
The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.

Abstract

We describe our experiences with the Chubby lock ser-
vice, which is intended to provide coarse-grained lock-
ing as well as reliable (though low-volume) storage for
a loosely-coupled distributed system. Chubby provides
an interface much like a distributed file system with ad-
visory locks, but the design emphasis is on availability
and reliability, as opposed to high performance. Many
instances of the service have been used for over a year,
with several of them each handling a few tens of thou-
sands of clients concurrently. The paper describes the
initial design and expected use, compares it with actual
use, and explains how the design had to be modified to
accommodate the differences.

1 Introduction

This paper describes alock servicecalled Chubby. It is
intended for use within a loosely-coupled distributed sys-
tem consisting of moderately large numbers of small ma-
chines connected by a high-speed network. For example,
a Chubby instance (also known as a Chubbycell) might
serve ten thousand 4-processor machines connected by
1Gbit/s Ethernet. Most Chubby cells are confined to a
single data centre or machine room, though we do run
at least one Chubby cell whose replicas are separated by
thousands of kilometres.

The purpose of the lock service is to allow its clients
to synchronize their activities and to agree on basic in-
formation about their environment. The primary goals
included reliability, availability to a moderately large set
of clients, and easy-to-understand semantics; through-
put and storage capacity were considered secondary.
Chubby’s client interface is similar to that of a simple file
system that performswhole-file reads and writes, aug-
mented with advisory locks and with notification of var-
ious events such as file modification.

We expected Chubby to help developers deal with
coarse-grained synchronization within their systems, and
in particular to deal with the problem of electing a leader
from among a set of otherwise equivalent servers. For

example, the Google File System [7] uses a Chubby lock
to appoint a GFS master server, and Bigtable [3] uses
Chubby in several ways: to elect a master, to allow the
master to discover the servers it controls, and to permit
clients to find the master. In addition, both GFS and
Bigtable use Chubby as a well-known and available loca-
tion to store a small amount of meta-data; in effect they
use Chubby as the root of their distributed data struc-
tures. Some services use locks to partition work (at a
coarse grain) between several servers.

Before Chubby was deployed, most distributed sys-
tems at Google usedad hocmethods for primary elec-
tion (when work could be duplicated without harm), or
required operator intervention (when correctness was es-
sential). In the former case, Chubby allowed a small sav-
ing in computing effort. In the latter case, it achieved a
significant improvement in availability in systems that no
longer required human intervention on failure.

Readers familiar with distributed computing will rec-
ognize the election of a primary among peers as an in-
stance of thedistributed consensusproblem, and realize
we require a solution usingasynchronouscommunica-
tion; this term describes the behaviour of the vast ma-
jority of real networks, such as Ethernet or the Internet,
which allow packets to be lost, delayed, and reordered.
(Practitioners should normally beware of protocols based
on models that make stronger assumptions on the en-
vironment.) Asynchronous consensus is solved by the
Paxosprotocol [12, 13]. The same protocol was used by
Oki and Liskov (see their paper onviewstamped replica-
tion [19, §4]), an equivalence noted by others [14,§6].
Indeed, all working protocols for asynchronous consen-
sus we have so far encountered have Paxos at their core.
Paxos maintains safety without timing assumptions, but
clocks must be introduced to ensure liveness; this over-
comes the impossibility result of Fischeret al. [5, §1].

Building Chubby was an engineering effort required
to fill the needs mentioned above; it was not research.
We claim no new algorithms or techniques. The purpose
of this paper is to describe what we did and why, rather
than to advocate it. In the sections that follow, we de-
scribe Chubby’s design and implementation, and how it



has changed in the light of experience. We describe un-
expected ways in which Chubby has been used, and fea-
tures that proved to be mistakes. We omit details that are
covered elsewhere in the literature, such as the details of
a consensus protocol or an RPC system.

2 Design

2.1 Rationale

One might argue that we should have built a library em-
bodying Paxos, rather than a library that accesses a cen-
tralized lock service, even a highly reliable one. A client
Paxos library would depend onno other servers (besides
the name service), and would provide a standard frame-
work for programmers, assuming their services can be
implemented as state machines. Indeed, we provide such
a client library that is independent of Chubby.

Nevertheless, a lock service has some advantages over
a client library. First, our developers sometimes do not
plan for high availability in the way one would wish. Of-
ten their systems start as prototypes with little load and
loose availability guarantees; invariably the code has not
been specially structured for use with a consensus proto-
col. As the service matures and gains clients, availability
becomes more important; replication and primary elec-
tion are then added to an existing design. While this
could be done with a library that provides distributed
consensus, a lock server makes it easier to maintain exist-
ing program structure and communication patterns. For
example, to elect a master which then writes to an ex-
isting file server requires adding just two statements and
one RPC parameter to an existing system: One would
acquire a lock to become master, pass an additional inte-
ger (the lock acquisition count) with the write RPC, and
add an if-statement to the file server to reject the write if
the acquisition count is lower than the current value (to
guard against delayed packets). We have found this tech-
nique easier than making existing servers participate in
a consensus protocol, and especially so if compatibility
must be maintained during a transition period.

Second, many of our services that elect a primary
or that partition data between their components need a
mechanism for advertising the results. This suggests that
we should allow clients to store and fetch small quanti-
ties of data—that is, to read and write small files. This
could be done with a name service, but our experience
has been that the lock service itself is well-suited for this
task, both because this reduces the number of servers on
which a client depends, and because the consistency fea-
tures of the protocol are shared. Chubby’s success as
a name server owes much to its use of consistent client
caching, rather than time-based caching. In particular,
we found that developers greatly appreciated not having

to choose a cache timeout such as the DNS time-to-live
value, which if chosen poorly can lead to high DNS load,
or long client fail-over times.

Third, a lock-based interface is more familiar to our
programmers. Both the replicated state machine of Paxos
and the critical sections associated with exclusive locks
can provide the programmer with the illusion of sequen-
tial programming. However, many programmers have
come across locks before, and think they know to use
them. Ironically, such programmers are usually wrong,
especially when they use locks in a distributed system;
few consider the effects of independent machine fail-
ures on locks in a system with asynchronous communi-
cations. Nevertheless, the apparent familiarity of locks
overcomes a hurdle in persuading programmers to use a
reliable mechanism for distributed decision making.

Last, distributed-consensus algorithms use quorums to
make decisions, so they use several replicas to achieve
high availability. For example, Chubby itself usually has
five replicas in each cell, of which three must be run-
ning for the cell to be up. In contrast, if a client system
uses a lock service, even a single client can obtain a lock
and make progress safely. Thus, a lock service reduces
the number of servers needed for a reliable client system
to make progress. In a loose sense, one can view the
lock service as a way of providing a generic electorate
that allows a client system to make decisions correctly
when less than a majority of its own members are up.
One might imagine solving this last problem in a dif-
ferent way: by providing a “consensus service”, using a
number of servers to provide the “acceptors” in the Paxos
protocol. Like a lock service, a consensus service would
allow clients to make progress safely even with only one
active client process; a similar technique has been used to
reduce the number of state machines needed for Byzan-
tine fault tolerance [24]. However, assuming a consensus
service is not used exclusively to provide locks (which
reduces it to a lock service), this approach solves none of
the other problems described above.

These arguments suggest two key design decisions:
• We chose a lock service, as opposed to a library or

service for consensus, and
• we chose to serve small-files to permit elected pri-

maries to advertise themselves and their parameters,
rather than build and maintain a second service.

Some decisions follow from our expected use and
from our environment:
• A service advertising its primary via a Chubby file

may have thousands of clients. Therefore, we must
allow thousands of clients to observe this file, prefer-
ably without needing many servers.

• Clients and replicas of a replicated service may wish
to know when the service’s primary changes. This



suggests that an event notification mechanism would
be useful to avoid polling.

• Even if clients need not poll files periodically, many
will; this is a consequence of supporting many devel-
opers. Thus, caching of files is desirable.

• Our developers are confused by non-intuitive caching
semantics, so we prefer consistent caching.

• To avoid both financial loss and jail time, we provide
security mechanisms, including access control.
A choice that may surprise some readers is that we

do not expect lock use to befine-grained, in which they
might be held only for a short duration (seconds or less);
instead, we expectcoarse-graineduse. For example, an
application might use a lock to elect a primary, which
would then handle all access to that data for a consider-
able time, perhaps hours or days. These two styles of use
suggest different requirements from a lock server.

