates a new zeroed
out Ledger and sends it.

Peer.send_want_list(WantList).
While the connection is open, nodes advertise their want_list

to all connected peers. This is done (a) upon opening the
connection, (b) after a randomized periodic timeout, (c) af-
ter a change in the want_list and (d) after receiving a new
block.

Upon receiving a want_list, a node stores it. Then, it
checks whether it has any of the wanted blocks. If so, it
sends them according to the BitSwap Strategy above.

Peer.send_block(Block).
Sending a block is straightforward. The node simply trans-

mits the block of data. Upon receiving all the data, the re-
ceiver computes the Multihash checksum to verify it matches
the expected one, and returns confirmation.



Upon finalizing the correct transmission of a block, the
receiver moves the block from need_list to have_list, and
both the receiver and sender update their ledgers to reflect
the additional bytes transmitted.

If a transmission verification fails, the sender is either mal-
functioning or attacking the receiver. The receiver is free to
refuse further trades. Note that BitSwap expects to operate
on a reliable transmission channel, so transmission errors
– which could lead to incorrect penalization of an honest
sender – are expected to be caught before the data is given
to BitSwap.

Peer.close(Bool).
The final parameter to close signals whether the inten-

tion to tear down the connection is the sender’s or not. If
false, the receiver may opt to re-open the connection imme-
diatelty. This avoids premature closes.

A peer connection should be closed under two conditions:

• a silence_wait timeout has expired without receiving
any messages from the peer (default BitSwap uses 30
seconds). The node issues Peer.close(false).

• the node is exiting and BitSwap is being shut down.
In this case, the node issues Peer.close(true).

After a close message, both receiver and sender tear down
the connection, clearing any state stored. The Ledger may
be stored for the future, if it is useful to do so.

Notes.

• Non-open messages on an inactive connection should
be ignored. In case of a send_block message, the re-
ceiver may check the block to see if it is needed and
correct, and if so, use it. Regardless, all such out-of-
order messages trigger a close(false) message from
the receiver to force re-initialization of the connection.

3.5 Object Merkle DAG
The DHT and BitSwap allow IPFS to form a massive peer-

to-peer system for storing and distributing blocks quickly
and robustly. On top of these, IPFS builds a Merkle DAG, a
directed acyclic graph where links between objects are cryp-
tographic hashes of the targets embedded in the sources.
This is a generalization of the Git data structure. Merkle
DAGs provide IPFS many useful properties, including:

1. Content Addressing: all content is uniquely identi-
fied by its multihash checksum, including links.

2. Tamper resistance: all content is verified with its
checksum. If data is tampered with or corrupted, IPFS
detects it.

3. Deduplication: all objects that hold the exact same
content are equal, and only stored once. This is par-
ticularly useful with index objects, such as git trees

and commits, or common portions of data.

The IPFS Object format is:

type IPFSLink struct {

Name string

// name or alias of this link

Hash Multihash

// cryptographic hash of target

Size int

// total size of target

}

type IPFSObject struct {

links []IPFSLink

// array of links

data []byte

// opaque content data

}

The IPFS Merkle DAG is an extremely flexible way to
store data. The only requirements are that object references
be (a) content addressed, and (b) encoded in the format
above. IPFS grants applications complete control over the
data field; applications can use any custom data format they
chose, which IPFS may not understand. The separate in-
object link table allows IPFS to:

• List all object references in an object. For example:

> ipfs ls /XLZ1625Jjn7SubMDgEyeaynFuR84ginqvzb

XLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x 189458 less

XLHBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5 19441 script

XLF4hwVHsVuZ78FZK6fozf8Jj9WEURMbCX4 5286 template

<object multihash> <object size> <link name>

• Resolve string path lookups, such as foo/bar/baz. Given
an object, IPFS resolves the first path component to
a hash in the object’s link table, fetches that second
object, and repeats with the next component. Thus,
string paths can walk the Merkle DAG no matter what
the data formats are.

• Resolve all objects referenced recursively:

> ipfs refs --recursive \

/XLZ1625Jjn7SubMDgEyeaynFuR84ginqvzb

XLLxhdgJcXzLbtsLRL1twCHA2NrURp4H38s

XLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x

XLHBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5

XLWVQDqxo9Km9zLyquoC9gAP8CL1gWnHZ7z

...

