
PolarFS: An Ultra-low Latency and Failure Resilient
Distributed File System for Shared Storage Cloud Database

Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu,
Song Zheng, Yuhui Wang, Guoqing Ma

{mingsong.cw, zhenjun.lzj, wangpeng.wangp, chensen.cs, caifeng.zhucaifeng,
catttree.zs, yuhui.wyh, guoqing.mgq}@alibaba-inc.com

ABSTRACT
PolarFS is a distributed file system with ultra-low latency
and high availability, designed for the POLARDB database
service, which is now available on the Alibaba Cloud. Po-
larFS utilizes a lightweight network stack and I/O stack in
user-space, taking full advantage of the emerging techniques
like RDMA, NVMe, and SPDK. In this way, the end-to-
end latency of PolarFS has been reduced drastically and
our experiments show that the write latency of PolarFS is
quite close to that of local file system on SSD. To keep
replica consistency while maximizing I/O throughput for
PolarFS, we develop ParallelRaft, a consensus protocol de-
rived from Raft, which breaks Raft’s strict serialization by
exploiting the out-of-order I/O completion tolerance capa-
bility of databases. ParallelRaft inherits the understand-
ability and easy implementation of Raft while providing
much better I/O scalability for PolarFS. We also describe
the shared storage architecture of PolarFS, which gives a
strong support for POLARDB.

PVLDB Reference Format:
Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song
Zheng, Yuhui Wang, Guoqing Ma. PolarFS: An Ultra-low La-
tency and Failure Resilient Distributed File System for Shared
Storage Cloud Database. PVLDB, 11 (12): 1849 - 1862, 2018.
DOI: https://doi.org/10.14778/3229863.3229872

1. INTRODUCTION
Recently, decoupling storage from compute has become a

trend for cloud computing industry. Such design makes the
architecture more flexible and helps to exploit shared stor-
age capabilities: (1) Compute and storage nodes can use
different types of server hardware and can be customized
separately. For example, the compute nodes need no longer
to consider the ratio of memory size to disk capacity, which
is highly dependent on the application scenario and hard to
predict. (2) Disks on storage nodes in a cluster can form a
single storage pool, which reduces the risk of fragmentation,
imbalance of disk usage among nodes, and space wastage.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3229872

The capacity and throughput of a storage cluster can be eas-
ily scaled out transparently. (3) Since data are all stored on
the storage cluster, there is no local persistent state on com-
pute nodes, making it easier and faster to perform database
migration. Data reliability can also be improved because of
the data replication and other high availability features of
the underlying distributed storage system.

Cloud database services also benefit from this architec-
ture. First, databases can build on a more secure and eas-
ily scalable environment based on virtualization techniques,
such as Xen [4], KVM [19] or Docker [26]. Second, some key
features of databases, such as multiple read-only instances
and checkpoints could be enhanced with the support of back-
end storage clusters which provide fast I/O, data sharing,
and snapshot.

However, data storage technology continues to change at
a rapid pace, so current cloud platforms have trouble tak-
ing full advantage of the emerging hardware standards such
as RDMA and NVMe SSD. For instance, some widely used
open-source distributed file systems, such as HDFS [5] and
Ceph [35], are found to have much higher latency than local
disks. When the latest PCIe SSDs are used, the perfor-
mance gap could even reach orders of magnitude. The per-
formance of relational databases like MySQL running di-
rectly on these storage systems is significantly worse than
that on local PCIe SSDs with the same CPU and memory
configurations.

To tackle this issue, cloud computing vendors, like AWS,
Google Cloud Platform and Alibaba Cloud, provide instance
store. An instance store uses a local SSD and high I/O
VM instance to fulfill customers’ needs of high performance
databases. Unfortunately, running cloud databases on an
instance store has several drawbacks. First, instance store
has limited capacity, not suitable for a large database ser-
vice. Second, it cannot survive underlying disk drive fail-
ure. Databases have to manage data replication by them-
selves for data reliability. Third, an instance store uses a
general-purpose file system, such as ext4 or XFS. When us-
ing low I/O latency hardwares like RDMA or PCIe SSD, the
message-passing cost between kernel space and user space
compromises the I/O throughput. Even worse, an instance
store cannot support a shared-everything database cluster
architecture, which is a key feature for an advanced cloud
database service.

In this paper, we describe our design and implementa-
tion of PolarFS , a distributed file system, which provides
ultra-low latency, high throughput and high availability by
adopting the following mechanisms. First, PolarFS takes full

1849



Primary Read Only Read Only

S1 S2 Sn

Shared Storage

Read/Write Read Read

…

Figure 1: The POLARDB architecture.

advantage of emerging hardware such as RDMA and NVMe
SSD, and implements a lightweight network stack and I/O
stack in user space to avoid trapping into kernel and dealing
with kernel locks. Second, PolarFS provides a POSIX-like
file system API, which is intended to be compiled into the
database process and replace the file system interfaces pro-
vided by operating system, so that the whole I/O path can
be kept in user space. Third, the I/O model of the Po-
larFS’s data plane is also designed to eliminate locks and
avoid context switches on the critical data path: all unnec-
essary memory copies are also eliminated, meanwhile DMA
is heavily utilized to transfer data between main memory
and RDMA NIC/NVMe disks. With all these features, the
end-to-end latency of PolarFS has been reduced drastically,
being quite close to that of local file system on SSD.

Distributed file systems deployed in the cloud production
environment typically have thousands of machines. Within
such a scale, failures caused by hardware or software bugs
are common. Therefore, a consensus protocol is needed to
ensure that all committed modifications will not get lost in
corner cases, and replicas can always reach agreement and
become bitwise identical.