Coarse-grained locks impose far less load on the lock
server. In particular, the lock-acquisition rate is usu-
ally only weakly related to the transaction rate of the
client applications. Coarse-grained locks are acquired
only rarely, so temporary lock server unavailability de-
lays clients less. On the other hand, the transfer of a lock
from client to client may require costly recovery proce-
dures, so one would not wish a fail-over of a lock server
to cause locks to be lost. Thus, it is good for coarse-
grained locks to survive lock server failures, there is little
concern about the overhead of doing so, and such locks
allow many clients to be adequately served by a modest
number of lock servers with somewhat lower availability.

Fine-grained locks lead to different conclusions. Even
brief unavailability of the lock server may cause many
clients to stall. Performance and the ability to add new
servers at will are of great concern because the trans-
action rate at the lock service grows with the combined
transaction rate of clients. It can be advantageous to re-
duce the overhead of locking by not maintaining locks
across lock server failure, and the time penalty for drop-
ping locks every so often is not severe because locks are
held for short periods. (Clients must be prepared to lose
locks during network partitions, so the loss of locks on
lock server fail-over introduces no new recovery paths.)

Chubby is intended to provide only coarse-grained
locking. Fortunately, it is straightforward for clients to
implement their own fine-grained locks tailored to their
application. An application might partition its locks into
groups and use Chubby’s coarse-grained locks to allocate
these lock groups to application-specific lock servers.
Little state is needed to maintain these fine-grain locks;
the servers need only keep a non-volatile, monotonically-
increasing acquisition counter that is rarely updated.
Clients can learn of lost locks at unlock time, and if a
simple fixed-length lease is used, the protocol can be
simple and efficient. The most important benefits of this

client processes

5 servers of a Chubby cell
client

application
chubby
library

client
application

chubby
library

. . .

m
RPCs m mastermmm

PPPPPq

�����1

Figure 1: System structure

scheme are that our client developers become responsible
for the provisioning of the servers needed to support their
load, yet are relieved of the complexity of implementing
consensus themselves.

2.2 System structure

Chubby has two main components that communicate
via RPC: a server, and a library that client applications
link against; see Figure 1. All communication between
Chubby clients and the servers is mediated by the client
library. An optional third component, a proxy server, is
discussed in Section 3.1.

A Chubby cell consists of a small set of servers (typi-
cally five) known asreplicas, placed so as to reduce the
likelihood of correlated failure (for example, in different
racks). The replicas use a distributed consensus protocol
to elect amaster; the master must obtain votes from a
majority of the replicas, plus promises that those replicas
will not elect a different master for an interval of a few
seconds known as themaster lease. The master lease is
periodically renewed by the replicas provided the master
continues to win a majority of the vote.

The replicas maintain copies of a simple database, but
only the master initiates reads and writes of this database.
All other replicas simply copy updates from the master,
sent using the consensus protocol.

Clients find the master by sending master location
requests to the replicas listed in the DNS. Non-master
replicas respond to such requests by returning the iden-
tity of the master. Once a client has located the master,
the client directs all requests to it either until it ceases
to respond, or until it indicates that it is no longer the
master. Write requests are propagated via the consensus
protocol to all replicas; such requests are acknowledged
when the write has reached a majority of the replicas in
the cell. Read requests are satisfied by the master alone;
this is safe provided the master lease has not expired, as
no other master can possibly exist. If a master fails, the
other replicas run the election protocol when their master
leases expire; a new master will typically be elected in a
few seconds. For example, two recent elections took 6s
and 4s, but we see values as high as 30s (§4.1).



If a replica fails and does not recover for a few hours, a
simple replacement system selects a fresh machine from
a free pool and starts the lock server binary on it. It then
updates the DNS tables, replacing the IP address of the
failed replica with that of the new one. The current mas-
ter polls the DNS periodically and eventually notices the
change. It then updates the list of the cell’s members in
the cell’s database; this list is kept consistent across all
the members via the normal replication protocol. In the
meantime, the new replica obtains a recent copy of the
database from a combination of backups stored on file
servers and updates from active replicas. Once the new
replica has processed a request that the current master is
waiting to commit, the replica is permitted to vote in the
elections for new master.

2.3 Files, directories, and handles

Chubby exports a file system interface similar to, but
simpler than that of UNIX [22]. It consists of a strict
tree of files and directories in the usual way, with name
components separated by slashes. A typical name is:

/ls/foo/wombat/pouch

The ls prefix is common to all Chubby names, and
stands forlock service. The second component (foo ) is
the name of a Chubby cell; it is resolved to one or more
Chubby servers via DNS lookup. A special cell name
local indicates that the client’s local Chubby cell should
be used; this is usually one in the same building and
thus the one most likely to be accessible. The remain-
der of the name,/wombat/pouch , is interpreted within
the named Chubby cell. Again following UNIX, each di-
rectory contains a list of child files and directories, while
each file contains a sequence of uninterpreted bytes.

Because Chubby’s naming structure resembles a file
system, we were able to make it available to applications
both with its own specialized API, and via interfaces
used by our other file systems, such as the Google File
System. This significantly reduced the effort needed to
write basic browsing and name space manipulation tools,
and reduced the need to educate casual Chubby users.

The design differs from UNIX in a ways that ease dis-
tribution. To allow the files in different directories to be
served from different Chubby masters, we do not expose
operations that can move files from one directory to an-
other, we do not maintain directory modified times, and
we avoid path-dependent permission semantics (that is,
access to a file is controlled by the permissions on the
file itself rather than on directories on the path leading to
the file). To make it easier to cache file meta-data, the
system does not reveal last-access times.

The name space contains only files and directories,
collectively callednodes. Every such node has only one
name within its cell; there are no symbolic or hard links.

Nodes may be either permanent or ephemeral. Any
node may be deleted explicitly, but ephemeral nodes are
also deleted if no client has them open (and, for directo-
ries, they are empty). Ephemeral files are used as tempo-
rary files, and as indicators to others that a client is alive.
Any node can act as an advisory reader/writer lock; these
locks are described in more detail in Section 2.4.

Each node has various meta-data, including three
names of access control lists (ACLs) used to control
reading, writing and changing the ACL names for the
node. Unless overridden, a node inherits the ACL names
of its parent directory on creation. ACLs are themselves
files located in an ACL directory, which is a well-known
part of the cell’s local name space. These ACL files con-
sist of simple lists of names of principals; readers may be
reminded of Plan 9’sgroups[21]. Thus, if file F’s write
ACL name isfoo , and the ACL directory contains a file
foo that contains an entrybar , then userbar is permit-
ted to write F. Users are authenticated by a mechanism
built into the RPC system. Because Chubby’s ACLs are
simply files, they are automatically available to other ser-
vices that wish to use similar access control mechanisms.

The per-node meta-data includes four monotonically-
increasing 64-bit numbers that allow clients to detect
changes easily:
• an instance number; greater than the instance number

of any previous node with the same name.
• a content generation number (files only); this in-

creases when the file’s contents are written.
• a lock generation number; this increases when the

node’s lock transitions fromfreeto held.
• an ACL generation number; this increases when the

node’s ACL names are written.
Chubby also exposes a 64-bit file-content checksum so
clients may tell whether files differ.

Clients open nodes to obtainhandlesthat are analo-
gous to UNIX file descriptors. Handles include:
• check digits that prevent clients from creating or

guessing handles, so full access control checks need
be performed only when handles are created (com-
pare with UNIX, which checks its permissions bits at
open time, but not at each read/write because file de-
scriptors cannot be forged).

• a sequence number that allows a master to tell whether
a handle was generated by it or by a previous master.

• mode information provided at open time to allow the
master to recreate its state if an old handle is presented
to a newly restarted master.

2.4 Locks and sequencers

Each Chubby file and directory can act as a reader-writer
lock: either one client handle may hold the lock in exclu-
sive (writer) mode, or any number of client handles may



hold the lock in shared (reader) mode. Like the mutexes
known to most programmers, locks areadvisory. That
is, they conflict only with other attempts to acquire the
same lock: holding a lock calledF neither is necessary
to access the fileF , nor prevents other clients from do-
ing so. We rejectedmandatorylocks, which make locked
objects inaccessible to clients not holding their locks:
• Chubby locks often protect resources implemented by

other services, rather than just the file associated with
the lock. To enforce mandatory locking in a meaning-
ful way would have required us to make more exten-
sive modification of these services.

• We did not wish to force users to shut down appli-
cations when they needed to access locked files for
debugging or administrative purposes. In a complex
system, it is harder to use the approach employed on
most personal computers, where administrative soft-
ware can break mandatory locks simply by instructing
the user to shut down his applications or to reboot.