A raw data field and a common link structure are the
necessary components for constructing arbitrary data struc-
tures on top of IPFS. While it is easy to see how the Git
object model fits on top of this DAG, consider these other
potential data structures: (a) key-value stores (b) tradi-
tional relational databases (c) Linked Data triple stores (d)
linked document publishing systems (e) linked communica-
tions platforms (f) cryptocurrency blockchains. These can
all be modeled on top of the IPFS Merkle DAG, which allows
any of these systems to use IPFS as a transport protocol for
more complex applications.



3.5.1 Paths
IPFS objects can be traversed with a string path API.

Paths work as they do in traditional UNIX filesystems and
the Web. The Merkle DAG links make traversing it easy.
Note that full paths in IPFS are of the form:

# format

/ipfs/<hash-of-object>/<name-path-to-object>

# example

/ipfs/XLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x/foo.txt

The /ipfs prefix allows mounting into existing systems
at a standard mount point without conflict (mount point
names are of course configurable). The second path com-
ponent (first within IPFS) is the hash of an object. This
is always the case, as there is no global root. A root ob-
ject would have the impossible task of handling consistency
of millions of objects in a distributed (and possibly discon-
nected) environment. Instead, we simulate the root with
content addressing. All objects are always accessible via
their hash. Note this means that given three objects in path
<foo>/bar/baz, the last object is accessible by all:

/ipfs/<hash-of-foo>/bar/baz

/ipfs/<hash-of-bar>/baz

/ipfs/<hash-of-baz>

3.5.2 Local Objects
IPFS clients require some local storage, an external system

on which to store and retrieve local raw data for the objects
IPFS manages. The type of storage depends on the node’s
use case. In most cases, this is simply a portion of disk space
(either managed by the native filesystem, by a key-value
store such as leveldb [4], or directly by the IPFS client). In
others, for example non-persistent caches, this storage is just
a portion of RAM.

Ultimately, all blocks available in IPFS are in some node’s
local storage. When users request objects, they are found,
downloaded, and stored locally, at least temporarily. This
provides fast lookup for some configurable amount of time
thereafter.

3.5.3 Object Pinning
Nodes who wish to ensure the survival of particular ob-

jects can do so by pinning the objects. This ensures the
objects are kept in the node’s local storage. Pinning can be
done recursively, to pin down all linked descendent objects
as well. All objects pointed to are then stored locally. This
is particularly useful to persist files, including references.
This also makes IPFS a Web where links are permanent,
and Objects can ensure the survival of others they point to.

3.5.4 Publishing Objects
IPFS is globally distributed. It is designed to allow the

files of millions of users to coexist together. The DHT, with
content-hash addressing, allows publishing objects in a fair,
secure, and entirely distributed way. Anyone can publish an
object by simply adding its key to the DHT, adding them-
selves as a peer, and giving other users the object’s path.
Note that Objects are essentially immutable, just like in
Git. New versions hash differently, and thus are new ob-
jects. Tracking versions is the job of additional versioning
objects.

3.5.5 Object-level Cryptography
IPFS is equipped to handle object-level cryptographic op-

erations. An encrypted or signed object is wrapped in a
special frame that allows encryption or verification of the
raw bytes.

type EncryptedObject struct {

Object []bytes

// raw object data encrypted

Tag []bytes

// optional tag for encryption groups

}

type SignedObject struct {

Object []bytes

// raw object data signed

Signature []bytes

// hmac signature

PublicKey []multihash

// multihash identifying key

}

Cryptographic operations change the object’s hash, defin-
ing a different object. IPFS automatically verifies signa-
tures, and can decrypt data with user-specified keychains.
Links of encrypted objects are protected as well, making
traversal impossible without a decryption key. It is possi-
ble to have a parent object encrypted under one key, and
a child under another or not at all. This secures links to
shared objects.

3.6 Files
IPFS also defines a set of objects for modeling a versioned

filesystem on top of the Merkle DAG. This object model is
similar to Git’s:

1. block: a variable-size block of data.

2. list: a collection of blocks or other lists.

3. tree: a collection of blocks, lists, or other trees.