The Paxos family[23, 22, 7, 18, 38] of protocols is widely
recognized for solving consensus. Raft[28], a variant of Paxos,
is much easier to understand and implement. Many dis-
tributed systems are developed based on Raft. However,
once Raft was applied to PolarFS, we found that Raft se-
riously impedes the I/O scalability of PolarFS when using
extra low latency hardware (e.g. NVMe SSD and RDMA
whose latency are on the order of tens of microseconds). So
we developed ParallelRaft, an enhanced consensus protocol
based on Raft, which allows out-of-order log acknowledging,
committing and applying, while letting PolarFS comply with
traditional I/O semantics. With this protocol, parallel I/O
concurrency of PolarFS has been improved significantly.

Finally, on top of PolarFS, we implemented POLARDB,
a relational database system modified from AliSQL (a fork
of MySQL/InnoDB) [2], which is recently available as a
database service on Alibaba cloud computing platform. PO-
LARDB follows the shared storage architecture, and sup-
ports multiple read-only instances. As shown in figure 1, the
database nodes of POLARDB are divided into two types: a
primary node and read only (RO) nodes. The primary node
can handle both read and write queries, while the RO node
only provides read queries. Both primary and RO nodes
share redo log files and data files under the same database
directory in PolarFS.

PolarFS supports the POLARDB with following features:
(1) PolarFS can synchronize the modification of file meta-
data (e.g. file truncation or expansion, file creation or dele-

tion) from primary nodes to RO nodes, so that all changes
are visible for RO nodes. (2) PolarFS ensures concurrent
modifications to file metadata are serialized so that the file
system itself is consistent across all database nodes. (3) In
case of a network partition, two or more nodes might act as
primary nodes writing shared files concurrently in PolarFS,
PolarFS can ensure that only the real primary node is served
successfully, preventing data corruption..

The contributions of this paper include:

• We describe how to build PolarFS, a state-of-art dis-
tributed file system with ultra-low latency, leveraging
emerging hardware and software optimizations. (Sec-
tion 3, 4, and 7)

• We propose ParallelRaft, a new protocol to achieve
consensus. ParallelRaft is designed for large scale,
fault-tolerant and distributed file system. It is mod-
ified based on Raft to suit storage semantics. Com-
pared with Raft, ParallelRaft provides better support
for high concurrent I/Os in PolarFS. (Section 5)

• We present the key features of PolarFS which give a
strong support POLARDB’s share storage architec-
ture. (Section 6)

Other parts of the paper are structured as follows. Section
2 gives background information about emerging hardware
that PolarFS uses. Section 8 presents and discusses our
experimental evaluation. Section 9 reviews the related work
and Section 10 concludes the paper.

2. BACKGROUND
This section briefly describes NVMe SSD, RDMA and

their corresponding programming models.
NVMe SSD. SSD is evolving from legacy protocols like

SAS, SATA to NVMe, which has a high-bandwidth and low-
latency I/O interconnect. A NVMe SSD can deliver up to
500K I/O operations per second (IOPS) at sub 100µs la-
tency, and the latest 3D XPoint SSD even cuts I/O latency
down to around 10µs while providing much better QoS than
NAND SSDs. As SSDs are getting faster, the overhead of
the legacy kernel I/O stack becomes the bottleneck [37, 36,
31]. As revealed by previous research [6], there are approx-
imately 20,000 instructions needed to be executed only to
complete a single 4KB I/O request. Recently, Intel released
Storage Performance Development Kit (SPDK) [12], a suite
of tools and libraries for building high performance NVMe
device based, scalable, user-mode storage applications. It
achieves high performance by moving all necessary drivers
into user space and operating in a polling mode instead of
relying on interrupts, which avoids kernel context switches
and eliminates interrupt handling overhead.

RDMA. RDMA technique provides a low-latency net-
work communication mechanism between servers inside data
center. For instance, transferring a 4KB data packet be-
tween two nodes connecting to the same switch takes about
7µs, which is much faster than traditional TCP/IP network
stack. A number of previous works [9, 14, 15, 17, 24, 25, 30]
show that RDMA can improve the system performance. Ap-
plications interact with the RDMA NIC by accessing a queue
pair (QP) via the Verbs API. A QP is composed of a send
queue and a receive queue, besides, each QP is associated an-
other completion queue (CQ). The CQ is typically used as

1850



!

"#$%&'()*+,

-.*%/%*%

"#$%&0*&$

"123456

$)789:

+,;<=>

"#$%&'()*+,

?#$;-.>

/%*% &#;*.

+#<*&#$ &#;*.

@#:*> @#:*A

"%&%$$.$4%9*

"123456

$)789:

+,;<=>

?#$;-.>

+,;<=A +,;<=A

"123456

$)789:

+,;<=>

?#$;-.A

+,;<=A

+,;<=

0,;<='.&?.&

+,;<=

0,;<='.&?.&

+,;<=

0,;<='.&?.&

+,;<=

0,;<='.&?.&

+%+,.

Figure 2: Storage Layer Abstraction.

the polling target for completion event/signal. Send/Recv
verbs are commonly referred to as two-sided operations since
each Send operation needs a matching Recv operation in-
voked by the remote process, while Read/Write verbs are
known as one-sided operations because remote memory is
manipulated by the NIC without involving any remote CPU.

PolarFS uses a hybrid of Send/Recv and Read/Write verbs.
Small payloads are transferred by Send/Recv verbs directly.
For a large chunk of data or a batch of data, nodes nego-
tiate about the destination memory address on the remote
node using Send/Recv verbs, and then complete the actual
data transmission over Read/Write verbs. PolarFS elimi-
nates context switches by polling the CQ in user space in-
stead of relying on interrupts.