• Our developers perform error checking in the conven-
tional way, by writing assertions such as “lockX is
held”, so they benefit little from mandatory checks.
Buggy or malicious processes have many opportuni-
ties to corrupt data when locks are not held, so we find
the extra guards provided by mandatory locking to be
of no significant value.

In Chubby, acquiring a lock in either mode requires write
permission so that an unprivileged reader cannot prevent
a writer from making progress.

Locking is complex in distributed systems because
communication is typically uncertain, and processes may
fail independently. Thus, a process holding a lockL may
issue a requestR, but then fail. Another process may ac-
quire L and perform some action beforeR arrives at its
destination. IfR later arrives, it may be acted on without
the protection ofL, and potentially on inconsistent data.
The problem of receiving messages out of order has been
well studied; solutions includevirtual time[11], andvir-
tual synchrony[1], which avoids the problem by ensuring
that messages are processed in an order consistent with
the observations of every participant.

It is costly to introduce sequence numbers into all
the interactions in an existing complex system. Instead,
Chubby provides a means by which sequence numbers
can be introduced into only those interactions that make
use of locks. At any time, a lock holder may request ase-
quencer, an opaque byte-string that describes the state of
the lock immediately after acquisition. It contains the
name of the lock, the mode in which it was acquired
(exclusive or shared), and the lock generation number.
The client passes the sequencer to servers (such as file
servers) if it expects the operation to be protected by the
lock. The recipient server is expected to test whether
the sequencer is still valid and has the appropriate mode;

if not, it should reject the request. The validity of a
sequencer can be checked against the server’s Chubby
cache or, if the server does not wish to maintain a ses-
sion with Chubby, against the most recent sequencer that
the server has observed. The sequencer mechanism re-
quires only the addition of a string to affected messages,
and is easily explained to our developers.

Although we find sequencers simple to use, important
protocols evolve slowly. Chubby therefore provides an
imperfect but easier mechanism to reduce the risk of de-
layed or re-ordered requests to servers that do not sup-
port sequencers. If a client releases a lock in the normal
way, it is immediately available for other clients to claim,
as one would expect. However, if a lock becomes free
because the holder has failed or become inaccessible,
the lock server will prevent other clients from claiming
the lock for a period called thelock-delay. Clients may
specify any lock-delay up to some bound, currently one
minute; this limit prevents a faulty client from making a
lock (and thus some resource) unavailable for an arbitrar-
ily long time. While imperfect, the lock-delay protects
unmodified servers and clients from everyday problems
caused by message delays and restarts.

2.5 Events

Chubby clients may subscribe to a range of events when
they create a handle. These events are delivered to the
client asynchronously via an up-call from the Chubby li-
brary. Events include:
• file contents modified—often used to monitor the lo-

cation of a service advertised via the file.
• child node added, removed, or modified—used to im-

plement mirroring (§2.12). (In addition to allowing
new files to be discovered, returning events for child
nodes makes it possible to monitor ephemeral files
without affecting their reference counts.)

• Chubby master failed over—warns clients that other
events may have been lost, so data must be rescanned.

• a handle (and its lock) has become invalid—this typi-
cally suggests a communications problem.

• lock acquired—can be used to determine when a pri-
mary has been elected.

• conflicting lock request from another client—allows
the caching of locks.
Events are delivered after the corresponding action has

taken place. Thus, if a client is informed that file contents
have changed, it is guaranteed to see the new data (or data
that is yet more recent) if it subsequently reads the file.

The last two events mentioned are rarely used, and
with hindsight could have been omitted. After primary
election for example, clients typically need to commu-
nicate with the new primary, rather than simply know
that a primary exists; thus, they wait for a file modifi-



cation event indicating that the new primary has written
its address in a file. The conflicting lock event in theory
permits clients to cache data held on other servers, using
Chubby locks to maintain cache consistency. A notifi-
cation of a conflicting lock request would tell a client to
finish using data associated with the lock: it would finish
pending operations, flush modifications to a home loca-
tion, discard cached data, and release. So far, no one has
adopted this style of use.

2.6 API

Clients see a Chubby handle as a pointer to an opaque
structure that supports various operations. Handles are
created only byOpen() , and destroyed withClose() .

Open() opens a named file or directory to produce a
handle, analogous to a UNIX file descriptor. Only this
call takes a node name; all others operate on handles.

The name is evaluated relative to an existing directory
handle; the library provides a handle on ”/” that is always
valid. Directory handles avoid the difficulties of using a
program-widecurrent directoryin a multi-threaded pro-
gram that contains many layers of abstraction [18].

The client indicates various options:
• how the handle will be used (reading; writing and

locking; changing the ACL); the handle is created
only if the client has the appropriate permissions.

• events that should be delivered (see§2.5).
• the lock-delay (§2.4).
• whether a new file or directory should (or must) be

created. If a file is created, the caller may supply ini-
tial contents and initial ACL names. The return value
indicates whether the file was in fact created.
Close() closes an open handle. Further use of the han-

dle is not permitted. This call never fails. A related call
Poison() causes outstanding and subsequent operations
on the handle to fail without closing it; this allows a client
to cancel Chubby calls made by other threads without
fear of deallocating the memory being accessed by them.

The main calls that act on a handle are:
GetContentsAndStat() returns both the contents and

meta-data of a file. The contents of a file are read atom-
ically and in their entirety. We avoided partial reads and
writes to discourage large files. A related callGetStat()

returns just the meta-data, whileReadDir() returns the
names and meta-data for the children of a directory.

SetContents() writes the contents of a file. Option-
ally, the client may provide a content generation number
to allow the client to simulate compare-and-swap on a
file; the contents are changed only if the generation num-
ber is current. The contents of a file are always written
atomically and in their entirety. A related callSetACL()

performs a similar operation on the ACL names associ-
ated with the node.

Delete() deletes the node if it has no children.
Acquire(), TryAcquire(), Release() acquire and

release locks.
GetSequencer() returns a sequencer (§2.4) that de-

scribes any lock held by this handle.
SetSequencer() associates a sequencer with a handle.

Subsequent operations on the handle fail if the sequencer
is no longer valid.

CheckSequencer() checks whether a sequencer is
valid (see§2.4).

Calls fail if the node has been deleted since the han-
dle was created, even if the file has been subsequently
recreated. That is, a handle is associated with an instance
of a file, rather than with a file name. Chubby may ap-
ply access control checks on any call, but always checks
Open() calls (see§2.3).

All the calls above take anoperationparameter in ad-
dition to any others needed by the call itself. The oper-
ation parameter holds data and control information that
may be associated with any call. In particular, via the
operation parameter the client may:
• supply a callback to make the call asynchronous,
• wait for the completion of such a call, and/or
• obtain extended error and diagnostic information.

Clients can use this API to perform primary election
as follows: All potential primaries open the lock file and
attempt to acquire the lock. One succeeds and becomes
the primary, while the others act as replicas. The primary
writes its identity into the lock file withSetContents()

so that it can be found by clients and replicas, which
read the file withGetContentsAndStat() , perhaps in
response to a file-modification event (§2.5). Ideally,
the primary obtains a sequencer withGetSequencer() ,
which it then passes to servers it communicates with;
they should confirm withCheckSequencer() that it is
still the primary. A lock-delay may be used with services
that cannot check sequencers (§2.4).

2.7 Caching

To reduce read traffic, Chubby clients cache file data
and node meta-data (including file absence) in a consis-
tent, write-through cache held in memory. The cache is
maintained by a lease mechanism described below, and
kept consistent by invalidations sent by the master, which
keeps a list of what each client may be caching. The pro-
tocol ensures that clients see either a consistent view of
Chubby state, or an error.

When file data or meta-data is to be changed, the mod-
ification is blocked while the master sends invalidations
for the data to every client that may have cached it; this
mechanism sits on top of KeepAlive RPCs, discussed
more fully in the next section. On receipt of an invali-
dation, a client flushes the invalidated state and acknowl-



edges by making its next KeepAlive call. The modi-
fication proceeds only after the server knows that each
client has invalidated its cache, either because the client
acknowledged the invalidation, or because the client al-
lowed its cache lease to expire.

Only one round of invalidations is needed because the
master treats the node asuncachablewhile cache inval-
idations remain unacknowledged. This approach allows
reads always to be processed without delay; this is useful
because reads greatly outnumber writes. An alternative
would be to block calls that access the node during in-
validation; this would make it less likely that over-eager
clients will bombard the master with uncached accesses
during invalidation, at the cost of occasional delays. If
this were a problem, one could imagine adopting a hybrid
scheme that switched tactics if overload were detected.

The caching protocol is simple: it invalidates cached
data on a change, and never updates it. It would be just
as simple to update rather than to invalidate, but update-
only protocols can be arbitrarily inefficient; a client that
accessed a file might receive updates indefinitely, caus-
ing an unbounded number of unnecessary updates.