4. commit: a snapshot in the version history of a tree.

I hoped to use the Git object formats exactly, but had to
depart to introduce certain features useful in a distributed
filesystem, namely (a) fast size lookups (aggregate byte sizes
have been added to objects), (b) large file deduplication
(adding a list object), and (c) embedding of commits into
trees. However, IPFS File objects are close enough to Git
that conversion between the two is possible. Also, a set of
Git objects can be introduced to convert without losing any
information (unix file permissions, etc).

Notation: File object formats below use JSON. Note that
this structure is actually binary encoded using protobufs,
though ipfs includes import/export to JSON.

3.6.1 File Object: blob

The blob object contains an addressable unit of data, and
represents a file. IPFS Blocks are like Git blobs or filesystem
data blocks. They store the users’ data. Note that IPFS files
can be represented by both lists and blobs. Blobs have
no links.



{

"data": "some data here",

// blobs have no links

}

3.6.2 File Object: list

The list object represents a large or deduplicated file
made up of several IPFS blobs concatenated together. lists
contain an ordered sequence of blob or list objects. In a
sense, the IPFS list functions like a filesystem file with in-
direct blocks. Since lists can contain other lists, topolo-
gies including linked lists and balanced trees are possible.
Directed graphs where the same node appears in multiple
places allow in-file deduplication. Of course, cycles are not
possible, as enforced by hash addressing.

{

"data": ["blob", "list", "blob"],

// lists have an array of object types as data

"links": [

{ "hash": "XLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x",

"size": 189458 },

{ "hash": "XLHBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5",

"size": 19441 },

{ "hash": "XLWVQDqxo9Km9zLyquoC9gAP8CL1gWnHZ7z",

"size": 5286 }

// lists have no names in links

]

}

3.6.3 File Object: tree

The tree object in IPFS is similar to Git’s: it represents
a directory, a map of names to hashes. The hashes reference
blobs, lists, other trees, or commits. Note that tradi-
tional path naming is already implemented by the Merkle
DAG.

{

"data": ["blob", "list", "blob"],

// trees have an array of object types as data

"links": [

{ "hash": "XLYkgq61DYaQ8NhkcqyU7rLcnSa7dSHQ16x",

"name": "less", "size": 189458 },

{ "hash": "XLHBNmRQ5sJJrdMPuu48pzeyTtRo39tNDR5",

"name": "script", "size": 19441 },

{ "hash": "XLWVQDqxo9Km9zLyquoC9gAP8CL1gWnHZ7z",

"name": "template", "size": 5286 }

// trees do have names

]

}

3.6.4 File Object: commit

The commit object in IPFS represents a snapshot in the
version history of any object. It is similar to Git’s, but can
reference any type of object. It also links to author objects.

{

"data": {

"type": "tree",

"date": "2014-09-20 12:44:06Z",

"message": "This is a commit message."

},

"links": [

ccc111

ttt111

ttt222 ttt333

lll111bbb111 bbb222

bbb333 bbb444 bbb555

Figure 2: Sample Object Graph

> ipfs file-cat <ccc111-hash> --json

{

"data": {

"type": "tree",

"date": "2014-09-20 12:44:06Z",

"message": "This is a commit message."

},

"links": [

{ "hash": "<ccc000-hash>",

"name": "parent", "size": 25309 },

{ "hash": "<ttt111-hash>",

"name": "object", "size": 5198 },

{ "hash": "<aaa111-hash>",

"name": "author", "size": 109 }

]

}

> ipfs file-cat <ttt111-hash> --json

{

"data": ["tree", "tree", "blob"],

"links": [

{ "hash": "<ttt222-hash>",

"name": "ttt222-name", "size": 1234 },

{ "hash": "<ttt333-hash>",

"name": "ttt333-name", "size": 3456 },

{ "hash": "<bbb222-hash>",

"name": "bbb222-name", "size": 22 }

]

}

> ipfs file-cat <bbb222-hash> --json

{

"data": "blob222 data",

"links": []

}

Figure 3: Sample Objects



{ "hash": "XLa1qMBKiSEEDhojb9FFZ4tEvLf7FEQdhdU",

"name": "parent", "size": 25309 },

{ "hash": "XLGw74KAy9junbh28x7ccWov9inu1Vo7pnX",

"name": "object", "size": 5198 },

{ "hash": "XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm",

"name": "author", "size": 109 }

]

}

3.6.5 Version control
The commit object represents a particular snapshot in the

version history of an object. Comparing the objects (and
children) of two different commits reveals the differences be-
tween two versions of the filesystem. As long as a single
commit and all the children objects it references are accessi-
ble, all preceding versions are retrievable and the full history
of the filesystem changes can be accessed. This falls out of
the Merkle DAG object model.