3. ARCHITECTURE
PolarFS consists of two main layers. The lower one is

storage management, and the upper one manages file system
metadata and provides file system API. Storage layer takes
charge of all the disk resource of the storage nodes, and pro-
vides a database volume for every database instance. File
system layer supports file management in the volume, and
is responsible for mutual exclusion and synchronization of
concurrent accesses to file system metadata. For a database
instance, PolarFS stores the file system metadata in its vol-
ume.

Here we present major components in a PolarFS cluster,
as illustrated in Figure 2. libpfs is a user space file system
implementation library with a set of POSIX-like file system
API, which is linked into the POLARDB process; Polar-
Switch resides on compute nodes to redirect I/O requests
from applications to ChunkServers; ChunkServers are de-
ployed on storage nodes to serve I/O requests; PolarCtrl
is the control plane, which includes a set of masters imple-
mented in micro-service, and agents deployed on all com-
pute and storage nodes. PolarCtrl uses a MySQL instance
as metadata repository.

3.1 File System Layer
The file system layer provides a shared and parallel file

system, designed to be accessed concurrently by multiple
database nodes. For example, in the scenario of POLARDB,
when the primary database node executes a create table
DDL statement a new file is created in PolarFS, enabling

Figure 3: libpfs interfaces

select statements executed on a RO node to access the file.
Therefore, it is necessary to synchronize modifications of
file system metadata across nodes to keep consistent, while
serializing concurrent modifications to avoid the metadata
being corrupted.

3.1.1 libpfs
The libpfs is a lightweight file system implementation run-

ning completely in user space. As shown in Figure 3, The
libpfs provides a set of POSIX-like file system API. It is
quite easy to port a database to run on top of PolarFS.

When a database node starts up, the pfs mount attaches
to its volume and initializes the file system state. The vol-
name is the global identifier of the volume allocated to the
POLARDB instance, and the hostid is the index of the
database node which is used as a identifier in the disk paxos
voting algorithm (see Section 6.2). During the mounting
process, the libpfs loads file system metadata from the vol-
ume, and constructs data structures e.g. the directory tree,
the file mapping table and the block mapping table in the

1851



main memory (see Section 6.1). The pfs umount detaches
the volume and releases resources during database destruc-
tion. After the volume space grows, the pfs mount growfs
should be called to recognize newly allocated blocks and
mark them available. Rest functions are file and directory
operations which are equivalent to counterparts in POSIX
API. Details of file system metadata management is de-
scribed in Section 6.

3.2 Storage Layer
The storage layer provides interfaces to manage and ac-

cess volumes for the file system layer. A volume is allocated
for each database instance, and consists of a list of chunks.
The capacity of a volume ranges from 10 GB to 100 TB,
which meets the requirements of vast majority of databases,
and the capacity can be expanded on demand by appending
chunks to the volume. A volume can be randomly accessed
(read, write) in 512B alignment, like traditional storage de-
vices. Modifications to the same chunk carried in a single
I/O request are atomic.

Chunk. A volume is divided into chunks which are dis-
tributed among ChunkServers. A chunk is the minimum
unit of data distribution. A single Chunk does not span
across more than one disk on ChunkServer and its replicas
are replicated to three distinct ChunkServers by default (al-
ways located in different racks). Chunks can be migrated
between ChunkServers when hot spots exist.

The size of a chunk is set to 10 GB in PolarFS, which is sig-
nificantly larger than the unit size in other systems, e.g. the
64 MB chunk size used by GFS [11]. This choice decreases
the amount of metadata maintained in metadata database
by orders of magnitude, and also simplifies the metadata
management. For example, a 100 TB volume only contains
10,000 chunks. It is a relatively small cost to store 10,000
records in metadata database. Moreover, all of these meta-
data can be cached in the main memory of PolarSwitch, thus
avoiding the extra metadata accessing costs on the critical
I/O path.

The downside of this design is that the hot spot on one
chunk cannot be further separated. But thanks to the high
ratio of chunks to servers (now is around 1000:1), typically
a large number of database instances (thousands or more),
and the inter-server chunk migration capability, PolarFS can
achieve load balance at the whole system level.

Block. A chunk is further divided into blocks inside the
ChunkServer, and each block is set to 64 KB. Blocks are
allocated and mapped to a chunk on demand to achieve
thin provisioning. A 10 GB chunk contains 163,840 data
blocks. The mapping table of chunk’s LBA (Logical Block
Address, the linear address range from 0 to 10 GB) to blocks
are stored locally in ChunkServer, together with the bitmap
of free blocks on each disk. The mapping table of a single
chunk occupies 640 KB memory, which is quite small and
can be cached in memory of the ChunkServer.

3.2.1 PolarSwitch
PolarSwitch is a daemon process deployed on the database

server, together with one or more database instances. In
each database process, libpfs forwards I/O requests to the
PolarSwitch daemon. Each request contains addressing in-
formation like the volume identifier, offset and length, from
which the related chunks can be identified. An I/O request
may span across chunks, in that case, the request is further

divided into multiple sub-requests. Finally an elemental re-
quest is sent to the ChunkServer where the leader of the
chunk resides.

PolarSwitch finds out the locations of all replicas belong-
ing to a chunk by looking up the local metadata cache, which
is synchronized with PolarCtrl. Replicas of a chunk form a
consensus group, one is the leader and others are followers.
Only the leader can answer I/O requests. leadership changes
in the consensus group are also synchronized and cached
in PolarSwitch’s local cache. If response timeout happens,
PolarSwitch would keep retrying with exponential backoff
while detecting whether leader election happens, switch to
new leader and retransmit immediately if it does.