Despite the overheads of providing strict consistency,
we rejected weaker models because we felt that program-
mers would find them harder to use. Similarly, mecha-
nisms such as virtual synchrony that require clients to
exchange sequence numbers in all messages were con-
sidered inappropriate in an environment with diverse pre-
existing communication protocols.

In addition to caching data and meta-data, Chubby
clients cache open handles. Thus, if a client opens a file
it has opened previously, only the firstOpen() call neces-
sarily leads to an RPC to the master. This caching is re-
stricted in minor ways so that it never affects the seman-
tics observed by the client: handles on ephemeral files
cannot be held open if the application has closed them;
and handles that permit locking can be reused, but can-
not be used concurrently by multiple application handles.
This last restriction exists because the client may use
Close() or Poison() for their side-effect of cancelling
outstandingAcquire() calls to the master.

Chubby’s protocol permits clients to cache locks—that
is, to hold locks longer than strictly necessary in the hope
that they can be used again by the same client. An event
informs a lock holder if another client has requested a
conflicting lock, allowing the holder to release the lock
just when it is needed elsewhere (see§2.5).

2.8 Sessions and KeepAlives

A Chubby session is a relationship between a Chubby
cell and a Chubby client; it exists for some interval of
time, and is maintained by periodic handshakes called
KeepAlives. Unless a Chubby client informs the master

otherwise, the client’s handles, locks, and cached data all
remain valid provided its session remains valid. (How-
ever, the protocol for session maintenance may require
the client to acknowledge a cache invalidation in order to
maintain its session; see below.)

A client requests a new session on first contacting the
master of a Chubby cell. It ends the session explicitly
either when it terminates, or if the session has been idle
(with no open handles and no calls for a minute).

Each session has an associated lease—an interval of
time extending into the future during which the master
guarantees not to terminate the session unilaterally. The
end of this interval is called the session lease timeout.
The master is free to advance this timeout further into
the future, but may not move it backwards in time.

The master advances the lease timeout in three cir-
cumstances: on creation of the session, when a mas-
ter fail-over occurs (see below), and when it responds
to a KeepAlive RPC from the client. On receiving a
KeepAlive, the master typically blocks the RPC (does
not allow it to return) until the client’s previous lease in-
terval is close to expiring. The master later allows the
RPC to return to the client, and thus informs the client of
the new lease timeout. The master may extend the time-
out by any amount. The default extension is 12s, but an
overloaded master may use higher values to reduce the
number of KeepAlive calls it must process. The client
initiates a new KeepAlive immediately after receiving
the previous reply. Thus, the client ensures that there
is almost always a KeepAlive call blocked at the master.

As well as extending the client’s lease, the KeepAlive
reply is used to transmit events and cache invalidations
back to the client. The master allows a KeepAlive to
return early when an event or invalidation is to be deliv-
ered. Piggybacking events on KeepAlive replies ensures
that clients cannot maintain a session without acknowl-
edging cache invalidations, and causes all Chubby RPCs
to flow from client to master. This simplifies the client,
and allows the protocol to operate through firewalls that
allow initiation of connections in only one direction.

The client maintains a local lease timeout that is a con-
servative approximation of the master’s lease timeout. It
differs from the master’s lease timeout because the client
must make conservative assumptions both of the time its
KeepAlive reply spent in flight, and the rate at which the
master’s clock is advancing; to maintain consistency, we
require that the server’s clock advance no faster than a
known constant factor faster than the client’s.

If a client’s local lease timeout expires, it becomes un-
sure whether the master has terminated its session. The
client empties and disables its cache, and we say that its
session is injeopardy. The client waits a further interval
called the grace period, 45s by default. If the client and
master manage to exchange a successful KeepAlive be-



lease M3

no master

lease M1
lease M2-
- -

??

KeepAlives

lease C1
- -

--

� -

6

jeopardy

�
�
�
��

�
�
�
��C

C
C
CW

C
C
C
CW �
�
�
��

�
�
�
��

6

safe

lease C2

old master dies new master elected

1

2

3 4 6

5

grace period

�
�
�
�� 8

7

C
C
C
CW

OLD MASTER NEW MASTER

CLIENT
lease C3

Figure 2: The role of the grace period in master fail-over

fore the end of the client’s grace period, the client enables
its cache once more. Otherwise, the client assumes that
the session has expired. This is done so that Chubby API
calls do not block indefinitely when a Chubby cell be-
comes inaccessible; calls return with an error if the grace
period ends before communication is re-established.

The Chubby library can inform the application when
the grace period begins via ajeopardyevent. When the
session is known to have survived the communications
problem, asafeevent tells the client to proceed; if the
session times out instead, anexpiredevent is sent. This
information allows the application to quiesce itself when
it is unsure of the status of its session, and to recover
without restarting if the problem proves to be transient.
This can be important in avoiding outages in services
with large startup overhead.

If a client holds a handleH on a node and any oper-
ation onH fails because the associated session has ex-
pired, all subsequent operations onH (exceptClose()

andPoison() ) will fail in the same way. Clients can use
this to guarantee that network and server outages cause
only a suffix of a sequence of operations to be lost, rather
than an arbitrary subsequence, thus allowing complex
changes to be marked as committed with a final write.

2.9 Fail-overs

When a master fails or otherwise loses mastership, it dis-
cards its in-memory state about sessions, handles, and
locks. The authoritative timer for session leases runs at
the master, so until a new master is elected the session
lease timer is stopped; this is legal because it is equiva-
lent to extending the client’s lease. If a master election
occurs quickly, clients can contact the new master before
their local (approximate) lease timers expire. If the elec-
tion takes a long time, clients flush their caches and wait
for the grace period while trying to find the new master.
Thus the grace period allows sessions to be maintained
across fail-overs that exceed the normal lease timeout.

Figure 2 shows the sequence of events in a lengthy
master fail-over event in which the client must use its
grace period to preserve its session. Time increases from
left to right, but times are not to scale. Client ses-

sion leases are shown as thick arrows both as viewed
by both the old and new masters (M1-3, above) and the
client (C1-3, below). Upward angled arrows indicate
KeepAlive requests, and downward angled arrows their
replies. The original master has session lease M1 for
the client, while the client has a conservative approxima-
tion C1. The master commits to lease M2 before inform-
ing the client via KeepAlive reply 2; the client is able to
extend its view of the lease C2. The master dies before
replying to the next KeepAlive, and some time elapses
before another master is elected. Eventually the client’s
approximation of its lease (C2) expires. The client then
flushes its cache and starts a timer for the grace period.

During this period, the client cannot be sure whether
its lease has expired at the master. It does not tear down
its session, but it blocks all application calls on its API to
prevent the application from observing inconsistent data.
At the start of the grace period, the Chubby library sends
a jeopardyevent to the application to allow it to quiesce
itself until it can be sure of the status of its session.

Eventually a new master election succeeds. The mas-
ter initially uses a conservative approximation M3 of the
session lease that its predecessor may have had for the
client. The first KeepAlive request (4) from the client to
the new master is rejected because it has the wrong mas-
ter epoch number (described in detail below). The retried
request (6) succeeds but typically does not extend the
master lease further because M3 was conservative. How-
ever the reply (7) allows the client to extend its lease (C3)
once more, and optionally inform the application that its
session is no longer in jeopardy. Because the grace pe-
riod was long enough to cover the interval between the
end of lease C2 and the beginning of lease C3, the client
saw nothing but a delay. Had the grace period been less
than that interval, the client would have abandoned the
session and reported the failure to the application.

Once a client has contacted the new master, the client
library and master co-operate to provide the illusion to
the application that no failure has occurred. To achieve
this, the new master must reconstruct a conservative ap-
proximation of the in-memory state that the previous
master had. It does this partly by reading data stored
stably on disc (replicated via the normal database repli-



cation protocol), partly by obtaining state from clients,
and partly by conservative assumptions. The database
records each session, held lock, and ephemeral file.

A newly elected master proceeds:
1. It first picks a new clientepoch number, which

clients are required to present on every call. The
master rejects calls from clients using older epoch
numbers, and provides the new epoch number. This
ensures that the new master will not respond to a
very old packet that was sent to a previous master,
even one running on the same machine.

2. The new master may respond to master-location
requests, but does not at first process incoming
session-related operations.

3. It builds in-memory data structures for sessions and
locks that are recorded in the database. Session
leases are extended to the maximum that the pre-
vious master may have been using.

