The Chubby lock service for loosely-coupled distributed systems

Mike Burrows Google Inc.

Abstract example, the Google File System [7] uses a Chubby lock
to appoint a GFS master server, and Bigtable [3] uses
Chubby in several ways: to elect a master, to allow the
master to discover the servers it controls, and to permit
clients to find the master. In addition, both GFS and

We describe our experiences with the Chubby lock ser-
vice, which is intended to provide coarse-grained lock-
ing as well as reliable (though low-volume) storage for

“tion to store a small amount of meta-data; in effect they
use Chubby as the root of their distributed data struc-
tures. Some services use locks to partition work (at a
cbarse grain) between several servers.

visory locks, but the design emphasis is on availability
and reliability, as opposed to high performance. Many
instances of the service have been used for over a year
with several of them each handling a few tens of thou- -
sands of clients concurrently. The paper describes the Before Chubby was deployed, most distributed sys-

initial design and expected use, compares it with actua‘ ms at Google usead hocmethods for primary elec-

use, and explains how the design had to be modified téon (when work could be duplicated without harm), or
accommodate the differences. required operator intervention (when correctness was es-

sential). In the former case, Chubby allowed a small sav-
ing in computing effort. In the latter case, it achieved a

1 Introduction significant improvement in availability in systems that no
longer required human intervention on failure.
This paper describeslack servicecalled Chubby. It is Readers familiar with distributed computing will rec-

intended for use within a loosely-coupled distributed sys-ognize the election of a primary among peers as an in-
tem consisting of moderately large numbers of small mastance of thalistributed consensysroblem, and realize
chines connected by a high-speed network. For examplaye require a solution usingsynchronousommunica-
a Chubby instance (also known as a Chubblf) might tion; this term describes the behaviour of the vast ma-
serve ten thousand 4-processor machines connected fgrity of real networks, such as Ethernet or the Internet,
1Gbit/s Ethernet. Most Chubby cells are confined to awhich allow packets to be lost, delayed, and reordered.
single data centre or machine room, though we do rur{Practitioners should normally beware of protocols based
at least one Chubby cell whose replicas are separated lpn models that make stronger assumptions on the en-
thousands of kilometres. vironment.) Asynchronous consensus is solved by the
The purpose of the lock service is to allow its clients Paxosprotocol [12, 13]. The same protocol was used by
to synchronize their activities and to agree on basic in-Oki and Liskov (see their paper mewstamped replica-
formation about their environment. The primary goalstion [19, §4]), an equivalence noted by others [E8].
included reliability, availability to a moderately large set Indeed, all working protocols for asynchronous consen-
of clients, and easy-to-understand semantics; throughsus we have so far encountered have Paxos at their core.
put and storage capacity were considered secondarfaxos maintains safety without timing assumptions, but
Chubby’s client interface is similar to that of a simple file clocks must be introduced to ensure liveness; this over-
system that performwhole-filereads and writes, aug- comes the impossibility result of Fischetral. [5, §1].
mented with advisory locks and with notification of var- ~ Building Chubby was an engineering effort required
ious events such as file modification. to fill the needs mentioned above; it was not research.
We expected Chubby to help developers deal withwe claim no new algorithms or techniques. The purpose
coarse-grained synchronization within their systems, anaf this paper is to describe what we did and why, rather
in particular to deal with the problem of electing a leaderthan to advocate it. In the sections that follow, we de-
from among a set of otherwise equivalent servers. Foscribe Chubby’s design and implementation, and how it

has changed in the light of experience. We describe unto choose a cache timeout such as the DNS time-to-live
expected ways in which Chubby has been used, and fearalue, which if chosen poorly can lead to high DNS load,
tures that proved to be mistakes. We omit details that arer long client fail-over times.

covered elsewhere in the literature, such as the details of Third, a lock-based interface is more familiar to our

a consensus protocol or an RPC system. programmers. Both the replicated state machine of Paxos

and the critical sections associated with exclusive locks

2 Design can provide the programmer with the illusion of sequen-
tial programming. However, many programmers have
2.1 Rationale come across locks before, and think they know to use

them. Ironically, such programmers are usually wrong,

One might argue that we should have built a library em-especially when they use locks in a distributed system;
bodying Paxos, rather than a library that accesses a ceffew consider the effects of independent machine fail-
tralized lock service, even a highly reliable one. A clientures on locks in a system with asynchronous communi-
Paxos library would depend amo other servers (besides cations. Nevertheless, the apparent familiarity of locks
the name service), and would provide a standard framesvercomes a hurdle in persuading programmers to use a
work for programmers, assuming their services can beeliable mechanism for distributed decision making.
implemented as state machines. Indeed, we provide such | 5 gistributed-consensus algorithms use quorums to
a client library that is independent of Chubby. make decisions, so they use several replicas to achieve

N'evert.heless, a lock service has some adyantages OVRlgh availability. For example, Chubby itself usually has
a client library. First, our developers sometimes do not; replicas in each cell, of which three must be run-
plan for high availability in the way one would wish. Of- in tor the cell to be up. In contrast, if a client system

ten their systems start as prototypes with little load and,ses 4 jock service, even a single client can obtain a lock
loose avallgblllty guarantees; mvarl_ably the code has not 4 make progress safely. Thus, a lock service reduces
been specially structured for use with a consensus protqpe nymper of servers needed for a reliable client system
col. As the service matures and gains clients, availability, make progress. In a loose sense, one can view the
becomes more important; replication and primary elecyocy service as a way of providing a generic electorate

tion are then added to an existing design. While thiSy, ¢ 5j10ws a client system to make decisions correctly
could be done with a library that provides distributed \han less than a majority of its own members are up.

consensus, a lock server makes it easier to maintain eXiSbne might imagine solving this last problem in a dif-

ing program structure and communication patterns. Fofg ant way: by providing a “consensus service”, using a

example, to elect a master which then writes to an ex3,,mber of servers to provide the “acceptors” in the Paxos

isting file server requires adding just two statements anghot4co|. Like a lock service, a consensus service would
one RPC parameter to an existing system: One wouldyqy clients to make progress safely even with only one
acquire a lock to become master, pass an additional intéyciye client process; a similar technique has been used to
ger (the lock acquisition count) with the write RPC, and g ,ce the number of state machines needed for Byzan-
add an if-statement to the file server to reject the write ifjq tault tolerance [24]. However, assuming a consensus
the acquis_ition count is lower than the current valge (togervice is not used exclusively to provide locks (which
guard against delayed packets). We have found this teCha ces it to a lock service), this approach solves none of
nique easier than making existing servers participate ife other problems described above.

a consensus protocol, and especially so if compatibility

must be maintained during a transition period. These arguments suggest two key design decisions:

Second, many of our services that elect a primary® We chose a lock service, as opposed to a library or

or that partition data between their components need a Service for consensus, and _ _
mechanism for advertising the results. This suggests tha? W€ chose to serve small-files to permit elected pri-
we should allow clients to store and fetch small quanti- Maries to advertise themselves and their parameters,
ties of data—that is, to read and write small files. This rather than build and maintain a second service.
could be done with a name service, but our experience Some decisions follow from our expected use and
has been that the lock service itself is well-suited for thisfrom our environment:

task, both because this reduces the number of servers omn A service advertising its primary via a Chubby file
which a client depends, and because the consistency fea- may have thousands of clients. Therefore, we must
tures of the protocol are shared. Chubby’s success as allow thousands of clients to observe this file, prefer-
a name server owes much to its use of consistent client ably without needing many servers.

caching, rather than time-based caching. In particulare Clients and replicas of a replicated service may wish
we found that developers greatly appreciated not having to know when the service’s primary changes. This

suggests that an event notification mechanism would 5 servers of a Chubby cell

be useful o avoid pollng. aoeaemior ()|

e Even if clients need not poll files periodically, many i \ 3
will; this is a consequence of supporting many devel- S RPCs; O } master
opers. Thus, caching of files is desirable. client Echubb;/@

e Our developers are confused by non-intuitive caching applicatiort library 3 3
semantics, so we prefer consistent caching. : O

e To avoid both financial loss and jail time, we provide client processes 1 Q 1
security mechanisms, including access control.
A choice that may surprise some readers is that we Figure 1: System structure

do not expect lock use to bme-grained in which they) .
might be held only for a short duration (seconds or less)Scheme are that our client developers become responsible

instead, we expeaoarse-grainedise. For example, an for the provision'ing of the servers negded t.o support t.heir
application might use a lock to elect a primary, which load, yet are relieved of the complexity of implementing
would then handle all access to that data for a considel€ONSensus themselves.
able time, perhaps hours or days. These two styles of use
suggest differgnt requirements from a lock server. 2.2 System structure