3.2.2 ChunkServer
ChunkServers are deployed on storage servers. There are

multiple ChunkServer processes running on a storage server,
each ChunkServer owns a standalone NVMe SSD disk and
is bound to a dedicated CPU core, so that there is no re-
source contention between two ChunkServers. ChunkServer
is responsible to store chunks and provides random accesses
to chunks. Each chunk contains a write ahead log (WAL),
modifications to the chunk are appended to the log before
updating chunk blocks to ensure atomicity and durability.
ChunkServer uses a piece of fixed size 3D XPoint SSD buffer
as a write cache for WAL, logs are preferred to be placed in
3D XPoint buffer. If the buffer is full, ChunkServer will try
to recycle dated logs. If there is still not enough space in
3D XPoint buffer, logs are written into NVMe SSD instead.
Chunk blocks are always written into NVMe SSD.

ChunkServers replicate I/O requests with each other us-
ing the ParallelRaft protocol and form a consensus group.
A ChunkServer leaves its consensus group for various rea-
sons, and may be handled differently. Sometimes it’s caused
by occasional and temporary faults, e.g. network unavail-
able temporarily, or the server is upgraded and rebooted.
In this situation it’s better to wait for the disconnected
ChunkServer to come back online, join the group again and
catch up with others. In other cases, faults are permanent
or tend to last for a long time, e.g. the server is damaged or
taken offline. Then all chunks on the missing ChunkServer
should be migrated to others, in order to regain a sufficient
number of replicas.

A disconnected ChunkServer will always make effort to re-
join the consensus group autonomously, in order to shorten
unavailable time. However complementary decisions can be
made by PolarCtrl. PolarCtrl periodically collects the list
of ChunkServers that has disconnected before, and picks off
ChunkServers seems like having permanent fault. Some-
times it is hard to make the decision. A ChunkServer with
a slow disk, for example, may have a much longer latency
than others, but it can always respond to aliveness probes.
Machine learning algorithms based on performance metrics
statistics of key components is helpful.

3.2.3 PolarCtrl
PolarCtrl is the control plane of a PolarFS cluster. It is de-

ployed on a group of dedicated machines (at least three) to
provide high-available services. PolarCtrl provides cluster
controlling services, e.g. node management, volume man-
agement, resource allocation, metadata synchronization, mon-
itoring and so on. PolarCtrl is responsible for (1) keeping
track of the membership and liveness of all ChunkServers

1852



!
"
#
$

!"#$ %%&'

(&#)*!+,

!"##$% &'($

!"#$

%&'()*+

!"#$ %%&'

(&#)*!+,

!"##$% &'($

-./01%23456

-78)(&9

/3:;<'
,-./+ 0 12314315

,-./+ 2 15316312

7 7

,-./+ / 1831/31+

=>?

!"#$ %%&'

(&#)*!+,

!"##$% &'($

,6@AB%$1C$1>

,6@AB%$1C$1D ,6@AB%$1C$1E

(3AF

9@<<$1

=D?

=G?

=DH?

!
"
#
$

Figure 4: The Write I/O Execution Flow.

in the cluster, starting migration of chunk replicas from one
server to the others if the ChunkServer is overloaded or un-
available for duration longer than a threshold value. (2)
maintaining the state of all volumes and chunk locations
in metadata database. (3) creating volumes and assigning
chunks to ChunkServers. (4) synchronizing metadata to Po-
larSwitch using both push and pull methods. (5) monitor-
ing the latency/IOPS metrics of each volume and chunk,
collecting trace data along the I/O path. (6) scheduling
inner-replicas and inter-replicas CRC checks periodically.

PolarCtrl periodically synchronizes cluster metadata (e.g.
chunk locations of a volume) with PolarSwitch through con-
trol plane commands. PolarSwitch saves the metadata in its
local cache. When receiving an I/O request from libpfs, Po-
larSwitch routes the request to the corresponding ChunkServer
according to the local cache. Occasionally, PolarSwitch would
fetch metadata from PolarCtrl if the local cache falls behind
the centre metadata repository.

As a control plane, PolarCtrl is not on the critical I/O
path, its service continuity can be provided using traditional
high availability techniques. Even during the short interval
between PolarCtrl’s crash and recovery, I/O flows in Po-
larFS would not likely be affected due to the cached meta-
data on PolarSwith and the self-management of ChunkServer.

4. I/O EXECUTION MODEL
When POLARDB accesses its data, it will delegate a

file I/O request to libpfs by the PFS interface, usually by
pfs pread or pfs pwrite. For write requests, there is almost
no need to modify file system meta data since device blocks
are preallocated to files by pfs fallocate, thus avoiding ex-
pensive meta data synchronization among write and read
nodes. This is a normal optimization for database systems.

In most common cases, libpfs simply maps the file off-
set into a block offset based on the index tables already
built when mounting, and chops the file I/O request into
one or more smaller fixed size block I/O requests. After the
transformation, the block I/O requests are sent by libpfs to
PolarSwitch through a shared memory between them.

The shared memory is constructed as multiple ring buffers.
At one end of the shared memory, libpfs enqueues a block
I/O request into a ring buffer selected in a round robin way

and then waits for its completion. At the other end , Po-
larSwitch constantly polls all ring buffers, with one thread
dedicated to a ring buffer. Once it finds new requests, Polar-
Switch dequeues the requests from ring buffers and forwards
them to ChunkServers with the routing information propa-
gated from PolarCtrl.

Chunkserver uses the write ahead logging (WAL) tech-
nique to ensure atomicity and durability, in which I/O re-
quests are written to the log before they are committed and
applied. Logs are replicated to a collection of replicas, and a
consensus protocol named ParallelRaft (Detailed in the next
section) is used to guarantee the data consistency among
replicas. An I/O request is not recognized to be committed
until it is persistently recorded to the logs on a majority of
replicas. Only after that this request can be responded to
the client and applied on the data blocks.