4. The master now lets clients perform KeepAlives,
but no other session-related operations.

5. It emits a fail-over event to each session; this causes
clients to flush their caches (because they may have
missed invalidations), and to warn applications that
other events may have been lost.

6. The master waits until each session acknowledges
the fail-over event or lets its session expire.

7. The master allows all operations to proceed.
8. If a client uses a handle created prior to the fail-over

(determined from the value of a sequence number
in the handle), the master recreates the in-memory
representation of the handle and honours the call. If
such a recreated handle is closed, the master records
it in memory so that it cannot be recreated in this
master epoch; this ensures that a delayed or dupli-
cated network packet cannot accidentally recreate a
closed handle. A faulty client can recreate a closed
handle in a future epoch, but this is harmless given
that the client is already faulty.

9. After some interval (a minute, say), the master
deletes ephemeral files that have no open file han-
dles. Clients should refresh handles on ephemeral
files during this interval after a fail-over. This mech-
anism has the unfortunate effect that ephemeral files
may not disappear promptly if the last client on such
a file loses its session during a fail-over.

Readers will be unsurprised to learn that the fail-over
code, which is exercised far less often than other parts of
the system, has been a rich source of interesting bugs.

2.10 Database implementation

The first version of Chubby used the replicated version
of Berkeley DB [20] as its database. Berkeley DB pro-
vides B-trees that map byte-string keys to arbitrary byte-

string values. We installed a key comparison function
that sorts first by the number of components in a path
name; this allows nodes to by keyed by their path name,
while keeping sibling nodes adjacent in the sort order.
Because Chubby does not use path-based permissions, a
single lookup in the database suffices for each file access.

Berkeley DB’s uses a distributed consensus protocol
to replicate its database logs over a set of servers. Once
master leases were added, this matched the design of
Chubby, which made implementation straightforward.

While Berkeley DB’s B-tree code is widely-used and
mature, the replication code was added recently, and has
fewer users. Software maintainers must give priority to
maintaining and improving their most popular product
features. While Berkeley DB’s maintainers solved the
problems we had, we felt that use of the replication code
exposed us to more risk than we wished to take. As a re-
sult, we have written a simple database using write ahead
logging and snapshotting similar to the design of Bir-
rell et al. [2]. As before, the database log is distributed
among the replicas using a distributed consensus proto-
col. Chubby used few of the features of Berkeley DB,
and so this rewrite allowed significant simplification of
the system as a whole; for example, while we needed
atomic operations, we did not need general transactions.

2.11 Backup

Every few hours, the master of each Chubby cell writes
a snapshot of its database to a GFS file server [7] in a
different building. The use of a separate building ensures
both that the backup will survive building damage, and
that the backups introduce no cyclic dependencies in the
system; a GFS cell in the same building potentially might
rely on the Chubby cell for electing its master.

Backups provide both disaster recovery and a means
for initializing the database of a newly replaced replica
without placing load on replicas that are in service.

2.12 Mirroring

Chubby allows a collection of files to be mirrored from
one cell to another. Mirroring is fast because the files
are small and the event mechanism (§2.5) informs the
mirroring code immediately if a file is added, deleted,
or modified. Provided there are no network problems,
changes are reflected in dozens of mirrors world-wide in
well under a second. If a mirror is unreachable, it re-
mains unchanged until connectivity is restored. Updated
files are then identified by comparing their checksums.

Mirroring is used most commonly to copy config-
uration files to various computing clusters distributed
around the world. A special cell, namedglobal , con-
tains a subtree/ls/global/master that is mirrored to the



subtree/ls/ cell/slave in every other Chubby cell. The
global cell is special because its five replicas are located
in widely-separated parts of the world, so it is almost al-
ways accessible from most of the organization.

Among the files mirrored from the global cell are
Chubby’s own access control lists, various files in which
Chubby cells and other systems advertise their presence
to our monitoring services, pointers to allow clients to
locate large data sets such as Bigtable cells, and many
configuration files for other systems.

3 Mechanisms for scaling

Chubby’s clients are individual processes, so Chubby
must handle more clients than one might expect; we
have seen 90,000 clients communicating directly with a
Chubby master—far more than the number of machines
involved. Because there is just one master per cell, and
its machine is identical to those of the clients, the clients
can overwhelm the master by a huge margin. Thus, the
most effective scaling techniques reduce communication
with the master by a significant factor. Assuming the
master has no serious performance bug, minor improve-
ments in request processing at the master have little ef-
fect. We use several approaches:
• We can create an arbitrary number of Chubby cells;

clients almost always use a nearby cell (found with
DNS) to avoid reliance on remote machines. Our typ-
ical deployment uses one Chubby cell for a data centre
of several thousand machines.

• The master may increase lease times from the default
12s up to around 60s when it is under heavy load, so
it need process fewer KeepAlive RPCs. (KeepAlives
areby far the dominant type of request (see 4.1), and
failure to process them in time is the typical failure
mode of an overloaded server; clients are largely in-
sensitive to latency variation in other calls.)

• Chubby clients cache file data, meta-data, the absence
of files, and open handles to reduce the number of
calls they make on the server.

• We use protocol-conversion servers that translate the
Chubby protocol into less-complex protocols such as
DNS and others. We discuss some of these below.
Here we describe two familiar mechanisms, proxies

and partitioning, that we expect will allow Chubby to
scale further. We do not yet use them in production,
but they are designed, and may be used soon. We have
no present need to consider scaling beyond a factor of
five: First, there are limits on the number of machines
one would wish to put in a data centre or make reliant on
a single instance of a service. Second, because we use
similar machines for Chubby clients and servers, hard-
ware improvements that increase the number of clients
per machine also increase the capacity of each server.

3.1 Proxies

Chubby’s protocol can be proxied (using the same pro-
tocol on both sides) by trusted processes that pass re-
quests from other clients to a Chubby cell. A proxy
can reduce server load by handling both KeepAlive and
read requests; it cannot reduce write traffic, which passes
through the proxy’s cache. But even with aggressive
client caching, write traffic constitutes much less than
one percent of Chubby’s normal workload (see§4.1),
so proxies allow a significant increase in the number of
clients. If a proxy handlesNproxy clients, KeepAlive
traffic is reduced by a factor ofNproxy, which might be
10 thousand or more. A proxy cache can reduce read
traffic by at most the mean amount of read-sharing—a
factor of around 10 (§4.1). But because reads constitute
under 10% of Chubby’s load at present, the saving in
KeepAlive traffic is by far the more important effect.

Proxies add an additional RPC to writes and first-time
reads. One might expect proxies to make the cell tem-
porarily unavailable at least twice as often as before, be-
cause each proxied client depends on two machines that
may fail: its proxy and the Chubby master.

Alert readers will notice that the fail-over strategy de-
scribed in Section 2.9, is not ideal for proxies. We dis-
cuss this problem in Section 4.4.

3.2 Partitioning

As mentioned in Section 2.3, Chubby’s interface was
chosen so that the name space of a cell could be par-
titioned between servers. Although we have not yet
needed it, the code can partition the name space by di-
rectory. If enabled, a Chubby cell would be composed of
N partitions, each of which has a set of replicas and a
master. Every nodeD/C in directoryD would be stored
on the partitionP (D/C) = hash(D) mod N . Note that
the meta-data forD may be stored on a different partition
P (D) = hash(D ′) mod N , whereD ′ is the parent ofD .

Partitioning is intended to enable large Chubby cells
with little communication between the partitions. Al-
though Chubby lacks hard links, directory modified-
times, and cross-directory rename operations, a few op-
erations still require cross-partition communication:
• ACLs are themselves files, so one partition may use

another for permissions checks. However, ACL files
are readily cached; onlyOpen() and Delete() calls
require ACL checks; and most clients read publicly
accessible files that require no ACL.

• When a directory is deleted, a cross-partition call may
be needed to ensure that the directory is empty.

Because each partition handles most calls independently
of the others, we expect this communication to have only
a modest impact on performance or availability.



Unless the number of partitionsN is large, one would
expect that each client would contact the majority of the
partitions. Thus, partitioning reduces read and write traf-
fic on any given partition by a factor ofN but does not
necessarily reduce KeepAlive traffic. Should it be nec-
essary for Chubby to handle more clients, our strategy
involves a combination of proxies and partitioning.