The full power of the Git version control tools is available
to IPFS users. The object model is compatible, though not
the same. It is possible to (a) build a version of the Git tools
modified to use the IPFS object graph, (b) build a mounted
FUSE filesystem that mounts an IPFS tree as a Git repo,
translating Git filesystem read/writes to the IPFS formats.

3.6.6 Filesystem Paths
As we saw in the Merkle DAG section, IPFS objects can

be traversed with a string path API. The IPFS File Objects
are designed to make mounting IPFS onto a UNIX filesys-
tem simpler. They restrict trees to have no data, in order
to represent them as directories. And commits can either
be represented as directories or hidden from the filesystem
entirely.

3.6.7 Splitting Files into Lists and Blob
One of the main challenges with versioning and distribut-

ing large files is finding the right way to split them into
independent blocks. Rather than assume it can make the
right decision for every type of file, IPFS offers the following
alternatives:

(a) Use Rabin Fingerprints [?] as in LBFS [?] to pick
suitable block boundaries.

(b) Use the rsync [?] rolling-checksum algorithm, to detect
blocks that have changed between versions.

(c) Allow users to specify block-splitting functions highly
tuned for specific files.

3.6.8 Path Lookup Performance
Path-based access traverses the object graph. Retrieving

each object requires looking up its key in the DHT, connect-
ing to peers, and retrieving its blocks. This is considerable
overhead, particularly when looking up paths with many
components. This is mitigated by:

• tree caching: since all objects are hash-addressed,
they can be cached indefinitely. Additionally, trees

tend to be small in size so IPFS prioritizes caching
them over blobs.

• flattened trees: for any given tree, a special flattened
tree can be constructed to list all objects reachable

from the tree. Names in the flattened tree would
really be paths parting from the original tree, with
slashes.

For example, flattened tree for ttt111 above:

{

"data":

["tree", "blob", "tree", "list", "blob" "blob"],

"links": [

{ "hash": "<ttt222-hash>", "size": 1234

"name": "ttt222-name" },

{ "hash": "<bbb111-hash>", "size": 123,

"name": "ttt222-name/bbb111-name" },

{ "hash": "<ttt333-hash>", "size": 3456,

"name": "ttt333-name" },

{ "hash": "<lll111-hash>", "size": 587,

"name": "ttt333-name/lll111-name"},

{ "hash": "<bbb222-hash>", "size": 22,

"name": "ttt333-name/lll111-name/bbb222-name" },

{ "hash": "<bbb222-hash>", "size": 22

"name": "bbb222-name" }

] }

3.7 IPNS: Naming and Mutable State
So far, the IPFS stack forms a peer-to-peer block exchange

constructing a content-addressed DAG of objects. It serves
to publish and retrieve immutable objects. It can even track
the version history of these objects. However, there is a
critical component missing: mutable naming. Without it,
all communication of new content must happen off-band,
sending IPFS links. What is required is some way to retrieve
mutable state at the same path.

It is worth stating why – if mutable data is necessary in
the end – we worked hard to build up an immutable Merkle
DAG. Consider the properties of IPFS that fall out of the
Merkle DAG: objects can be (a) retrieved via their hash,
(b) integrity checked, (c) linked to others, and (d) cached
indefinitely. In a sense:

Objects are permanent

These are the critical properties of a high-performance dis-
tributed system, where data is expensive to move across net-
work links. Object content addressing constructs a web with
(a) significant bandwidth optimizations, (b) untrusted con-
tent serving, (c) permanent links, and (d) the ability to make
full permanent backups of any object and its references.