Coarse-grained locks impose far less load on the lock
server. In particular, the lock-acquisition rate is usu-Chubby has two main components that communicate
ally only weakly related to the transaction rate of thevia RPC: a server, and a library that client applications
client applications. Coarse-grained locks are acquiredink against; see Figure 1. All communication between
only rarely, so temporary lock server unavailability de- Chubby clients and the servers is mediated by the client
lays clients less. On the other hand, the transfer of a lockibrary. An optional third component, a proxy server, is
from client to client may require costly recovery proce- discussed in Section 3.1.
dures, so one would not wish a fail-over of a lock server A Chubby cell consists of a small set of servers (typi-
to cause locks to be lost. Thus, it is good for coarse-ally five) known ageplicas placed so as to reduce the
grained locks to survive lock server failures, there is little likelihood of correlated failure (for example, in different
concern about the overhead of doing so, and such lockeacks). The replicas use a distributed consensus protocol
allow many clients to be adequately served by a modesio elect amaster the master must obtain votes from a
number of lock servers with somewhat lower availability. majority of the replicas, plus promises that those replicas

Fine-grained locks lead to different conclusions. Evenwill not elect a different master for an interval of a few
brief unavailability of the lock server may cause manyseconds known as thmaster lease The master lease is
clients to stall. Performance and the ability to add newperiodically renewed by the replicas provided the master
servers at will are of great concern because the transsontinues to win a majority of the vote.
action rate at the lock service grows with the combined The replicas maintain copies of a simple database, but
transaction rate of clients. It can be advantageous to resnly the master initiates reads and writes of this database.
duce the overhead of locking by not maintaining locksAll other replicas simply copy updates from the master,
across lock server failure, and the time penalty for drop-sent using the consensus protocol.
ping locks every so often is not severe because locks are Clients find the master by sending master location
held for short periods. (Clients must be prepared to losgequests to the replicas listed in the DNS. Non-master
locks during network partitions, so the loss of locks onreplicas respond to such requests by returning the iden-
lock server fail-over introduces no new recovery paths.) tity of the master. Once a client has located the master,

Chubby is intended to provide only coarse-grainedthe client directs all requests to it either until it ceases
locking. Fortunately, it is straightforward for clients to to respond, or until it indicates that it is no longer the
implement their own fine-grained locks tailored to their master. Write requests are propagated via the consensus
application. An application might partition its locks into protocol to all replicas; such requests are acknowledged
groups and use Chubby’s coarse-grained locks to allocatehen the write has reached a majority of the replicas in
these lock groups to application-specific lock serversthe cell. Read requests are satisfied by the master alone;
Little state is needed to maintain these fine-grain locksthis is safe provided the master lease has not expired, as
the servers need only keep a non-volatile, monotonicallyno other master can possibly exist. If a master fails, the
increasing acquisition counter that is rarely updatedother replicas run the election protocol when their master
Clients can learn of lost locks at unlock time, and if aleases expire; a new master will typically be elected in a
simple fixed-length lease is used, the protocol can bdew seconds. For example, two recent elections took 6s
simple and efficient. The most important benefits of thisand 4s, but we see values as high as 384l].

If areplica fails and does not recover for a few hours, a Nodes may be either permanent or ephemeral. Any
simple replacement system selects a fresh machine fromode may be deleted explicitly, but ephemeral nodes are
a free pool and starts the lock server binary on it. It thenalso deleted if no client has them open (and, for directo-
updates the DNS tables, replacing the IP address of thees, they are empty). Ephemeral files are used as tempo-
failed replica with that of the new one. The current mas-rary files, and as indicators to others that a client is alive.
ter polls the DNS periodically and eventually notices theAny node can act as an advisory reader/writer lock; these
change. It then updates the list of the cell's members idocks are described in more detail in Section 2.4.
the cell's database; this list is kept consistent across all Each node has various meta-data, including three
the members via the normal replication protocol. In thenames of access control lists (ACLs) used to control
meantime, the new replica obtains a recent copy of theeading, writing and changing the ACL names for the
database from a combination of backups stored on filenode. Unless overridden, a node inherits the ACL names
servers and updates from active replicas. Once the newf its parent directory on creation. ACLs are themselves
replica has processed a request that the current masterfites located in an ACL directory, which is a well-known
waiting to commit, the replica is permitted to vote in the part of the cell’s local name space. These ACL files con-
elections for new master. sist of simple lists of names of principals; readers may be
reminded of Plan 9'groups[21]. Thus, if file F's write
ACL name isfoo , and the ACL directory contains a file
foo that contains an entnyar , then usembar is permit-

Chubby exports a file system interface similar to, butted to write F. Users are authenticated by a mechanism
simpler than that of UNIX [22]. It consists of a strict builtinto the RPC system. Because Chubby’s ACLs are

tree of files and directories in the usual way, with nameSimply files, they are automatically available to other ser-

components separated by slashes. A typical name is: Vices that wish to use similar access control mechanisms.
Nls/foo/wombat/pouch The per-node meta-data includes four monotonically-

The s prefix is common to all Chubby names, and increasing 64-bit numbers that allow clients to detect

stands forlock service The second componeribq) is ~ changes easily:

the name of a Chubby cell; it is resolved to one or more® an instance number; greater than the instance number

Chubby servers via DNS lookup. A special cell name ©of any previous node with the same name.

local indicates that the client’s local Chubby cell should ® & content generation number (files only); this in-

be used; this is usually one in the same building and creases when the file's contents are written.

thus the one most likely to be accessible. The remain- @ lock generation number; this increases when the

der of the namejwombat/ipouch , is interpreted within node’s lock transitions frorfreeto held

the named Chubby cell. Again following UNIX, each di- ® an ACL generation number; this increases when the

rectory contains a list of child files and directories, while ~ node’s ACL names are written.

each file contains a sequence of uninterpreted bytes. Chubby also exposes a 64-bit file-content checksum so

Because Chubby’s naming structure resembles a fil€lients may tell whether files differ.

system, we were able to make it available to applications Clients open nodes to obtalrandlesthat are analo-

both with its own specialized API, and via interfaces gous to UNIX file descriptors. Handles include:

used by our other file systems, such as the Google Filee check digits that prevent clients from creating or

System. This significantly reduced the effort needed to guessing handles, so full access control checks need

write basic browsing and name space manipulation tools, be performed only when handles are created (com-

and reduced the need to educate casual Chubby users. pare with UNIX, which checks its permissions bits at

2.3 Files, directories, and handles

The design differs from UNIX in a ways that ease dis-
tribution. To allow the files in different directories to be

served from different Chubby masters, we do not expose®

operations that can move files from one directory to an-

open time, but not at each read/write because file de-
scriptors cannot be forged).

a sequence number that allows a master to tell whether
a handle was generated by it or by a previous master.

mode information provided at open time to allow the
master to recreate its state if an old handle is presented
to a newly restarted master.

other, we do not maintain directory modified times, and ®
we avoid path-dependent permission semantics (that is,
access to a file is controlled by the permissions on the
file itself rather than on directories on the path leading to
the file). To make it easier to cachg file meta-data, theZ_4 Locks and sequencers
system does not reveal last-access times.
The name space contains only files and directoriesiEach Chubby file and directory can act as a reader-writer
collectively callednodes Every such node has only one lock: either one client handle may hold the lock in exclu-
name within its cell; there are no symbolic or hard links. sive (writer) mode, or any number of client handles may

hold the lock in shared (reader) mode. Like the mutexesf not, it should reject the request. The validity of a
known to most programmers, locks aadvisory That sequencer can be checked against the server’s Chubby
is, they conflict only with other attempts to acquire the cache or, if the server does not wish to maintain a ses-
same lock: holding a lock calleH neither is necessary sion with Chubby, against the most recent sequencer that
to access the filé”, nor prevents other clients from do- the server has observed. The sequencer mechanism re-
ing so. We rejectethandatorylocks, which make locked quires only the addition of a string to affected messages,
objects inaccessible to clients not holding their locks: and is easily explained to our developers.