4 Use, surprises and design errors

4.1 Use and behaviour

The following table gives statistics taken as a snapshot of
a Chubby cell; the RPC rate was a seen over a ten-minute
period. The numbers are typical of cells in Google.

time since last fail-over 18 days
fail-over duration 14s
active clients (direct) 22k
additional proxied clients 32k
files open 12k

naming-related 60%
client-is-caching-file entries 230k
distinct files cached 24k
names negatively cached 32k
exclusive locks 1k
shared locks 0
stored directories 8k

ephemeral 0.1%
stored files 22k

0-1k bytes 90%
1k-10k bytes 10%
> 10k bytes 0.2%
naming-related 46%
mirrored ACLs & config info 27%
GFS and Bigtable meta-data 11%
ephemeral 3%

RPC rate 1-2k/s
KeepAlive 93%
GetStat 2%
Open 1%
CreateSession 1%
GetContentsAndStat 0.4%
SetContents 680ppm
Acquire 31ppm

Several things can be seen:
• Many files are used for naming; see§4.3.
• Configuration, access control, and meta-data files

(analogous to file system super-blocks) are common.
• Negative caching is significant.
• 230k/24k≈10 clients use each cached file, on average.
• Few clients hold locks, and shared locks are rare; this

is consistent with locking being used for primary elec-
tion and partitioning data among replicas.

• RPC traffic is dominated by session KeepAlives; there
are a few reads (which are cache misses); there are
very few writes or lock acquisitions.
Now we briefly describe the typical causes of outages

in our cells. If we assume (optimistically) that a cell is
“up” if it has a master that is willing to serve, on a sam-
ple of our cells we recorded 61 outages over a period of
a few weeks, amounting to 700 cell-days of data in to-
tal. We excluded outages due to maintenance that shut
down the data centre. All other causes are included: net-
work congestion, maintenance, overload, and errors due
to operators, software, and hardware. Most outages were
15s or less, and 52 were under 30s; most of our appli-
cations are not affected significantly by Chubby outages
under 30s. The remaining nine outages were caused by
network maintenance (4), suspected network connectiv-
ity problems (2), software errors (2), and overload (1).

In a few dozen cell-years of operation, we have lost
data on six occasions, due to database software errors
(4) and operator error (2); none involved hardware er-
ror. Ironically, the operational errors involved upgrades
to avoid the software errors. We have twice corrected
corruptions caused by software in non-master replicas.

Chubby’s data fits in RAM, so most operations are
cheap. Mean request latency at our production servers
is consistently a small fraction of a millisecond regard-
less of cell load until the cell approaches overload,
when latency increases dramatically and sessions are
dropped. Overload typically occurs when many sessions
(> 90, 000) are active, but can result from exceptional
conditions: when clients made millions of read requests
simultaneously (described in Section 4.3), and when a
mistake in the client library disabled caching for some
reads, resulting in tens of thousands of requests per sec-
ond. Because most RPCs are KeepAlives, the server can
maintain a low mean request latency with many active
clients by increasing the session lease period (see§3).
Group commit reduces the effective work done per re-
quest when bursts of writes arrive, but this is rare.

RPC read latencies measured at the client are limited
by the RPC system and network; they are under 1ms for
a local cell, but 250ms between antipodes. Writes (which
include lock operations) are delayed a further 5-10ms by
the database log update, but by up to tens of seconds if a
recently-failed client cached the file. Even this variabil-
ity in write latency has little effect on the mean request
latency at the server because writes are so infrequent.

Clients are fairly insensitive to latency variation pro-
vided sessions are not dropped. At one point, we added
artificial delays inOpen() to curb abusive clients (see
§4.5); developers noticed only when delays exceeded ten
secondsandwere applied repeatedly. We have found that
the key to scaling Chubby is not server performance; re-
ducing communication to the server can have far greater



impact. No significant effort has been applied to tuning
read/write server code paths; we checked that no egre-
gious bugs were present, then focused on the scaling
mechanisms that could be more effective. On the other
hand, developers do notice if a performance bug affects
the local Chubby cache, which a client may read thou-
sands of times per second.

4.2 Java clients

Google’s infrastructure is mostly in C++, but a growing
number of systems are being written in Java [8]. This
trend presented an unanticipated problem for Chubby,
which has a complex client protocol and a non-trivial
client-side library.

Java encourages portability of entire applications at
the expense of incremental adoption by making it some-
what irksome to link against other languages. The usual
Java mechanism for accessing non-native libraries is
JNI [15], but it is regarded as slow and cumbersome. Our
Java programmers so dislike JNI that to avoid its use they
prefer to translate large libraries into Java, and commit to
supporting them.

Chubby’s C++ client library is 7000 lines (comparable
with the server), and the client protocol is delicate. To
maintain the library in Java would require care and ex-
pense, while an implementation without caching would
burden the Chubby servers. Thus our Java users run
copies of a protocol-conversion server that exports a sim-
ple RPC protocol that corresponds closely to Chubby’s
client API. Even with hindsight, it is not obvious how
we might have avoided the cost of writing, running and
maintaining this additional server.

4.3 Use as a name service

Even though Chubby was designed as a lock service, we
found that its most popular use was as a name server.

Caching within the normal Internet naming system,
the DNS, is based on time. DNS entries have atime-
to-live (TTL), and DNS data are discarded when they
have not been refreshed within that period. Usually it
is straightforward to pick a suitable TTL value, but if
prompt replacement of failed services is desired, the TTL
can become small enough to overload the DNS servers.

For example, it is common for our developers to
run jobs involving thousands of processes, and for each
process to communicate with every other, leading to a
quadratic number of DNS lookups. We might wish to
use a TTL of 60s; this would allow misbehaving clients
to be replaced without excessive delay and is not con-
sidered an unreasonably short replacement time in our
environment. In that case, to maintain the DNS caches

of a single job as small as 3 thousand clients would re-
quire 150 thousand lookups per second. (For compari-
son, a 2-CPU 2.6GHz Xeon DNS server might handle 50
thousand requests per second.) Larger jobs create worse
problems, and several jobs many be running at once. The
variability in our DNS load had been a serious problem
for Google before Chubby was introduced.

In contrast, Chubby’s caching uses explicit invalida-
tions so a constant rate of session KeepAlive requests
can maintain an arbitrary number of cache entries indef-
initely at a client, in the absence of changes. A 2-CPU
2.6GHz Xeon Chubby master has been seen to handle
90 thousand clients communicating directly with it (no
proxies); the clients included large jobs with communi-
cation patterns of the kind described above. The ability
to provide swift name updates without polling each name
individually is so appealing that Chubby now provides
name service for most of the company’s systems.

Although Chubby’s caching allows a single cell to sus-
tain a large number of clients, load spikes can still be
a problem. When we first deployed the Chubby-based
name service, starting a 3 thousand process job (thus
generating 9 million requests) could bring the Chubby
master to its knees. To resolve this problem, we chose to
group name entries into batches so that a single lookup
would return and cache the name mappings for a large
number (typically 100) of related processes within a job.

The caching semantics provided by Chubby are more
precise than those needed by a name service; name
resolution requires only timely notification rather than
full consistency. As a result, there was an opportunity
for reducing the load on Chubby by introducing a sim-
ple protocol-conversion server designed specifically for
name lookups. Had we foreseen the use of Chubby as a
name service, we might have chosen to implement full
proxies sooner than we did in order to avoid the need for
this simple, but nevertheless additional server.

One further protocol-conversion server exists: the
Chubby DNS server. This makes the naming data stored
within Chubby available to DNS clients. This server is
important both for easing the transition from DNS names
to Chubby names, and to accommodate existing applica-
tions that cannot be converted easily, such as browsers.

4.4 Problems with fail-over

The original design for master fail-over (§2.9) requires
the master to write new sessions to the database as they
are created. In the Berkeley DB version of the lock
server, the overhead of creating sessions became a prob-
lem when many processes were started at once. To avoid
overload, the server was modified to store a session in the
database not when it was first created, but instead when it
attempted its first modification, lock acquisition, or open



of an ephemeral file. In addition, active sessions were
recorded in the database with some probability on each
KeepAlive. Thus, the writes for read-only sessions were
spread out in time.

Though it was necessary to avoid overload, this opti-
mization has the undesirable effect that young read-only
sessions may not be recorded in the database, and so may
be discarded if a fail-over occurs. Although such ses-
sions hold no locks, this is unsafe; if all the recorded
sessions were to check in with the new master before the
leases of discarded sessions expired, the discarded ses-
sions could then read stale data for a while. This is rare
in practice; in a large system it is almost certain that some
session will fail to check in, and thus force the new mas-
ter to await the maximum lease time anyway. Neverthe-
less, we have modified the fail-over design both to avoid
this effect, and to avoid a complication that the current
scheme introduces to proxies.