The Merkle DAG, immutable content-addressed objects,
and Naming, mutable pointers to the Merkle DAG, instanti-
ate a dichotomy present in many successful distributed sys-
tems. These include the Git Version Control System, with
its immutable objects and mutable references; and Plan9 [?],
the distributed successor to UNIX, with its mutable Fossil
[?] and immutable Venti [?] filesystems. LBFS [?] also uses
mutable indices and immutable chunks.

3.7.1 Self-Certified Names
Using the naming scheme from SFS [12, 11] gives us a

way to construct self-certified names, in a cryptographically
assigned global namespace, that are mutable. The IPFS
scheme is as follows.

1. Recall that in IPFS:



NodeId = hash(node.PubKey)

2. We assign every user a mutable namespace at:

/ipns/<NodeId>

3. A user can publish an Object to this path Signed by
her private key, say at:

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/

4. When other users retrieve the object, they can check
the signature matches the public key and NodeId. This
verifies the authenticity of the Object published by the
user, achieving mutable state retrival.

Note the following details:

• The ipns (InterPlanetary Name Space) separate pre-
fix is to establish an easily recognizable distinction
between mutable and immutable paths, for both pro-
grams and human readers.

• Because this is not a content-addressed object, pub-
lishing it relies on the only mutable state distribution
system in IPFS, the Routing system. The process is
(1) publish the object as a regular immutable IPFS
object, (2) publish its hash on the Routing system as
a metadata value:

routing.setValue(NodeId, <ns-object-hash>)

• Any links in the Object published act as sub-names in
the namespace:

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/docs

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/docs/ipfs

• it is advised to publish a commit object, or some other
object with a version history, so that clients may be
able to find old names. This is left as a user option, as
it is not always desired.

Note that when users publish this Object, it cannot be
published in the same way

3.7.2 Human Friendly Names
While IPNS is indeed a way of assigning and reassign-

ing names, it is not very user friendly, as it exposes long
hash values as names, which are notoriously hard to remem-
ber. These work for URLs, but not for many kinds of offline
transmission. Thus, IPFS increases the user-friendliness of
IPNS with the following techniques.

Peer Links.
As encouraged by SFS, users can link other users’ Ob-

jects directly into their own Objects (namespace, home, etc).
This has the benefit of also creating a web of trust (and sup-
ports the old Certificate Authority model):

# Alice links to bob Bob

ipfs link /<alice-pk-hash>/friends/bob /<bob-pk-hash>

# Eve links to Alice

ipfs link /<eve-pk-hash/friends/alice /<alice-pk-hash>

# Eve also has access to Bob

/<eve-pk-hash/friends/alice/friends/bob

# access Verisign certified domains

/<verisign-pk-hash>/foo.com

DNS TXT IPNS Records.
If /ipns/<domain> is a valid domain name, IPFS looks up

key ipns in its DNS TXT records. IPFS interprets the value
as either an object hash or another IPNS path:

# this DNS TXT record

ipfs.benet.ai. TXT "ipfs=XLF2ipQ4jD3U ..."

# behaves as symlink

ln -s /ipns/XLF2ipQ4jD3U /ipns/fs.benet.ai

Proquint Pronounceable Identifiers.
There have always been schemes to encode binary into

pronounceable words. IPNS supports Proquint [?]. Thus:

# this proquint phrase

/ipns/dahih-dolij-sozuk-vosah-luvar-fuluh

# will resolve to corresponding

/ipns/KhAwNprxYVxKqpDZ

Name Shortening Services.
Services are bound to spring up that will provide name

shortening as a service, offering up their namespaces to users.
This is similar to what we see today with DNS and Web
URLs:

# User can get a link from

/ipns/shorten.er/foobar

# To her own namespace

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm

3.8 Using IPFS
IPFS is designed to be used in a number of different ways.

Here are just some of the usecases I will be pursuing:

1. As a mounted global filesystem, under /ipfs and /ipns.

2. As a mounted personal sync folder that automatically
versions, publishes, and backs up any writes.

3. As an encrypted file or data sharing system.

4. As a versioned package manager for all software.

5. As the root filesystem of a Virtual Machine.

6. As the boot filesystem of a VM (under a hypervisor).



7. As a database: applications can write directly to the
Merkle DAG data model and get all the versioning,
caching, and distribution IPFS provides.