e Chubby locks often protect resources implemented by Although we find sequencers simple to use, important
other services, rather than just the file associated witlprotocols evolve slowly. Chubby therefore provides an
the lock. To enforce mandatory locking in a meaning-imperfect but easier mechanism to reduce the risk of de-
ful way would have required us to make more exten-layed or re-ordered requests to servers that do not sup-
sive modification of these services. port sequencers. If a client releases a lock in the normal

o We did not wish to force users to shut down appli- way, it is immediately available for other clients to claim,
cations when they needed to access locked files foas one would expect. However, if a lock becomes free
debugging or administrative purposes. In a complexbecause the holder has failed or become inaccessible,
system, it is harder to use the approach employed othe lock server will prevent other clients from claiming
most personal computers, where administrative softthe lock for a period called theck-delay Clients may
ware can break mandatory locks simply by instructingspecify any lock-delay up to some bound, currently one
the user to shut down his applications or to reboot. minute; this limit prevents a faulty client from making a

e Our developers perform error checking in the convendock (and thus some resource) unavailable for an arbitrar-
tional way, by writing assertions such as “logékis ily long time. While imperfect, the lock-delay protects
held”, so they benefit little from mandatory checks. unmodified servers and clients from everyday problems
Buggy or malicious processes have many opportunicaused by message delays and restarts.
ties to corrupt data when locks are not held, so we find
the extra guards provided by mandatory locking to be
of no sign?ficant vpalue. 2.5 FEvents

In Chubby, acquiring a lock in either mode requires write Chubby clients may subscribe to a range of events when

permission so that an unprivileged reader cannot preverthey create a handle. These events are delivered to the

a writer from making progress. client asynchronously via an up-call from the Chubby li-
Locking is complex in distributed systems becausebrary. Events include:

communication is typically uncertain, and processes maye file contents modified—often used to monitor the lo-

fail independently. Thus, a process holding a laakay cation of a service advertised via the file.
issue a reques, but then fail. Another process may ac- e child node added, removed, or modified—used to im-
quire L and perform some action befoRearrives at its plement mirroring §2.12). (In addition to allowing

destination. IR later arrives, it may be acted on without new files to be discovered, returning events for child
the protection oL, and potentially on inconsistent data. nodes makes it possible to monitor ephemeral files
The problem of receiving messages out of order has been without affecting their reference counts.)
well studied; solutions includeirtual time[11], andvir- e Chubby master failed over—warns clients that other
tual synchrony1], which avoids the problem by ensuring events may have been lost, so data must be rescanned.
that messages are processed in an order consistent wih a handle (and its lock) has become invalid—this typi-
the observations of every participant. cally suggests a communications problem.

It is costly to introduce sequence numbers into all ® lock acquired—can be used to determine when a pri-
the interactions in an existing complex system. Instead, mary has been elected.
Chubby provides a means by which sequence numbers conflicting lock request from another client—allows
can be introduced into only those interactions that make the caching of locks.
use of locks. Atany time, alock holder may requesea Events are delivered after the corresponding action has
guenceran opaque byte-string that describes the state ofaken place. Thus, if a client is informed that file contents
the lock immediately after acquisition. It contains the have changed, itis guaranteed to see the new data (or data
name of the lock, the mode in which it was acquiredthat is yet more recent) if it subsequently reads the file.
(exclusive or shared), and the lock generation number. The last two events mentioned are rarely used, and
The client passes the sequencer to servers (such as fidth hindsight could have been omitted. After primary
servers) if it expects the operation to be protected by thelection for example, clients typically need to commu-
lock. The recipient server is expected to test whethenicate with the new primary, rather than simply know
the sequencer is still valid and has the appropriate modehat a primary exists; thus, they wait for a file modifi-

cation event indicating that the new primary has written Delete() deletes the node if it has no children.

its address in a file. The conflicting lock event in theory Acquire(), TryAcquire(), Release() acquire and
permits clients to cache data held on other servers, usinglease locks.

Chubby locks to maintain cache consistency. A notifi- GetSequencer() returns a sequence§q.4) that de-
cation of a conflicting lock request would tell a client to scribes any lock held by this handle.

finish using data associated with the lock: it would finish setsequencer() associates a sequencer with a handle.
pending operations, flush modifications to a home locaSubsequent operations on the handle fail if the sequencer
tion, discard cached data, and release. So far, no one hisno longer valid.

adopted this style of use. CheckSequencer() checks whether a sequencer is
valid (sees2.4).
26 API Calls fail if the node has been deleted since the han-

dle was created, even if the file has been subsequently

Clients see a Chubby handle as a pointer to an opaguecreated. That is, a handle is associated with an instance

structure that supports various operations. Handles aref a file, rather than with a file name. Chubby may ap-

created only bypen() , and destroyed witktlose() . ply access control checks on any call, but always checks
open() opens a named file or directory to produce aOpen() calls (se€2.3).

handle, analogous to a UNIX file descriptor. Only this All the calls above take aoperationparameter in ad-

call takes a node name; all others operate on handles. dition to any others needed by the call itself. The oper-

The name is evaluated relative to an existing directoryation parameter holds data and control information that
handle; the library provides a handle on */" that is alwaysmay be associated with any call. In particular, via the
valid. Directory handles avoid the difficulties of using a operation parameter the client may:
program-widecurrent directoryin a multi-threaded pro- e supply a callback to make the call asynchronous,
gram that contains many layers of abstraction [18]. ¢ wait for the completion of such a call, and/or

The client indicates various options: e obtain extended error and diagnostic information.

e how the handle will be used (reading; writing and Clients can use this API to perform primary election
locking; changing the ACL); the handle is created as follows: All potential primaries open the lock file and
only if the client has the appropriate permissions. attempt to acquire the lock. One succeeds and becomes

e events that should be delivered ($8e5). the primary, while the others act as replicas. The primary

o the lock-delay §2.4). writes its identity into the lock file witfsetContents()

e whether a new file or directory should (or must) be so that it can be found by clients and replicas, which
created. If a file is created, the caller may supply ini-read the file withGetContentsAndstat) , perhaps in
tial contents and initial ACL names. The return value response to a file-modification everij2(5). Ideally,
indicates whether the file was in fact created. the primary obtains a sequencer withtSequencer()
Close() closes an open handle. Further use of the hanwhich it then passes to servers it communicates with,

dle is not permitted. This call never fails. A related call they should confirm withCheckSequencer() that it is

Poison() causes outstanding and subsequent operatiorstill the primary. A lock-delay may be used with services

on the handle to fail without closing it; this allows a client that cannot check sequence$2.4).

to cancel Chubby calls made by other threads without

fear of dea_lllocatlng the memory being accessed by themz_7 Caching
The main calls that act on a handle are:

GetContentsAndStat() returns both the contents and To reduce read traffic, Chubby clients cache file data
meta-data of a file. The contents of a file are read atomand node meta-data (including file absence) in a consis-
ically and in their entirety. We avoided partial reads andtent, write-through cache held in memory. The cache is
writes to discourage large files. A related a@dlstat() maintained by a lease mechanism described below, and
returns just the meta-data, whikeadDir() returns the kept consistent by invalidations sent by the master, which
names and meta-data for the children of a directory. keeps a list of what each client may be caching. The pro-

SetContents() ~ writes the contents of a file. Option- tocol ensures that clients see either a consistent view of
ally, the client may provide a content generation numberChubby state, or an error.
to allow the client to simulate compare-and-swap on a When file data or meta-data is to be changed, the mod-
file; the contents are changed only if the generation numification is blocked while the master sends invalidations
ber is current. The contents of a file are always writtenfor the data to every client that may have cached it; this
atomically and in their entirety. A related caktACL() mechanism sits on top of KeepAlive RPCs, discussed
performs a similar operation on the ACL names associimore fully in the next section. On receipt of an invali-
ated with the node. dation, a client flushes the invalidated state and acknowl-

edges by making its next KeepAlive call. The modi- otherwise, the client’s handles, locks, and cached data all
fication proceeds only after the server knows that eacliemain valid provided its session remains valid. (How-

client has invalidated its cache, either because the cliergver, the protocol for session maintenance may require
acknowledged the invalidation, or because the client althe client to acknowledge a cache invalidation in order to
lowed its cache lease to expire. maintain its session; see below.)