Under the new design, we avoid recording sessions in
the database at all, and instead recreate them in the same
way that the master currently recreates handles (§2.9,¶8).
A new master must now wait a full worst-case lease time-
out before allowing operations to proceed, since it can-
not know whether all sessions have checked in (§2.9,¶6).
Again, this has little effect in practice because it is likely
that not all sessions will check in.

Once sessions can be recreated without on-disc state,
proxy servers can manage sessions that the master is not
aware of. An extra operation available only to proxies
allows them to change the session that locks are asso-
ciated with. This permits one proxy to take over a client
from another when a proxy fails. The only further change
needed at the master is a guarantee not to relinquish locks
or ephemeral file handles associated with proxy sessions
until a new proxy has had a chance to claim them.

4.5 Abusive clients

Google’s project teams are free to set up their own
Chubby cells, but doing so adds to their maintenance bur-
den, and consumes additional hardware resources. Many
services therefore use shared Chubby cells, which makes
it important to isolate clients from the misbehaviour of
others. Chubby is intended to operate within a sin-
gle company, and so malicious denial-of-service attacks
against it are rare. However, mistakes, misunderstand-
ings, and the differing expectations of our developers
lead to effects that are similar to attacks.

Some of our remedies are heavy-handed. For example,
we review the ways project teams plan to use Chubby,
and deny access to the shared Chubby name space until
review is satisfactory. A problem with this approach is
that developers are often unable to predict how their ser-
vices will be used in the future, and how use will grow.

Readers will note the irony of our own failure to predict
how Chubby itself would be used.

The most important aspect of our review is to deter-
mine whether use of any of Chubby’s resources (RPC
rate, disc space, number of files) grows linearly (or
worse) with number of users or amount of data processed
by the project. Any linear growth must be mitigated by
a compensating parameter that can be adjusted to reduce
the load on Chubby to reasonable bounds. Nevertheless
our early reviews were not thorough enough.

A related problem is the lack of performance advice in
most software documentation. A module written by one
team may be reused a year later by another team with
disastrous results. It is sometimes hard to explain to in-
terface designers that they must change their interfaces
not because they are bad, but because other developers
may be less aware of the cost of an RPC.

Below we list some problem cases we encountered.
Lack of aggressive cachingOriginally, we did not ap-

preciate the critical need to cache the absence of files,
nor to reuse open file handles. Despite attempts at ed-
ucation, our developers regularly write loops that retry
indefinitely when a file is not present, or poll a file by
opening it and closing it repeatedly when one might ex-
pect they would open the file just once.

At first we countered these retry-loops by introduc-
ing exponentially-increasing delays when an application
made many attempts toOpen() the same file over a short
period. In some cases this exposed bugs that develop-
ers acknowledged, but often it required us to spend yet
more time on education. In the end it was easier to make
repeatedOpen() calls cheap.

Lack of quotasChubby was never intended to be used
as a storage system for large amounts of data, and so it
has no storage quotas. In hindsight, this was naı̈ve.

One of Google’s projects wrote a module to keep track
of data uploads, storing some meta-data in Chubby. Such
uploads occurred rarely and were limited to a small set of
people, so the space was bounded. However, two other
services started using the same module as a means for
tracking uploads from a wider population of users. In-
evitably, these services grew until the use of Chubby was
extreme: a single 1.5MByte file was being rewritten in
its entirety on each user action, and the overall space
used by the service exceeded the space needs of all other
Chubby clients combined.

We introduced a limit on file size (256kBytes), and
encouraged the services to migrate to more appropri-
ate storage systems. But it is difficult to make signifi-
cant changes to production systems maintained by busy
people—it took approximately a year for the data to be
migrated elsewhere.

Publish/subscribeThere have been several attempts
to use Chubby’s event mechanism as a publish/subscribe



system in the style of Zephyr [6]. Chubby’s heavyweight
guarantees and its use of invalidation rather than update
in maintaining cache consistency make it a slow and inef-
ficient for all but the most trivial publish/subscribe exam-
ples. Fortunately, all such uses have been caught before
the cost of redesigning the application was too large.

4.6 Lessons learned

Here we list lessons, and miscellaneous design changes
we might make if we have the opportunity:

Developers rarely consider availabilityWe find that
our developers rarely think about failure probabilities,
and are inclined to treat a service like Chubby as though
it were always available. For example, our develop-
ers once built a system employing hundred of machines
that initiated recovery procedures taking tens of minutes
when Chubby elected a new master. This magnified the
consequences of a single failure by a factor of a hundred
both in timeand the number of machines affected. We
would prefer developers to plan for short Chubby out-
ages, so that such an event has little or no affect on their
applications. This is one of the arguments for coarse-
grained locking, discussed in Section 2.1.

Developers also fail to appreciate the difference be-
tween a service being up, and that service being available
to their applications. For example, the global Chubby
cell (see§2.12), is almost always up because it is rare for
more than two geographically distant data centres to be
down simultaneously. However, itsobserved availabil-
ity for a given clientis usually lower than the observed
availability of the client’s local Chubby cell. First, the lo-
cal cell is less likely to be partitioned from the client, and
second, although the local cell may be down often due to
maintenance, the same maintenance affects the client di-
rectly, so Chubby’s unavailability is not observed by the
client.

Our API choices can also affect the way developers
chose to handle Chubby outages. For example, Chubby
provides an event that allows clients to detect when a
master fail-over has taken place. The intent was for
clients to check for possible changes, as other events
may have been lost. Unfortunately, many developers
chose to crash their applications on receiving this event,
thus decreasing the availability of their systems substan-
tially. We might have done better to send redundant “file
change” events instead, or even to ensure that no events
were lost during a fail-over.

At present we use three mechanisms to prevent de-
velopers from being over-optimistic about Chubby avail-
ability, especially that of the global cell. First, as pre-
viously mentioned (§4.5), we review how project teams
plan to use Chubby, and advise them against techniques
that would tie their availability too closely to Chubby’s.

Second, we now supply libraries that perform some high-
level tasks so that developers are automatically isolated
from Chubby outages. Third, we use the post-mortem
of each Chubby outage as a means not only of eliminat-
ing bugs in Chubby and our operational procedures, but
of reducing the sensitivity of applications to Chubby’s
availability—both can lead to better availability of our
systems overall.

Fine-grained locking could be ignoredAt the end of
Section 2.1 we sketched a design for a server that clients
could run to provide fine-grained locking. It is perhaps
a surprise that so far we have not needed to write such
a server; our developers typically find that to optimize
their applications, they must remove unnecessary com-
munication, and that often means finding a way to use
coarse-grained locking.

Poor API choices have unexpected affectsFor the
most part, our API has evolved well, but one mistake
stands out. Our means for cancelling long-running calls
are theClose() andPoison() RPCs, which also discard
the server state for the handle. This prevents handles
that can acquire locks from being shared, for example,
by multiple threads. We may add aCancel() RPC to
allow more sharing of open handles.

RPC use affects transport protocolsKeepAlives are
used both for refreshing the client’s session lease, and for
passing events and cache invalidations from the master
to the client. This design has the automatic and desirable
consequence that a client cannot refresh its session lease
without acknowledging cache invalidations.

This would seem ideal, except that it introduced a ten-
sion in our choice of protocol. TCP’s back off policies
pay no attention to higher-level timeouts such as Chubby
leases, so TCP-based KeepAlives led to many lost ses-
sions at times of high network congestion. We were
forced to send KeepAlive RPCs via UDP rather than
TCP; UDP has no congestion avoidance mechanisms, so
we would prefer to use UDP only when high-level time-
bounds must be met.

We may augment the protocol with an additional TCP-
basedGetEvent() RPC which would be used to com-
municate events and invalidations in the normal case,
used in the same way KeepAlives. The KeepAlive re-
ply would still contain a list of unacknowledged events
so that events must eventually be acknowledged.

5 Comparison with related work

Chubby is based on well-established ideas. Chubby’s
cache design is derived from work on distributed file sys-
tems [10]. Its sessions and cache tokens are similar in be-
haviour to those in Echo [17]; sessions reduce the over-
head of leases [9] in the V system. The idea of expos-
ing a general-purpose lock service is found in VMS [23],



though that system initially used a special-purpose high-
speed interconnect that permitted low-latency interac-
tions. Like its caching model, Chubby’s API is based
on a file-system model, including the idea that a file-
system-like name space is convenient for more than just
files [18, 21, 22].