Figure 4 shows how a write I/O request is executed inside
PolarFS. (1) POLARDB sends a write I/O request to Po-
larSwitch through the ring buffer between PolarSwitch and
libpfs. (2) PolarSwitch transfers the request to the corre-
sponding chunk’s leader node according to the local cached
cluster metadata. (3) Upon the arrival of a new write re-
quest, the RDMA NIC in the leader node will put the write
request into the pre-registered buffer and add a request entry
into the request queue. An I/O loop thread keeps polling the
request queue. Once it sees a new request arriving, it starts
processing the request right away. (4) The request is written
to the log block on the disk through SPDK and is propagated
to the follower nodes through RDMA. Both operations are
asynchronous calls and the actual data transmission will be
triggered in parallel. (5) When the replication request ar-
rives at a follower node, the RDMA NIC in the follower node
will also put the replication request into the pre-registered
buffer and add it into the replication queue. (6) Then the
I/O loop thread on the follower is triggered, and writes the
request to disk through SPDK asynchronously. (7) When
the write callback returns successfully, an acknowledge re-
sponse is sent back to the leader through RDMA. (8) When
responses are successfully received from majority of follow-
ers, the leader applies the write request to the data blocks
through SPDK. (9) After that, the leader replies to Polar-
Switch through RDMA. (10) PolarSwitch then marks the
request done and notifies the client.

Read I/O requests are (more simply) processed by leader
alone. In ChunkServer there is a submodule named IoSched-
uler which is responsible to arbitrate the order of disk I/O
operations issued by concurrent I/O requests to execute on
the ChunkServer. IoScheduler guarantees that a read oper-
ation can always retrieve the latest committed data.

ChunkServer uses polling mode along with event-driven
finite state machine as the concurrency model. The I/O
thread keeps polling events from RDMA and NVMe queues,
processing incoming requests in the same thread. When one
or more asynchronous I/O operations are issued and other
requests are needed to be handled, the I/O thread will pause
processing current request and save the context into a state
machine, then switch to process the next incoming event.
Each I/O thread uses a dedicated core and uses separated
RDMA and NVMe queue pairs. As a result, an I/O thread
is implemented without locking overheads since there is no
shared data structure between I/O threads, even though
there are multiple I/O threads on a single ChunkServer.

1853



5. CONSISTENCY MODEL

5.1 A Revision of Raft
A production distributed storage system needs a consen-

sus protocol to guarantee all committed modifications are
not lost in any corner cases. At the beginning of the design
process. we chose Raft after consideration of the implemen-
tation complexity. However, some pitfalls soon emerged.

Raft is designed to be highly serialized for simplicity and
understandability. Its logs are not allowed to have holes on
both leader and followers, which means log entries are ac-
knowledged by follower, committed by leader and applied
to all replicas in sequence. So when write requests execute
concurrently, they would be committed in sequence. Those
requests at the tail of queue cannot be committed and re-
sponded until all preceding requests are persistently stored
to disks and answered, which increases average latency and
cuts down throughput. We observed the throughput drop-
ping by half as I/O depth rising from 8 to 32.

Raft is not quite suitable for the environment using mul-
tiple connections to transfer logs between a leader and a
follower. When one connection blocks or becomes slow, log
entries would arrive at follower out of order. In other words,
some log entries in the front of queue would actually arrive
later than those at the back. But a Raft follower must accept
log entries in sequence, which means it cannot send an ac-
knowledge to inform the leader that subsequent log entries
have already been recorded to disk, until those preceding
missing log entries arrived. Moreover, The leader would get
stuck when most followers are blocked on some missing log
entries. In practice, however, using multiple connections is
common for a highly concurrent environment. We need to
revise the Raft protocol to tolerate this situation.

In a transactional processing system such as database,
concurrency control algorithms allow transactions to be ex-
ecuted in an interleaved and out-of-order way while generat-
ing serializable results. These systems naturally can tolerate
out-of-order I/O completions arising from traditional stor-
age semantics and address it by themselves to ensure data
consistency. Actually, databases such as MySQL and Al-
iSQL do not care about the I/O sequences of underlying
storage. The lock system of a database will guarantee that
at any point of time, only one thread can work on one par-
ticular page. When different threads work on different pages
concurrently, database only need the I/Os be executed suc-
cessfully, their completion order would not matter. There-
fore we capitalize on that to relax some constraints of Raft
in PolarFS to develop a consensus protocol which is more
suitable for high I/O concurrency.

This paper proposes an improved consensus protocol over
Raft named ParallelRaft, and the following sections will
present how ParallelRaft solves the above problems. The
structure of ParallelRaft is quite similar to Raft. It imple-
ments the replicated state machine through a replicated log.
There are leader and followers, and leader replicates log en-
tries to followers. We follow the same approach of problem
decomposition like Raft, and divide ParallelRaft into smaller
pieces: log replication, leader election and catch up.

5.2 Out-of-Order Log Replication
Raft is serialized in two aspects: (1) After the leader sends

a log entry to a follower, the follower needs to acknowledge it
to inform that this log entry has been received and recorded,

which also implicitly indicates that all preceding log entries
have been seen and saved. (2) When the leader commits a
log entry and broadcasts this event to all followers, it also
admits all preceding log entries have been committed. Paral-
lelRaft breaks these restrictions and executes all these steps
out-of-order. Therefore, there is a basic difference between
ParallelRaft and Raft. In ParallelRaft, when an entry has
been recognized to be committed, it does not mean that all
the previous entries have been committed successfully. To
ensure the correctness of this protocol, we have to guaran-
tee: (1) Without these serial restrictions, all the committed
states will also be complaint with the storage semantics used
by classical rational databases. (2) All committed modifica-
tions will not get lost in any corner cases.