Only one round of invalidations is needed because the A client requests a new session on first contacting the
master treats the node ascachablevhile cache inval- master of a Chubby cell. It ends the session explicitly
idations remain unacknowledged. This approach allowsither when it terminates, or if the session has been idle
reads always to be processed without delay; this is usefylwith no open handles and no calls for a minute).
because reads greatly outnumber writes. An alternative Each session has an associated lease—an interval of
would be to block calls that access the node during intime extending into the future during which the master
validation; this would make it less likely that over-eager guarantees not to terminate the session unilaterally. The
clients will bombard the master with uncached accessesnd of this interval is called the session lease timeouit.
during invalidation, at the cost of occasional delays. 1fThe master is free to advance this timeout further into
this were a problem, one could imagine adopting a hybricthe future, but may not move it backwards in time.
scheme that switched tactics if overload were detected. The master advances the lease timeout in three cir-

The caching protocol is simple: it invalidates cachedcumstances: on creation of the session, when a mas-
data on a change, and never updates it. It would be juser fail-over occurs (see below), and when it responds
as simple to update rather than to invalidate, but updateto a KeepAlive RPC from the client. On receiving a
only protocols can be arbitrarily inefficient; a client that KeepAlive, the master typically blocks the RPC (does
accessed a file might receive updates indefinitely, causiot allow it to return) until the client’s previous lease in-
ing an unbounded number of unnecessary updates. terval is close to expiring. The master later allows the

Despite the overheads of providing strict consistencyRPC to return to the client, and thus informs the client of
we rejected weaker models because we felt that progranthe new lease timeout. The master may extend the time-
mers would find them harder to use. Similarly, mecha-out by any amount. The default extension is 12s, but an
nisms such as virtual synchrony that require clients tooverloaded master may use higher values to reduce the
exchange sequence numbers in all messages were camimber of KeepAlive calls it must process. The client
sidered inappropriate in an environment with diverse preinitiates a new KeepAlive immediately after receiving
existing communication protocols. the previous reply. Thus, the client ensures that there

In addition to caching data and meta-data, Chubbyis almost always a KeepAlive call blocked at the master.
clients cache open handles. Thus, if a client opens a file As well as extending the client’s lease, the KeepAlive
it has opened previously, only the firgten() call neces- reply is used to transmit events and cache invalidations
sarily leads to an RPC to the master. This caching is repack to the client. The master allows a KeepAlive to
stricted in minor ways so that it never affects the semanreturn early when an event or invalidation is to be deliv-
tics observed by the client: handles on ephemeral filegred. Piggybacking events on KeepAlive replies ensures
cannot be held open if the application has closed themthat clients cannot maintain a session without acknowl-
and handles that permit locking can be reused, but caredging cache invalidations, and causes all Chubby RPCs
not be used concurrently by multiple application handlesto flow from client to master. This simplifies the client,
This last restriction exists because the client may usend allows the protocol to operate through firewalls that
Close() or Poison() for their side-effect of cancelling allow initiation of connections in only one direction.
outstandingcquire() calls to the master. The client maintains a local lease timeout that is a con-

Chubby’s protocol permits clients to cache locks—thatservative approximation of the master’s lease timeout. It
is, to hold locks longer than strictly necessary in the hopajiffers from the master’s lease timeout because the client
that they can be used again by the same client. An everthust make conservative assumptions both of the time its
informs a lock holder if another client has requested akeepAlive reply spent in flight, and the rate at which the
conflicting lock, allowing the holder to release the lock master’s clock is advancing; to maintain consistency, we

just when itis needed elsewhere (§@€5). require that the server's clock advance no faster than a
known constant factor faster than the client’s.
2.8 Sessions and KeepAlives If a client’s local lease timeout expires, it becomes un-

sure whether the master has terminated its session. The
A Chubby session is a relationship between a Chubbylient empties and disables its cache, and we say that its
cell and a Chubby client; it exists for some interval of session is ijeopardy The client waits a further interval
time, and is maintained by periodic handshakes calleatalled the grace period, 45s by default. If the client and
KeepAlives. Unless a Chubby client informs the mastermaster manage to exchange a successful KeepAlive be-

old master dief no master new master elected

! lease M2 !
OLD MASTER! lease M1 _: > 1 lease M3 | NEW MASTER
D fI !

jeopardl safe
Figure 2: The role of the grace period in master fail-over

fore the end of the client’s grace period, the client enablesion leases are shown as thick arrows both as viewed
its cache once more. Otherwise, the client assumes thaly both the old and new masters (M1-3, above) and the
the session has expired. This is done so that Chubby ARdlient (C1-3, below). Upward angled arrows indicate
calls do not block indefinitely when a Chubby cell be- KeepAlive requests, and downward angled arrows their
comes inaccessible; calls return with an error if the graceeplies. The original master has session lease M1 for
period ends before communication is re-established. the client, while the client has a conservative approxima-

The Chubby library can inform the application when tion C1. The master commits to lease M2 before inform-
the grace period begins viaj@opardyevent. When the ing the client via KeepAlive reply 2; the client is able to
session is known to have survived the communicationgxtend its view of the lease C2. The master dies before
problem, asafeevent tells the client to proceed; if the replying to the next KeepAlive, and some time elapses
session times out instead, arpiredevent is sent. This before another master is elected. Eventually the client’s
information allows the application to quiesce itself when approximation of its lease (C2) expires. The client then
it is unsure of the status of its session, and to recoveflushes its cache and starts a timer for the grace period.
without restarting if the problem proves to be transient. During this period, the client cannot be sure whether
This can be important in avoiding outages in servicests lease has expired at the master. It does not tear down
with large startup overhead. its session, but it blocks all application calls on its API to

If a client holds a handl&l on a node and any oper- prevent the application from observing inconsistent data.
ation onH fails because the associated session has exat the start of the grace period, the Chubby library sends
pired, all subsequent operations Bin(exceptClose() ajeopardyevent to the application to allow it to quiesce
andpoison()) will fail in the same way. Clients can use ijtself until it can be sure of the status of its session.
this to guarantee that network and server outages cause gyentyally a new master election succeeds. The mas-
only a suffix of a sequence of operations to be lost, rathefgy initially uses a conservative approximation M3 of the
than an arbitrary subsequence, thus allowing compleXegsion lease that its predecessor may have had for the
changes to be marked as committed with a final write. cjient. The first KeepAlive request (4) from the client to
the new master is rejected because it has the wrong mas-
ter epoch number (described in detail below). The retried
request (6) succeeds but typically does not extend the
When a master fails or otherwise loses mastership, it dismaster lease further because M3 was conservative. How-
cards its in-memory state about sessions, handles, argver the reply (7) allows the client to extend its lease (C3)
locks. The authoritative timer for session leases runs a@nce more, and optionally inform the application that its
the master, so until a new master is elected the sessidg¥eSsion is no longer in jeopardy. Because the grace pe-
lease timer is stopped; this is legal because it is equivatiod was long enough to cover the interval between the
lent to extending the client’s lease. If a master electiorend of lease C2 and the beginning of lease C3, the client
occurs quickly, clients can contact the new master beforéaw nothing but a delay. Had the grace period been less
their local (approxima‘[e) lease timers expire_ If the e|ec.tha.n that interval, the client would have abandoned the
tion takes a long time, clients flush their caches and waifession and reported the failure to the application.
for the grace period while trying to find the new master. Once a client has contacted the new master, the client
Thus the grace period allows sessions to be maintainefibrary and master co-operate to provide the illusion to
across fail-overs that exceed the normal lease timeout. the application that no failure has occurred. To achieve

Figure 2 shows the sequence of events in a lengthyhis, the new master must reconstruct a conservative ap-
master fail-over event in which the client must use itsproximation of the in-memory state that the previous
grace period to preserve its session. Time increases fromnaster had. It does this partly by reading data stored
left to right, but times are not to scale. Client ses-stably on disc (replicated via the normal database repli-

2.9 Fail-overs

cation protocol), partly by obtaining state from clients, string values. We installed a key comparison function
and partly by conservative assumptions. The databasthat sorts first by the number of components in a path
records each session, held lock, and ephemeral file. name; this allows nodes to by keyed by their path name,
A newly elected master proceeds: while keeping sibling nodes adjacent in the sort order.
1. It first picks a new clienepoch numberwhich Because Chubby does not use path-based permissions, a
clients are required to present on every call. Thesingle lookup in the database suffices for each file access.
master rejects calls from clients using older epoch Berkeley DB’s uses a distributed consensus protocol
numbers, and provides the new epoch number. Thiso replicate its database logs over a set of servers. Once
ensures that the new master will not respond to anaster leases were added, this matched the design of
very old packet that was sent to a previous masterChubby, which made implementation straightforward.
even one running on the same machine. While Berkeley DB'’s B-tree code is widely-used and
2. The new master may respond to master-locatioomature, the replication code was added recently, and has
requests, but does not at first process incomingewer users. Software maintainers must give priority to
session-related operations. maintaining and improving their most popular product
3. It builds in-memory data structures for sessions andeatures. While Berkeley DB’s maintainers solved the
locks that are recorded in the database. Sessioproblems we had, we felt that use of the replication code
leases are extended to the maximum that the preexposed us to more risk than we wished to take. As a re-

vious master may have been using. sult, we have written a simple database using write ahead
4. The master now lets clients perform KeepAlives,logging and snapshotting similar to the design of Bir-
but no other session-related operations. rell et al.[2]. As before, the database log is distributed

5. It emits a fail-over event to each session; this causeamong the replicas using a distributed consensus proto-
clients to flush their caches (because they may haveol. Chubby used few of the features of Berkeley DB,
missed invalidations), and to warn applications thatand so this rewrite allowed significant simplification of
other events may have been lost. the system as a whole; for example, while we needed

6. The master waits until each session acknowledgeatomic operations, we did not need general transactions.

the fail-over event or lets its session expire.