8. As a linked (and encrypted) communications platform.

9. As an integrity checked CDN for large files (without
SSL).

10. As an encrypted CDN.

11. On webpages, as a web CDN.

12. As a new Permanent Web where links do not die.

The IPFS implementations target:

(a) an IPFS library to import in your own applications.

(b) commandline tools to manipulate objects directly.

(c) mounted file systems, using FUSE [?] or as kernel
modules.

4. THE FUTURE
The ideas behind IPFS are the product of decades of suc-

cessful distributed systems research in academia and open
source. IPFS synthesizes many of the best ideas from the
most successful systems to date. Aside from BitSwap, which
is a novel protocol, the main contribution of IPFS is this
coupling of systems and synthesis of designs.

IPFS is an ambitious vision of new decentralized Internet
infrastructure, upon which many different kinds of applica-
tions can be built. At the bare minimum, it can be used as
a global, mounted, versioned filesystem and namespace, or
as the next generation file sharing system. At its best, it
could push the web to new horizons, where publishing valu-
able information does not impose hosting it on the publisher
but upon those interested, where users can trust the content
they receive without trusting the peers they receive it from,
and where old but important files do not go missing. IPFS
looks forward to bringing us toward the Permanent Web.

5. ACKNOWLEDGMENTS
IPFS is the synthesis of many great ideas and systems. It

would be impossible to dare such ambitious goals without
standing on the shoulders of such giants. Personal thanks to
David Dalrymple, Joe Zimmerman, and Ali Yahya for long
discussions on many of these ideas, in particular: exposing
the general Merkle DAG (David, Joe), rolling hash blocking
(David), and s/kademlia sybill protection (David, Ali). And
special thanks to David Mazieres, for his ever brilliant ideas.

6. REFERENCES TODO

7. REFERENCES
[1] I. Baumgart and S. Mies. S/kademlia: A practicable

approach towards secure key-based routing. In Parallel
and Distributed Systems, 2007 International
Conference on, volume 2, pages 1–8. IEEE, 2007.

[2] I. BitTorrent. Bittorrent and Âţtorrent software
surpass 150 million user milestone, Jan. 2012.

[3] B. Cohen. Incentives build robustness in bittorrent. In
Workshop on Economics of Peer-to-Peer systems,
volume 6, pages 68–72, 2003.

[4] J. Dean and S. Ghemawat. leveldb–a fast and
lightweight key/value database library by google, 2011.

[5] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing content publication with coral. In
NSDI, volume 4, pages 18–18, 2004.

[6] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems
(TOCS), 6(1):51–81, 1988.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, et al. Oceanstore: An
architecture for global-scale persistent storage. ACM
Sigplan Notices, 35(11):190–201, 2000.

[8] D. Levin, K. LaCurts, N. Spring, and
B. Bhattacharjee. Bittorrent is an auction: analyzing
and improving bittorrent’s incentives. In ACM
SIGCOMM Computer Communication Review,
volume 38, pages 243–254. ACM, 2008.

[9] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and
D. Mazieres. Replication, history, and grafting in the
ori file system. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 151–166. ACM, 2013.

[10] P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information system based on the xor
metric. In Peer-to-Peer Systems, pages 53–65.
Springer, 2002.

[11] D. Mazieres and F. Kaashoek. Self-certifying file
system. 2000.

[12] D. Mazieres and M. F. Kaashoek. Escaping the evils
of centralized control with self-certifying pathnames.
In Proceedings of the 8th ACM SIGOPS European
workshop on Support for composing distributed
applications, pages 118–125. ACM, 1998.

[13] J. Rosenberg and A. Keranen. Interactive connectivity
establishment (ice): A protocol for network address
translator (nat) traversal for offer/answer protocols.
2013.

[14] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind.
Low extra delay background transport (ledbat).
draft-ietf-ledbat-congestion-04. txt, 2010.

[15] R. R. Stewart and Q. Xie. Stream control transmission
protocol (SCTP): a reference guide. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[16] L. Wang and J. Kangasharju. Measuring large-scale
distributed systems: case of bittorrent mainline dht. In
Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on, pages 1–10. IEEE, 2013.