The out-of-order log executing of ParallelRaft follows the
rules: If the writing ranges of the log entries are not over-
lapped with each other, then these log entries are considered
without conflict, and can be executed in any order. Other-
wise, the conflicted entries will be executed in a strict se-
quence as they arrived. In this way, the newer data will
never be overwritten by older versions. ParallelRaft can
easily know the conflict because it stores the LBA range
summary of any log entry not applied . The following part
describes how the Ack-Commit-Apply steps of ParallelRaft
are optimized and how the necessary consistent semantics
can be maintained.

Out-of-Order Acknowledge. After receiving a log en-
try replicated from the leader, a Raft follower would not
acknowledge it until all preceding log entries are stored per-
sistently, which introduces an extra waiting time, and the
average latency increases significantly when there are lots
of concurrent I/O writes executing. However, in Parallel-
Raft, once the log entry has been written successfully, the
follower can acknowledge it immediately. In this way, the
extra waiting time is avoided, so that the average latency is
optimized.

Out-of-Order Commit. A raft leader commits log en-
tries in serial order, and a log entry cannot be committed
until all preceding log entries are committed. Whereas in
ParallelRaft a log entry can be committed immediately af-
ter a majority of replicas have been acknowledged. This
commit semantics is acceptable for a storage system which
usually do not promise strong consistency semantics like a
TP system. For example, NVMe does not check the LBA
of read or write commands to ensure any type of ordering
between concurrent commands and there is no guarantee of
the order of completion for those commands [13].

Apply with Holes in the Log. As Raft, all log entries
are applied in the strict sequence as they are logged in Paral-
lelRaft, so that data file is coherent in all replicas. However,
with out-of-order log replication and commit, ParallelRaft
allows holes to exist in the log. How can a log entry be ap-
plied safely with some preceding log entries still missing? It
brings a challenge to ParallelRaft.

ParallelRaft introduces a novel data structure named look
behind buffer in each log entry to address this issue. The
look behind buffer contains the LBA modified by the pre-
vious N log entries, so that a look behind buffer acts as a
bridge built over a possible hole in the log. N is the span
of this bridge, which is also the maximum size of a log hole
permitted. Please note that although several holes might
exist in the log, the LBA summary of all log entries can al-
ways be complete unless any hole size is larger than N. By

1854



means of this data structure, the follower can tell whether
a log entry is conflicting, which means that the LBAs mod-
ified by this log entry are overlapping with some preceding
but missing log entries. Log entries not conflicting with any
other entry can be applied safely, otherwise they should be
added to a pending list and replied after the missing en-
tries are retrieved. According to our experience in PolarFS
with RDMA network, N set to 2 is good enough for its I/O
concurrency.

Based on the above Out-of-Order execution methods and
rules, the wanted storage semantics for databases can be
successfully achieved. Moreover, the latency of multi-replica
concurrent write can also be shortened by eliminate unnec-
essary serial restrictions in ParallelRaft for PolarFS.

5.3 Leader Election
When doing new leader election, ParallelRaft could choose

the node which has the newest term and the longest log en-
try, just the same as Raft. In Raft, the newly elected leader
contains all the committed entries from previous terms. How-
ever, the leader elected in ParallelRaft might not initially
meet this requirement because of possible holes in the log.
Hence an additional merge stage is needed to make the
leader have all the committed entries before starting pro-
cessing requests. Before the merge stage finishes, the new
elected node is only leader candidate, after the merge stage
finished, it has all the committed entries and becomes the
real leader. In the merge stage, the leader candidate needs
to merge unseen entries from rest members of a quorum.
After that, the leader would start to commit entries from
previous terms to the quorum, which is same as Raft.

When merging entries, ParallelRaft also uses a similar
mechanism as Raft. An entry with the same term and index
will be promised to be the same entry. There are several ab-
normal conditions: (1) For a committed but missing entry,
the leader candidate can always find the same committed
entry from at least one of the follower candidates, because
this committed entry has been accepted by the majority of
quorum. (2) For an entry that is not committed on any of
the candidate, if this entry is not saved on any of them ei-
ther, the leader can skip this log entry safely since it cannot
have been committed previously according to the Parallel-
Raft or Raft mechanism. (3) If some candidates saved this
uncommitted entry (with same index but different term),
then leader candidate chooses the entry version with the
highest term, and recognizes this entry as a valid entry. We
must do this because of the other two facts: (3.a) Parallel-
Raft’s merge stage must be done before a new leader can
serve for user requests, which determines that if a higher
term is set to an entry, the lower one with the same en-
try index must not have been committed before, and the
lower term entry must have never attended to previous suc-
cessfully completed merge stages, otherwise the higher term
entry cannot be with the same index. (3.b) When a system
crashed with a uncommitted entry saved in a candidate,
this entry acknowledgment may have been sent to the pre-
vious leader and replied to the user, so we cannot simply
abandon it otherwise user data might get lost. (More pre-
cisely, if the total number of failed nodes plus nodes with
this uncommitted entry (the highest term of these entries
with same index) exceeds the number of other nodes in the
same quorum, then this entry might have committed by the

��������
�
�
�

��

��

��
�
�
�

��

��������
	�����

��� �����

��� ������

�
��� ��

��� ����

Figure 5: ParallelRaft Leader Election.

failed leader. Therefore, we should commit it for user data
safety.)

Take the situation with 3 replicas for example, Figure 5
shows the process of leader election.

First, the follower candidate sends its local log entries to
the leader candidate. The leader candidate receives these
entries and merges with its own log entries. Second, the
leader candidate synchronizes states to the follower candi-
date. After that, the leader candidate can commit all the
entries and notify the follower candidate to commit. Finally
the leader candidate upgrades to a leader, and the follower
candidate upgrades to a follower as well.

With above mechanisms, all committed entries can be re-
covered by the new leader, which means that ParallelRaft
will not lost any committed state.