. The master allows all operations to proceed.

8. Ifaclient uses a handle created prior to the fail—over2'11 Backup

(determined from the value of a sequence numbeEvery few hours, the master of each Chubby cell writes

in the handle), the master recreates the in-memory snapshot of its database to a GFS file server [7] in a
representation of the handle and honours the call. Ifjifferent building. The use of a separate building ensures
such arecreated handle is closed, the master recorgipth that the backup will survive building damage, and

it in memory so that it cannot be recreated in thisthat the backups introduce no cyclic dependencies in the
master epoch; this ensures that a delayed or duplisystem; a GFS cell in the same building potentially might

cated network packet cannot accidentally recreate gely on the Chubby cell for electing its master.

closed handle. A faulty client can recreate a closed Backups provide both disaster recovery and a means
handle in a future epoch, but this is harmless giverfor initializing the database of a newly replaced replica

that the client is already faulty. without placing load on replicas that are in service.
9. After some interval (a minute, say), the master

deletes ephemeral files that have no open file han- . .
dles. Clients should refresh handles on ephemera?-l2 Mirroring

files during this interval after a fail-over. This mech- cpyppy allows a collection of files to be mirrored from
anism has the unfortunate effect that ephemeral fileg e cell to another. Mirroring is fast because the files
may not disappear promptly if the last clienton suchgre small and the event mechanisi2.B) informs the
afile loses its session during a fail-over. — miroring code immediately if a file is added, deleted,
code, which is exercised far less often than other parts ofhanges are reflected in dozens of mirrors world-wide in
the system, has been a rich source of interesting bugs. \vell under a second. If a mirror is unreachable, it re-
mains unchanged until connectivity is restored. Updated
2.10 Database implementation f|Ies.are .ther! identified by comparing their checksums.
Mirroring is used most commonly to copy config-
The first version of Chubby used the replicated versioruration files to various computing clusters distributed
of Berkeley DB [20] as its database. Berkeley DB pro-around the world. A special cell, name@bal , con-
vides B-trees that map byte-string keys to arbitrary bytetains a subtregs/global/master that is mirrored to the

~

subtreels/ cellslave in every other Chubby cell. The 3.1 Proxies

global cell is special because its five replicas are located , . ,
in widely-separated parts of the world, so it is almost al-Chubby’s protocol can be proxied (using the same pro-

ways accessible from most of the organization. tocol on both sides) 'by trusted processes that pass re-
Among the files mirrored from the global cell are duests from other clients to a Chubby cell. A proxy
Chubby’s own access control lists, various files in which€@n reduce server load by handling both KeepAlive and

Chubby cells and other systems advertise their presend&ad requests; it cannot reduce write traffic, which passes
to our monitoring services, pointers to allow clients to through the proxy’s cache. But even with aggressive

locate large data sets such as Bigtable cells, and marﬁ)iem caching, write traffic constitutes much less than
configuration files for other systems. one percent of Chubby’s normal workload (sgt1l),
so proxies allow a significant increase in the number of

]) clients. If a proxy handlesV,,.., clients, KeepAlive

3 Mechanisms for scaling traffic is reduced by a factor a¥,,,.,.,, which might be

L o 10 thousand or more. A proxy cache can reduce read
Chubby’s clients are 'md|V|duaI processes, S0 Chubb)fraﬁic by at most the mean amount of read-sharing—a
must handle more clients than one might expect; W&xcior of around 10§4.1). But because reads constitute
have seen 90,000 clients communicating directly Wlt_h @under 10% of Chubby’s load at present, the saving in
Chubby master—far more than the number of machinegeepalive traffic is by far the more important effect.
involved. Because there is just one master per cell, and p 05 add an additional RPC to writes and first-time

its machine is identical to those of the clients, the clients, ;4 one might expect proxies to make the cell tem-
can overwhelm the master by a huge margin. Thus, th%orarily unavailable at least twice as often as before, be-

m_ost Effectlve scablmg te_chr_1f|_ques freduce Zommu_nlcatr:o ause each proxied client depends on two machines that
with the master by a significant factor. Assuming t emay fail: its proxy and the Chubby master.

master_has No serious performance bug, minor IMPIOVE-" Alert readers will notice that the fail-over strategy de-
ments in request processing at the master have little ef-

fect. We use several approaches: scribedi in Section_2.9, is.not ideal for proxies. We dis-
X . ' cuss this problem in Section 4.4.
e We can create an arbitrary number of Chubby cells;
clients almost always use a nearby cell (found with
DNS) to avoid reliance on remote machines. Ourtyp-3.2 Partitioning
ical deployment uses one Chubby cell for a data centre
of several thousand machines. As mentioned in Section 2.3, Chubby’s interface was
¢ The master may increase lease times from the defaughosen so that the name space of a cell could be par-
12s up to around 60s when it is under heavy load, sditioned between servers. Although we have not yet
it need process fewer KeepAlive RPCs. (KeepAlivesneeded it, the code can partition the name space by di-
areby farthe dominant type of request (see 4.1), andrectory. If enabled, a Chubby cell would be composed of
failure to process them in time is the typical failure N partitions, each of which has a set of replicas and a
mode of an overloaded server; clients are largely in-master. Every nod® /' in directory D would be stored
sensitive to latency variation in other calls.) on the partitionP(D/C) = hash(D) mod N. Note that
e Chubby clients cache file data, meta-data, the absendfe meta-data fob may be stored on a different partition
of files, and open handles to reduce the number of’(D) = hash(D’) mod N, whereD’ is the parent oD.
calls they make on the server. Partitioning is intended to enable large Chubby cells
e We use protocol-conversion servers that translate thavith little communication between the partitions. Al-
Chubby protocol into less-complex protocols such ashough Chubby lacks hard links, directory modified-
DNS and others. We discuss some of these below. times, and cross-directory rename operations, a few op-
Here we describe two familiar mechanisms, proxieserations still require cross-partition communication:
and partitioning, that we expect will allow Chubby to e ACLs are themselves files, so one partition may use
scale further. We do not yet use them in production, another for permissions checks. However, ACL files
but they are designed, and may be used soon. We have are readily cached; onlgpen() andDelete) calls
no present need to consider scaling beyond a factor of require ACL checks; and most clients read publicly
five: First, there are limits on the number of machines accessible files that require no ACL.
one would wish to put in a data centre or make reliant one When a directory is deleted, a cross-partition call may
a single instance of a service. Second, because we use be needed to ensure that the directory is empty.
similar machines for Chubby clients and servers, hardBecause each partition handles most calls independently
ware improvements that increase the number of client®f the others, we expect this communication to have only
per machine also increase the capacity of each server. a modest impact on performance or availability.