Chubby differs from a distributed file system such as
Echo or AFS [10] in its performance and storage aspira-
tions: Clients do not read, write, or store large amounts
of data, and they do not expect high throughput or even
low-latency unless the data is cached. They do ex-
pect consistency, availability, and reliability, but these
attributes are easier to achieve when performance is less
important. Because Chubby’s database is small, we are
able to store many copies of it on-line (typically five
replicas and a few backups). We take full backups mul-
tiple times per day, and via checksums of the database
state, we compare replicas with one another every few
hours. The weakening of the normal file system perfor-
mance and storage requirements allows us to serve tens
of thousands of clients from a single Chubby master. By
providing a central point where many clients can share
information and co-ordinate activities, we have solved a
class of problems faced by our system developers.

The large number of file systems and lock servers de-
scribed in the literature prevents an exhaustive compari-
son, so we provide details on one: we chose to compare
with Boxwood’s lock server [16] because it was designed
recently, it too is designed to run in a loosely-coupled en-
vironment, and yet its design differs in various ways from
Chubby, some interesting and some incidental.

Chubby implements locks, a reliable small-file storage
system, and a session/lease mechanism in a single ser-
vice. In contrast, Boxwood separates these into three:
a lock service, a Paxos service(a reliable repository
for state), and afailure detection servicerespectively.
The Boxwood system itself uses these three components
together, but another system could use these building
blocks independently. We suspect that this difference
in design stems from a difference in target audience.
Chubby was intended for a diverse audience and appli-
cation mix; its users range from experts who create new
distributed systems, to novices who write administration
scripts. For our environment, a large-scale shared ser-
vice with a familiar API seemed attractive. In contrast,
Boxwood provides a toolkit that (to our eyes, at least) is
appropriate for a smaller number of more sophisticated
developers working on projects that may share code but
need not be used together.

In many cases, Chubby provides a higher-level inter-
face than Boxwood. For example, Chubby combines
the lock and file names spaces, while Boxwood’s lock
names are simple byte sequences. Chubby clients cache
file state by default; a client of Boxwood’s Paxos service

could implement caching via the lock service, but would
probably use the caching provided by Boxwood itself.

The two systems have markedly different default pa-
rameters, chosen for different expectations: Each Box-
wood failure detector is contacted by each client ev-
ery 200ms with a timeout of 1s; Chubby’s default lease
time is 12s and KeepAlives are exchanged every 7s.
Boxwood’s subcomponents use two or three replicas to
achieve availability, while we typically use five repli-
cas per cell. However, these choices alone do not sug-
gest a deep design difference, but rather an indication of
how parameters in such systems must be adjusted to ac-
commodate more client machines, or the uncertainties of
racks shared with other projects.

A more interesting difference is the introduction of
Chubby’s grace period, which Boxwood lacks. (Re-
call that the grace period allows clients to ride out long
Chubby master outages without losing sessions or locks.
Boxwood’s “grace period” is the equivalent of Chubby’s
“session lease”, a different concept.) Again, this differ-
ence is the result of differing expectations about scale
and failure probability in the two systems. Although
master fail-overs are rare, a lost Chubby lock is expen-
sive for clients.

Finally, locks in the two systems are intended for dif-
ferent purposes. Chubby locks are heavier-weight, and
need sequencers to allow externals resources to be pro-
tected safely, while Boxwood locks are lighter-weight,
and intended primarily for use within Boxwood.

6 Summary

Chubby is a distributed lock service intended for coarse-
grained synchronization of activities within Google’s
distributed systems; it has found wider use as a name
service and repository for configuration information.

Its design is based on well-known ideas that have
meshed well: distributed consensus among a few replicas
for fault tolerance, consistent client-side caching to re-
duce server load while retaining simple semantics, timely
notification of updates, and a familiar file system inter-
face. We use caching, protocol-conversion servers, and
simple load adaptation to allow it scale to tens of thou-
sands of client processes per Chubby instance. We ex-
pect to scale it further via proxies and partitioning.

Chubby has become Google’s primary internal name
service; it is a common rendezvous mechanism for sys-
tems such as MapReduce [4]; the storage systems GFS
and Bigtable use Chubby to elect a primary from redun-
dant replicas; and it is a standard repository for files that
require high availability, such as access control lists.



7 Acknowledgments

Many contributed to the Chubby system: Sharon Perl
wrote the replication layer on Berkeley DB; Tushar
Chandra and Robert Griesemer wrote the replicated
database that replaced Berkeley DB; Ramsey Haddad
connected the API to Google’s file system interface;
Dave Presotto, Sean Owen, Doug Zongker and Praveen
Tamara wrote the Chubby DNS, Java, and naming
protocol-converters, and the full Chubby proxy respec-
tively; Vadim Furman added the caching of open han-
dles and file-absence; Rob Pike, Sean Quinlan and San-
jay Ghemawat gave valuable design advice; and many
Google developers uncovered early weaknesses.

References

[1] B IRMAN , K. P., AND JOSEPH, T. A. Exploiting virtual
synchrony in distributed systems. In11th SOSP(1987),
pp. 123–138.

[2] B IRRELL, A., JONES, M. B., AND WOBBER, E. A sim-
ple and efficient implementation for small databases. In
11th SOSP(1987), pp. 149–154.

[3] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C.,
WALLACH , D. A., BURROWS, M., CHANDRA , T.,
FIKES, A., AND GRUBER, R. Bigtable: A distributed
structured data storage system. In7th OSDI(2006).

[4] DEAN, J.,AND GHEMAWAT, S. MapReduce: Simplified
data processing on large clusters. In6th OSDI (2004),
pp. 137–150.

[5] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.
Impossibility of distributed consensus with one faulty
process.J. ACM 32, 2 (April 1985), 374–382.

[6] FRENCH, R. S.,AND KOHL, J. T. The Zephyr Program-
mer’s Manual. MIT Project Athena, Apr. 1989.

[7] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The
Google file system. In19th SOSP(Dec. 2003), pp. 29–43.

[8] GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G.
Java Language Spec. (2nd Ed.). Addison-Wesley, 2000.

[9] GRAY, C. G., AND CHERITON, D. R. Leases: An ef-
ficient fault-tolerant mechanism for distributed file cache
consistency. In12th SOSP(1989), pp. 202–210.

[10] HOWARD, J., KAZAR , M., MENEES, S., NICHOLS,
D., SATYANARAYANAN , M., SIDEBOTHAM , R., AND

WEST, M. Scale and performance in a distributed file
system.ACM TOCS 6, 1 (Feb. 1988), 51–81.

[11] JEFFERSON, D. Virtual time. ACM TOPLAS, 3 (1985),
404–425.

[12] LAMPORT, L. The part-time parliament.ACM TOCS 16,
2 (1998), 133–169.

[13] LAMPORT, L. Paxos made simple.ACM SIGACT News
32, 4 (2001), 18–25.

[14] LAMPSON, B. W. How to build a highly available system
using consensus. InDistributed Algorithms, vol. 1151 of
LNCS. Springer–Verlag, 1996, pp. 1–17.

[15] L IANG , S. Java Native Interface: Programmer’s Guide
and Reference. Addison-Wesley, 1999.

[16] MACCORMICK, J., MURPHY, N., NAJORK, M.,
THEKKATH , C. A., AND ZHOU, L. Boxwood: Abstrac-
tions as the foundation for storage infrastructure. In6th
OSDI (2004), pp. 105–120.

[17] MANN , T., BIRRELL, A., HISGEN, A., JERIAN, C.,
AND SWART, G. A coherent distributed file cache with
directory write-behind.TOCS 12, 2 (1994), 123–164.

[18] MCJONES, P.,AND SWART, G. Evolving the UNIX sys-
tem interface to support multithreaded programs. Tech.
Rep. 21, DEC SRC, 1987.

[19] OKI , B., AND L ISKOV, B. Viewstamped replication: A
general primary copy method to support highly-available
distributed systems. InACM PODC(1988).

[20] OLSON, M. A., BOSTIC, K., AND SELTZER, M. Berke-
ley DB. In USENIX(June 1999), pp. 183–192.

[21] PIKE , R., PRESOTTO, D. L., DORWARD, S., FLAN -
DRENA, B., THOMPSON, K., TRICKEY, H., AND WIN-
TERBOTTOM, P. Plan 9 from Bell Labs.Computing Sys-
tems 8, 2 (1995), 221–254.

[22] RITCHIE, D. M., AND THOMPSON, K. The UNIX time-
sharing system.CACM 17, 7 (1974), 365–375.

[23] SNAMAN , JR., W. E., AND THIEL , D. W. The
VAX/VMS distributed lock manager.Digital Technical
Journal 1, 5 (Sept. 1987), 29–44.

[24] Y IN , J., MARTIN , J.-P., VENKATARAMANI , A.,
ALVISI , L., AND DAHLIN , M. Separating agreement
from execution for byzantine fault tolerant services. In
19th SOSP(2003), pp. 253–267.