In ParallelRaft, a checkpoint is made from time to time, all
log entries before the checkpoint are applied to data blocks
and the checkpoint is allowed to contain some log entries
committed after the checkpoint. For simplicity, all log en-
tries before the checkpoint can be regarded as pruned, al-
though in practice they are reserved for a while until short
of resource or some threshold reached.

In our real implementation, ParallelRaft choose the node
with newest checkpoint as the leader candidate instead of
the one with the longest log, for the sake of the Catch Up
implementation. With the merge stage, it is easy to see
that the new leader will reach the same state when starting
serving. Therefore, this choice does not compromise the
correctness of ParallelRaft.

5.4 Catch Up
When a lagging follower wants to keep up with the leader’s

current data state, it will use fast-catch-up or streaming-
catch-up to re-synchronize with the leader. Which one is
used depends on how stale the state of the follower is. The
fast catch up mechanism is designed for incremental synchro-
nization between leader and follower, when the differences
between them are relatively small. But the follower could
lag far behind the leader. For instance, the follower has
been offline for days, so a full data re-synchronization is in-
evitable. PolarFS thus proposes a method named streaming
catch up for this task.

Figure 6 presents the different conditions of leader and
follower when re-synchronization starts. In Case 1, leader’s
checkpoint is newer than the follower’s latest log index, and
log entries between them would be pruned by leader. There-
fore, fast catch up cannot handle this situation, and stream-
ing catch up should be used instead. Case 2 and Case 3 can
be fixed by fast catch up.

In the following cases, we can always assume that the
leader’s checkpoint is newer than the follower’s, since if this
condition is not met, the leader can make a checkpoint im-
mediately which is newer than any other.

1855



Leader

cp

Follower

case 1

case 3

case 2

idx

idx

cp idx

cp idx

cp

Figure 6: ParallelRaft Fast Catch Up Process.

Log entries after the checkpoint can be divided into four
classes: committed-and-applied, committed-but-unapplied,
uncommitted, and holes.

Fast Catch Up. Follower may have holes after its check-
point, which will be filled during fast catch up. First, The
holes between follower’s checkpoint and leader’s checkpoint
are filled with the help of look behind buffer again, through
which we shall discover LBAs of all missing modifications.
These holes are filled directly by copying from leader’s data
blocks, which contains data newer than follower’s check-
point. Second, the holes after leader’s checkpoint are filled
by reading them from leader’s log blocks.

In Case 3, the follower may contain uncommitted log en-
tries from some older terms. Like Raft, these entries are
pruned, and will then be handled following the above steps.

Streaming Catch Up. In streaming catch up, log his-
tories older than the checkpoint are deemed useless for full
data re-synchronization, and the content of data blocks and
log entries after the checkpoint are all must be used to re-
build the state. When copying the chunks, a whole chunk is
split into small 128KB pieces and using lots of small tasks,
each of which only syncs a single 128 KB piece. We do this
for establishing a more controllable re-synchronization. The
further design motivation is discussed in Section 7.3 .

5.5 Correctness of ParallelRaft
Raft ensures the following properties for protocol cor-

rectness: Election Safety, Leader Append-Only, Log Match-
ing, Leader Completeness, and State Machine Safety. It is
easy to prove that ParallefRaft has the property of Elec-
tion Safety, Leader Append-Only, and Log Matching,
since ParallelRaft does not change them at all.

ParallelRaft’s out-of-order commitment introduces the key
difference from standard Raft. A ParallelRaft log might lack
some necessary entries. Therefore, the key scenario we need
to consider is how a new elected leader should deal with
these missing entries. ParallelRaft add a merge stage for
leader electing. In the merge stage, the leader will copy the
missing log entries, re-confirm whether these entries should
be committed, and then commit them in the quorum if nec-
essary. After the merge stage in Section 5.3, the Leader
Completeness is guaranteed.

In addition, as mentioned in Section 5.2, the out-of-order
commitment is acceptable in PolarFS for databases.

Then we will prove that the out-of-order apply will not vi-
olate the State Machine Safety property. Although Par-
allelRaft allows nodes do out-of-order apply independently,
thanks to the look behind buffer (Section 5.2), the conflict-
ing logs can only be applied in a strict sequence, which
means that the state machine (data plus committed log en-

 32

 64

 128

 256

 512

 1024

1 2 4 8 16 32

L
a
te

n
c
y
 (

u
s
)

IO Queue Depth

Raft
ParallelRaft

(a) The latency impact.

 8

 16

 32

 64

1 2 4 8 16 32

IO
P

S
 (

th
o
u
s
a
n
d
)

IO Queue Depth

Raft
ParallelRaft

(b) The throughput impact.

Figure 7: Performance of Raft and ParallelRaft for
4KB random write request.

tries) on all nodes in the same quorum will be consistent
with each other.

With all these properties, the correctness of ParallelRaft
is guaranteed.

5.6 ParallelRaft Versus Raft
We did a simple test to show how ParallelRaft can improve

the I/O concurrency. Figure 7 shows the average latency
and throughput of Raft and ParallelRaft when I/O depth
varies from 1 to 32 and single FIO job. Both algorithms
are implemented using RDMA. The slight performance dif-
ference at the beginning can be neglected because they are
different software packages implemented independently. As
the I/O depth increases, the performance gap between two
protocols becomes wider. When I/O depth grows to 32, the
latency of Raft is approximately 2.5X times of the latency
of ParallelRaft, with less than half of the IOPS Parallel-
Raft achieves. It is noticeable that the IOPS of Raft drops
considerably when I/O depth is larger than 8, whereas Par-
allelRaft maintains the overall throughout at a steady high
level. The results demonstrate the effectiveness of our pro-
posed optimization mechanisms in ParallelRaft. The out-of-
order acknowledgement and commitment improve the I/O
parallelism, which enables PolarFS to maintain superior and
stable performance even under heavy workload.