Unless the number of partitions is large, one would e RPC traffic is dominated by session KeepAlives; there
expect that each client would contact the majority of the are a few reads (which are cache misses); there are
partitions. Thus, partitioning reduces read and write traf- very few writes or lock acquisitions.
fic on any given partition by a factor d¥ but does not Now we briefly describe the typical causes of outages
necessarily reduce KeepAlive traffic. Should it be nec-in our cells. If we assume (optimistically) that a cell is
essary for Chubby to handle more clients, our strategyup” if it has a master that is willing to serve, on a sam-
involves a combination of proxies and partitioning. ple of our cells we recorded 61 outages over a period of

a few weeks, amounting to 700 cell-days of data in to-
tal. We excluded outages due to maintenance that shut

4 Use, surprises and design errors down the data centre. All other causes are included: net-
work congestion, maintenance, overload, and errors due
4.1 Use and behaviour to operators, software, and hardware. Most outages were

15s or less, and 52 were under 30s; most of our appli-
The following table gives statistics taken as a snapshot ofations are not affected significantly by Chubby outages
a Chubby cell; the RPC rate was a seen over a ten-minuténder 30s. The remaining nine outages were caused by

period. The numbers are typical of cells in Google. network maintenance (4), suspected network connectiv-
ity problems (2), software errors (2), and overload (1).
time since last fail-over 18 days In a few dozen cell-years of operation, we have lost
fail-over duration 14s data on six occasions, due to database software errors
active clients (direct) 22k (4) and operator error (2); none involved hardware er-
additional proxied clients 32k ror. Ironically, the operational errors involved upgrades
files open 12k to avoid the software errors. We have twice corrected
_naming-related _ 60% corruptions caused by software in non-master replicas.
client-is-caching-file entries 230k Chubby’s data fits in RAM, so most operations are
distinct files cached 24k cheap. Mean request latency at our production servers
names negatively cached 32k . . . -
exclusive locks K is consistently a smal! fraction of a millisecond regard-
shared locks 0 less of cell Iofad until the cell _approaches ovgrload,
stored directories 8k when latency increases dramatically and sessions are
ephemeral 0.1% dropped. Overload typically occurs when many sessions
stored files 22k (> 90,000) are active, but can result from exceptional
0-1k bytes 90% conditions: when clients made millions of read requests
1k-10k bytes 10% simultaneously (described in Section 4.3), and when a
> 10k bytes 0.2% mistake in the client library disabled caching for some
naming-related 46% reads, resulting in tens of thousands of requests per sec-
mirrored ACLs & config info 27% ond. Because most RPCs are KeepAlives, the server can
GFS and Bigtable meta-data 113/0 maintain a low mean request latency with many active
Rptéprhaetemeral T 23k//°s clients by inc.reasing the session.lease period (e
KeepAlive 93% Group commit reduces _the eff_ectlve wo_rk_done per re-
GetStat 204 quest when bursts Qf writes arrive, but '[hIS. is rare. o
Open 1% RPC read latencies measured at the client are limited
CreateSession 1% by the RPC system and network; they are under 1ms for
GetContentsAndStat 0.4% alocal cell, but 250ms between antipodes. Writes (which
SetContents 680ppm include lock operations) are delayed a further 5-10ms by
Acquire 3lppm the database log update, but by up to tens of seconds if a
recently-failed client cached the file. Even this variabil-
Several things can be seen: ity in write latency has little effect on the mean request
e Many files are used for naming; sg.3. latency at the server because writes are so infrequent.

e Configuration, access control, and meta-data files Clients are fairly insensitive to latency variation pro-
(analogous to file system super-blocks) are common.vided sessions are not dropped. At one point, we added

e Negative caching is significant. artificial delays inopen() to curb abusive clients (see

e 230k/24k>10 clients use each cached file, on average4.5); developers noticed only when delays exceeded ten

e Few clients hold locks, and shared locks are rare; thisecondsndwere applied repeatedly. We have found that
is consistent with locking being used for primary elec- the key to scaling Chubby is not server performance; re-
tion and partitioning data among replicas. ducing communication to the server can have far greater

impact. No significant effort has been applied to tuningof a single job as small as 3 thousand clients would re-
read/write server code paths; we checked that no egreguire 150 thousand lookups per second. (For compari-
gious bugs were present, then focused on the scalingon, a 2-CPU 2.6GHz Xeon DNS server might handle 50
mechanisms that could be more effective. On the othethousand requests per second.) Larger jobs create worse
hand, developers do notice if a performance bug affectproblems, and several jobs many be running at once. The
the local Chubby cache, which a client may read thou-variability in our DNS load had been a serious problem
sands of times per second. for Google before Chubby was introduced.
In contrast, Chubby’s caching uses explicit invalida-

. tions so a constant rate of session KeepAlive requests
4.2 Javaclients can maintain an arbitrary number of cache entries indef-
. . . . initely at a client, in the absence of changes. A 2-CPU
Google's infrastructure is mostly in C++, but a growing 2.6GHz Xeon Chubby master has been seen to handle

number of systems are being written in Java [8]. This : L : L
trend presented an unanticipated problem for Chubbygo thousand clients communicating directly with it (no

which has a complex client protocol and a non-trivial proxies); the clients included large jobs with communi-
client-side library cation patterns of the kind described above. The ability

. . L to provide swift name updates without polling each name
Java encourages portability of entire applications a

l'individually is so appealing that Chubby now provides

the expense of incremental adoption by making it SOMe1 - me service for most of the company’s systems.

what irksome to link against other languages. The usual Although Chubby’s caching allows a single cell to sus-

Java mechanism for accessing non-native libraries i§ . . . ;
o ain a large number of clients, load spikes can still be
JNI[15], but it is regarded as slow and cumbersome. Our 9 P

Java programmers so dislike JNI that to avoid its use thea problem. When we first deployed the Chubby-based

. S Y ame service, starting a 3 thousand process job (thus
prefer to translate large libraries into Java, and commit to : - .

X generating 9 million requests) could bring the Chubby
supporting them.

Chubbv's C4++ client lib is 7000 i bl master to its knees. To resolve this problem, we chose to
[Chubby's C++ client library s ines (comparable ;.\, hame entries into batches so that a single lookup
with the server), and the client protocol is delicate. To

intain the lib in J d .] would return and cache the name mappings for a large
maintain L'Ie lorary Iln ava wou _rre]quwe cahr_e an e|)g number (typically 100) of related processes within a job.
pense, while an implementation without caching wou The caching semantics provided by Chubby are more

burden the Chubby SEIVers. Thus our Java users _ruBrecise than those needed by a name service; name
copies of a protocol-conversion server that exports as'r,nfesolution requires only timely notification rather than
pl_e RPC protocol t_hat qorre_spon_dsf closely tc.) ChUbbySfuII consistency. As a result, there was an opportunity
chent_API. Even W'.th hindsight, it is r.'(.)t ObV'Ou.S how for reducing the load on Chubby by introducing a sim-
We.m'g.hF havg avmdgd the cost of writing, running and ple protocol-conversion server designed specifically for
maintaining this additional server. name lookups. Had we foreseen the use of Chubby as a
name service, we might have chosen to implement full
proxies sooner than we did in order to avoid the need for
this simple, but nevertheless additional server.
Even though Chubby was designed as a lock service, we One further protocol-conversion server exists: the
found that its most popular use was as a name server. Chubby DNS server. This makes the naming data stored
Caching within the normal Internet naming system,Within Chubby available to DNS clients. This server is
the DNS, is based on time. DNS entries havénae- important both for easing the transition from DNS names
to-live (TTL), and DNS data are discarded when theyto Chubby names, and to accommodate existing applica-
have not been refreshed within that period. Usually ittions that cannot be converted easily, such as browsers.
is straightforward to pick a suitable TTL value, but if
prompt replacement of failed services is desired, the TTL4_4 Problems with fail-over
can become small enough to overload the DNS servers.

For example, it is common for our developers to The original design for master fail-ove$2.9) requires
run jobs involving thousands of processes, and for eackthe master to write new sessions to the database as they
process to communicate with every other, leading to aare created. In the Berkeley DB version of the lock
guadratic number of DNS lookups. We might wish to server, the overhead of creating sessions became a prob-
use a TTL of 60s; this would allow misbehaving clients lem when many processes were started at once. To avoid
to be replaced without excessive delay and is not coneverload, the server was modified to store a session in the
sidered an unreasonably short replacement time in outlatabase not when it was first created, but instead when it
environment. In that case, to maintain the DNS cachesttempted its first modification, lock acquisition, or open

4.3 Use as a hame service

of an ephemeral file. In addition, active sessions wereReaders will note the irony of our own failure to predict
recorded in the database with some probability on eachow Chubby itself would be used.
KeepAlive. Thus, the writes for read-only sessions were The most important aspect of our review is to deter-
spread out in time. mine whether use of any of Chubby’s resources (RPC
Though it was necessary to avoid overload, this opti-rate, disc space, number of files) grows linearly (or
mization has the undesirable effect that young read-onlyvorse) with number of users or amount of data processed
sessions may not be recorded in the database, and so mhy the project. Any linear growth must be mitigated by
be discarded if a fail-over occurs. Although such ses-a compensating parameter that can be adjusted to reduce
sions hold no locks, this is unsafe; if all the recordedthe load on Chubby to reasonable bounds. Nevertheless
sessions were to check in with the new master before theur early reviews were not thorough enough.
leases of discarded sessions expired, the discarded ses-A related problem is the lack of performance advice in
sions could then read stale data for a while. This is rarenost software documentation. A module written by one
in practice; in a large system it is almost certain that someeam may be reused a year later by another team with
session will fail to check in, and thus force the new mas-disastrous results. It is sometimes hard to explain to in-
ter to await the maximum lease time anyway. Nevertheterface designers that they must change their interfaces
less, we have modified the fail-over design both to avoidnot because they are bad, but because other developers
this effect, and to avoid a complication that the currentmay be less aware of the cost of an RPC.
scheme introduces to proxies. Below we list some problem cases we encountered.
Under the new design, we avoid recording sessions in Lack of aggressive cachingDriginally, we did not ap-
the database at all, and instead recreate them in the sameeciate the critical need to cache the absence of files,
way that the master currently recreates hand29(@8). nor to reuse open file handles. Despite attempts at ed-
A new master must now wait a full worst-case lease time-ucation, our developers regularly write loops that retry
out before allowing operations to proceed, since it canindefinitely when a file is not present, or poll a file by
not know whether all sessions have checked996). opening it and closing it repeatedly when one might ex-
Again, this has little effect in practice because it is likely pect they would open the file just once.
that not all sessions will check in. At first we countered these retry-loops by introduc-
Once sessions can be recreated without on-disc statéhg exponentially-increasing delays when an application
proxy servers can manage sessions that the master is n@tade many attempts tmpen() the same file over a short
aware of. An extra operation available only to proxiesperiod. In some cases this exposed bugs that develop-
allows them to change the session that locks are assers acknowledged, but often it required us to spend yet
ciated with. This permits one proxy to take over a clientmore time on education. In the end it was easier to make
from another when a proxy fails. The only further changerepeatedapen() calls cheap.
needed at the master is a guarantee not to relinquish locks ack of quotas Chubby was never intended to be used
or ephemeral file handles associated with proxy sessiongs a storage system for large amounts of data, and so it

until a new proxy has had a chance to claim them. has no storage quotas. In hindsight, this was@a
One of Google’s projects wrote a module to keep track
4.5 Abusive clients of data uploads, storing some meta-data in Chubby. Such

uploads occurred rarely and were limited to a small set of

Google’s project teams are free to set up their ownpeople, so the space was bounded. However, two other
Chubby cells, but doing so adds to their maintenance burservices started using the same module as a means for
den, and consumes additional hardware resources. Marigacking uploads from a wider population of users. In-
services therefore use shared Chubby cells, which makeavitably, these services grew until the use of Chubby was
it important to isolate clients from the misbehaviour of extreme: a single 1.5MByte file was being rewritten in
others. Chubby is intended to operate within a sin-its entirety on each user action, and the overall space
gle company, and so malicious denial-of-service attacksised by the service exceeded the space needs of all other
against it are rare. However, mistakes, misunderstandchubby clients combined.
ings, and the differing expectations of our developers We introduced a limit on file size (256kBytes), and
lead to effects that are similar to attacks. encouraged the services to migrate to more appropri-

Some of our remedies are heavy-handed. For examplete storage systems. But it is difficult to make signifi-
we review the ways project teams plan to use Chubbygant changes to production systems maintained by busy
and deny access to the shared Chubby name space urpitople—it took approximately a year for the data to be
review is satisfactory. A problem with this approach is migrated elsewhere.
that developers are often unable to predict how their ser- Publish/subscribe There have been several attempts
vices will be used in the future, and how use will grow. to use Chubby’s event mechanism as a publish/subscribe

system in the style of Zephyr [6]. Chubby’s heavyweight Second, we now supply libraries that perform some high-
guarantees and its use of invalidation rather than updatkevel tasks so that developers are automatically isolated
in maintaining cache consistency make it a slow and ineffrom Chubby outages. Third, we use the post-mortem
ficient for all but the most trivial publish/subscribe exam- of each Chubby outage as a means not only of eliminat-
ples. Fortunately, all such uses have been caught befoiag bugs in Chubby and our operational procedures, but
the cost of redesigning the application was too large. of reducing the sensitivity of applications to Chubby’s
availability—both can lead to better availability of our
systems overall.

Fine-grained locking could be ignoredAt the end of
Here we list lessons, and miscellaneous design Chang&ection 2.1 we sketched a design for a server that clients
we might make if we have the opportunity: could run to provide fine-grained locking. It is perhaps

Developers rarely consider availabilityWe find that & Surprise that so far we have not needed to write such
our developers rarely think about failure probabilities, @ S€rver; our developers typically find that to optimize
and are inclined to treat a service like Chubby as thougfiheir applications, they must remove unnecessary com-
it were always available. For example, our deve|0p_mun|cat|0n_, and thqt often means finding a way to use
ers once built a system employing hundred of machine§0arse-grained locking.
that initiated recovery procedures taking tens of minutes P0or API choices have unexpected affectsor the
when Chubby elected a new master. This magnified thén0st part, our API has evolved well, but one mistake
consequences of a single failure by a factor of a hundre§tands out. Our means for cancelling long-running calls
both in timeand the number of machines affected. We are theClose() andpoison() RPCs, which also discard
would prefer developers to plan for short Chubby out-the server sta_te for the handle_. This prevents handles
ages, so that such an event has little or no affect on thefinat can acquire locks from being shared, for example,
applications. This is one of the arguments for coarsePY multiple threads. We may addncel) RPC to
grained locking, discussed in Section 2.1. allow more sharing of open handles. _

Developers also fail to appreciate the difference be- RPC use affects transport protocolseepAlives are
tween a service being up, and that service being availabllésed_bOth for refreshing the_cllen_t’s session lease, and for
to their applications. For example, the global ChubbyPassing events_and c_ache invalidations f_rom the master
cell (se€§2.12), is almost always up because it is rare forto the client. This de5|gn has the automatlp and dgswable
more than two geographically distant data centres to b&onsequence that a_cllent cannot rgfre_sh its session lease
down simultaneously. However, ithserved availabil- Without acknowledging cache invalidations.
ity for a given clientis usually lower than the observed ~ This would seem ideal, except that it introduced a ten-
availability of the client's local Chubby cell. First, the lo- Sion in our choice of protocol. TCP's back off policies
cal cell is less likely to be partitioned from the client, and P2 Nno attention to higher-level timeouts such as Chubby
second, although the local cell may be down often due td€@ses, so TCP-based KeepAlives led to many lost ses-
maintenance, the same maintenance affects the client dfions at times of high network congestion. We were
rectly, so Chubby’s unavailability is not observed by theforced to send KeepAlive RPCs via UDP rather than
client. TCP; UDP has no congestion avoidance mechanisms, so

Our API choices can also affect the way developerdVe would prefer to use UDP only when high-level time-
chose to handle Chubby outages. For example, Chubbfounds must be met. _ .
provides an event that allows clients to detect when a V& may augment the protocol with an additional TCP-
master fail-over has taken place. The intent was fofP@S€dGetevent) ~RPC which would be used to com-
clients to check for possible changes, as other event@lunicate events and invalidations in the normal case,
may have been lost. Unfortunately, many developerdiSed in the same way KeepAlives. The KeepAlive re-
chose to crash their applications on receiving this event?y would still contain a list of unacknowledged events
thus decreasing the availability of their systems substanS© that events must eventually be acknowledged.
tially. We might have done better to send redundant “file
change” events instead, or even to ensure that no eveng Comparison with related work
were lost during a fail-over.

At present we use three mechanisms to prevent dechubby is based on well-established ideas. Chubby’s
velopers from being over-optimistic about Chubby avail- cache design is derived from work on distributed file sys-
ability, especially that of the global cell. First, as pre- tems [10]. Its sessions and cache tokens are similar in be-
viously mentioned §4.5), we review how project teams haviour to those in Echo [17]; sessions reduce the over-
plan to use Chubby, and advise them against techniquesead of leases [9] in the V system. The idea of expos-
that would tie their availability too closely to Chubby’s. ing a general-purpose lock service is found in VMS [23],

4.6 Lessons learned

though that system initially used a special-purpose high€ould implement caching via the lock service, but would
speed interconnect that permitted low-latency interacprobably use the caching provided by Boxwood itself.

tions. Like its caching model, Chubby’'s APl is based The two systems have markedly different default pa-
on a file-system model, including the idea that a file-rameters, chosen for different expectations: Each Box-
system-like name space is convenient for more than juskood failure detector is contacted by each client ev-
files [18, 21, 22]. ery 200ms with a timeout of 1s; Chubby’s default lease
Chubby differs from a distributed file system such astime is 12s and KeepAlives are exchanged every 7s.
Echo or AFS [10] in its performance and storage aspiraBoxwood’s subcomponents use two or three replicas to
tions: Clients do not read, write, or store large amountsachieve availability, while we typically use five repli-
of data, and they do not expect high throughput or evertas per cell. However, these choices alone do not sug-
low-latency unless the data is cached. They do exgest a deep design difference, but rather an indication of
pect consistency, availability, and reliability, but these how parameters in such systems must be adjusted to ac-
attributes are easier to achieve when performance is lessommodate more client machines, or the uncertainties of
important. Because Chubby’s database is small, we argacks shared with other projects.
able to store many copies of it on-line (typically five A 46 interesting difference is the introduction of
rgplicgs and a few backups). We take full backups mUI'Chubby’s grace period, which Boxwood lacks. (Re-
tiple times per day, and via checksums of the databasga" that the grace period allows clients to ride out long

state, we compare replicas with one another every feVf:hubby master outages without losing sessions or locks.

hours. The weakening of the normal file system perfor'Boxwood’s “grace period” is the equivalent of Chubby's
mance and storage requirements allows us to serve tem§ession lease”, a different concept.) Again, this differ-

of thousands of clients from a single Chubby master. Byence is the result of differing expectations about scale

providing a central point where many clients can share, § ¢ iiure probability in the two systems. Although

information and co-ordinate activities, we have solved & - <o fail-overs are rare. a lost Chubby lock is expen-
class of problems faced by our system developers. sive for clients ’

The large number of file systems and lock servers de- Finallv. locks in the two svstems are intended for dif-
scribed in the literature prevents an exhaustive compari: inaty, ! WO sy ! !

son, so we provide details on one: we chose to comparlceere(r;t purposes. Chu|t|>by locks arle heaV|er-we|gh;, and
with Boxwood's lock server [16] because it was designednee dseq;JeIncerr?_lto aflow ex(]tlezlrna:(s resolt_tht_:les to _ehpro-
recently, it too is designed to run in a loosely-coupled en—teCte. saiely, whiie .BOXWOO Ocks are 19 ter-weight,
vironment, and yet its design differs in various ways fromand intended primarily for use within Boxwood.
Chubby, some interesting and some incidental.

Chubby implements locks, a reliable small-file storage
system, and a session/lease mechanism in a single s@g- Summary
vice. In contrast, Boxwood separates these into three:
a lock service a Paxos servicga reliable repository
for state), and dailure detection serviceespectively.
The Boxwood system itself uses these three components " . .
together, but another system could use these buildin |str!buted systems; it has fognd w.|der. use as a name
blocks independently. We suspect that this differenc ervice and repository for configuration information.
in design stems from a difference in target audience. Its design is based on well-known ideas that have
Chubby was intended for a diverse audience and applimeshed well: distributed consensus among a few replicas
cation mix; its users range from experts who create nevior fault tolerance, consistent client-side caching to re-
distributed systems, to novices who write administrationduce server load while retaining simple semantics, timely
scripts. For our environment, a large-scale shared senRotification of updates, and a familiar file system inter-
vice with a familiar APl seemed attractive. In contrast, face. We use caching, protocol-conversion servers, and
Boxwood provides a toolkit that (to our eyes, at least) issimple load adaptation to allow it scale to tens of thou-
appropriate for a smaller number of more sophisticatedands of client processes per Chubby instance. We ex-
developers working on projects that may share code bupect to scale it further via proxies and partitioning.
need not be used together. Chubby has become Google’s primary internal name

In many cases, Chubby provides a higher-level interservice; it is a common rendezvous mechanism for sys-
face than Boxwood. For example, Chubby combinesgems such as MapReduce [4]; the storage systems GFS
the lock and file names spaces, while Boxwood’s lockand Bigtable use Chubby to elect a primary from redun-
names are simple byte sequences. Chubby clients cacldant replicas; and it is a standard repository for files that
file state by default; a client of Boxwood’s Paxos servicerequire high availability, such as access control lists.

Chubby is a distributed lock service intended for coarse-
ained synchronization of activities within Google’s

7 Acknowledgments

(14]

Many contributed to the Chubby system: Sharon Perl
wrote the replication layer on Berkeley DB; Tushar [15]
Chandra and Robert Griesemer wrote the replicated

database that replaced Berkeley DB; Ramsey Haddaﬂ6

connected the API to Google’s file system interface;
Dave Presotto, Sean Owen, Doug Zongker and Praveen
Tamara wrote the Chubby DNS, Java, and naming
protocol-converters, and the full Chubby proxy respec-7]
tively; Vadim Furman added the caching of open han-
dles and file-absence; Rob Pike, Sean Quinlan and San-
jay Ghemawat gave valuable design advice; and manylg]

Google developers uncovered early weaknesses.

References

[1] BIRMAN, K. P.,AND JOSEPH T. A. Exploiting virtual
synchrony in distributed systems. Iith SOSR1987),
pp. 123-138.

BIRRELL, A., JONES, M. B., AND WOBBER, E. A sim-
ple and efficient implementation for small databases.
11th SOSR1987), pp. 149-154.

CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C.,

WALLACH, D. A., BURROWS M., CHANDRA, T.,

FIKES, A., AND GRUBER, R. Bigtable: A distributed
structured data storage system.7th OSDI(2006).

(2]

(3]

(4]
data processing on large clusters. 6ifn OSDI (2004),
pp. 137-150.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.

(3]

DEAN, J.,AND GHEMAWAT, S. MapReduce: Simplified

[19]
[20]
[21]
In
[22]
[23]

(24]

Impossibility of distributed consensus with one faulty

processJ. ACM 32 2 (April 1985), 374-382.

(6]
mer’'s Manual MIT Project Athena, Apr. 1989.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The

(7]

Google file system. 169th SOSRDec. 2003), pp. 29-43.

GOSLING, J., bV, B., STEELE, G., AND BRACHA, G.
Java Language Spec. (2nd EdAddison-Wesley, 2000.

(8]

&)

FRENCH, R. S.,AND KOHL, J. T. The Zephyr Program-

GRAY, C. G.,AND CHERITON, D. R. Leases: An ef-

ficient fault-tolerant mechanism for distributed file cache

consistency. Iri2th SOSK1989), pp. 202-210.

HowaRD, J., KazAaR, M., MENEES S., NCHOLS,
D., SATYANARAYANAN , M., SIDEBOTHAM, R., AND

[10]

WEST, M. Scale and performance in a distributed file

system.ACM TOCS 61 (Feb. 1988), 51-81.

JEFFERSON D. Virtual time. ACM TOPLAS3 (1985),
404-425.

LAMPORT, L. The part-time parliamenACM TOCS 16
2 (1998), 133-169.

[11]

[12]

[13]
32,4 (2001), 18-25.

LAMPORT, L. Paxos made simpleACM SIGACT News

] MACCORMICK,

LAMPSON, B. W. How to build a highly available system
using consensus. istributed Algorithmsvol. 1151 of
LNCS Springer—Verlag, 1996, pp. 1-17.

LIANG, S. Java Native Interface: Programmer’s Guide
and ReferenceAddison-Wesley, 1999.

J., MuRPHY, N., NAJORK, M.,

THEKKATH, C. A., AND ZHOU, L. Boxwood: Abstrac-
tions as the foundation for storage infrastructure 6tim
OSDI(2004), pp. 105-120.

MANN, T., BIRRELL, A., HISGEN, A., JERIAN, C.,
AND SWART, G. A coherent distributed file cache with
directory write-behindTOCS 122 (1994), 123-164.

McCJONES, P.,AND SWART, G. Evolving the UNIX sys-
tem interface to support multithreaded programs. Tech.
Rep. 21, DEC SRC, 1987.

Okl, B., AND Liskov, B. Viewstamped replication: A
general primary copy method to support highly-available
distributed systems. IACM PODC(1988).

OLSON, M. A., BOsTIC, K., AND SELTZER, M. Berke-
ley DB. In USENIX(June 1999), pp. 183-192.

PIKE, R., RESOTTqQ D. L., DORWARD, S., ALAN-
DRENA, B., THOMPSON K., TRICKEY, H., AND WIN-
TERBOTTOM, P. Plan 9 from Bell LabsComputing Sys-
tems 82 (1995), 221-254.

RITCHIE, D. M., AND THOMPSON K. The UNIX time-
sharing systemCACM 17 7 (1974), 365-375.

SNAMAN, JR., W. E., AND THIEL, D. W. The
VAX/VMS distributed lock manager.Digital Technical
Journal 1, 5 (Sept. 1987), 29-44.

YIN, J., MARTIN, J.-P., VENKATARAMANI, A.,
Avrvisi, L., AND DAHLIN, M. Separating agreement
from execution for byzantine fault tolerant services. In
19th SOSR2003), pp. 253-267.