6. FS LAYER IMPLEMENTATION
In PolarFS’s file system layer, the metadata management

could be divided into two parts. The first one is to organize
metadata to access and update files and directories within
a database node. The second one is to coordinate and syn-
chronize metadata modification among database nodes.

6.1 Metadata Organization
There are three kinds of file system metadata: directory

entry, inode and block tag. A single directory entry keeps
a name component of a file path and has a reference to an
inode. A collection of directory entries are organized into
a directory tree. An inode describes either a regular file or
a directory. For a regular file, the inode keeps a reference
to a set of block tags, each describing the mapping of a file
block number to a volume block number; for a directory,
the inode keeps a reference to a set of subdirectory entries
in this parent directory.(The references mentioned above are
actually metaobject identifiers as explained below).

The three kinds of metadata are abstracted into one data
type called metaobject which has a field holding the specific
data for a directory entry, an inode or a block tag. This
common data type is used to access metadata both on disk

1856



POLARDB
libpfs

(1) (3)
(4)

POLARDB

libpfs

(6)

Database Volume

Journal file

Paxos file

(6) 1
0

...
2

File System Metadata Cache
Directory Tree File Mapping Table            

1500
348

...
0→201

head

tail

Block Mapping Table

200 489 16
201 0→316 0→2

VolBlk   FileID   FileBlk

202 478 37
... ... ...

Chunks

POLARDB Cluster
Node1 Node2 Node3

(2)

POLARDB

libpfs

(5)

...
superblock file block

(3)

pending tail

root FileBlk  VolBlk

Figure 8: Overview of File System Layer.

and in memory. Metaobjects are initialized on disk in con-
tinuous 4k size sectors when making a new file system, with
each metaobject assigned a unique identifier. In pfs mount,
all metaobjects are loaded into memory and partitioned into
chunks and type groups.

A metaobject is accessed in memory with a tuple (metaob-
ject identifier, metaobject type). The upper bits of the iden-
tifier is used to find the chunk to which the metaobject be-
longs, the type is to find the group in the chunk, and at last
the lower bits of the identifier is used as the index to access
the metaobject in the group.

To update one or more metaobjects, a transaction is pre-
pared and each update is recorded as a transaction oper-
ation. The transaction operation holds the old value and
new value of its modified object. Once all updates are
done the transaction is ready to be committed. The com-
mit process needs coordination and synchronization among
database nodes, as described in the following subsection. If
the commit failed, the update is rollbacked with old value
saved in the transaction.

6.2 Coordination and Synchronization
To support synchronization of file system metadata, Po-

larFS records metadata modification as transactions into
a journal file.The journal file is polled by database nodes
for new transactions. Once found, new transactions are re-
trieved and replayed by the nodes.

Normally, there is only one instance to write the journal
file and multiple instances to read it. In the case of network
partition or administration, there may be multiple instances
writing to the journal file. In these cases, we need a mech-
anism to coordinate writes to the journal file. PolarFS uses
the disk paxos algorithm [10] for this purpose. Note that
the purpose of the disk paxos algorithm used here is quite
different from the ParallelRaft. The latter is to ensure data
consistency among the chunk replicas.

The disk paxos algorithm runs on a file composed of 4K
size pages which can be atomically read or written. These
pages are interpreted as one leader record plus data blocks
for each database node. The data block pages are used by
each database node to write the proposal of itself and to read
the proposals of others. The leader record page contains
information of current paxos winner and the log anchor for
the journal. The disk paxos algorithm is only run by a write
node. The read-only nodes do not run disk paxos. Instead

they poll by checking the log anchor in the leader record
page. If the log anchor changes, the read-only nodes know
there are new transactions in the journal file and they will
retrive these new transactions to update its local metadata.

We explain a transaction commit process with an exam-
ple, as illustrated in Figure 8. It has the following steps:

(1) Node 1 acquires paxos lock, which is initially free, af-
ter assigning block 201 to file 316. (2) Node 1 starts record-
ing transactions to journal. The position of the latest writ-
ten entry is marked with pending tail. After all entries are
stored, the pending tail becomes the valid tail of journal.
(3) Node 1 updates the superblocks with the modified meta-
data. At the same time, Node 2 tries to obtain the mutex
which is already held by Node 1. Node 2 must fail and will
retry later. (4) Node 2 becomes the legal owner of mutex
after Node 1 releases the lock, but the new entries in jour-
nal appended by Node 1 determine that the local metadata
cache in Node 2 is stale. (5) Node 2 scans new entries and
releases the lock. Then Node 2 rollbacks unrecorded trans-
actions and updates local metadata. Finally Node 2 retries
the transactions. (6) Node 3 starts to synchronize metadata
automatically and it only needs to load incremental entries
and replay them in local memory.

7. DESIGN CHOICES AND LESSONS
Besides the system architecture, the I/O model and the

consensus protocol, there are still some interesting design
topics worth discussing. Some of them belong to PolarFS
itself, and others are aimed for database features.

7.1 Centralized or Decentralized
There are two design paradigms for distributed systems:

centralized and decentralized. Centralized systems, such as
GFS [11] and HDFS [5], contain a single master, which is
responsible for keeping metadata and the membership man-
agement, This kind of systems are relatively simple to im-
plement, but the single master may become a bottleneck
of the whole system, in the sense of both availability and
scalability. Decentralized systems like Dynamo [8] are in
the opposite way. In this system, nodes are of peer-to-peer
relationship, metadata are sharded and redundant among
all nodes. A decentralized system is supposed to be more
reliable but also more complex to implement and reasoning.

PolarFS makes a trade-off between centralized and decen-
tralized designs. On one hand, PolarCtrl is a centralized
master which is responsible for administration tasks such as
resource management, and accepting control plane requests
like creating volume. On the other hand, ChunkServers are
talking with each other, running a consensus protocol to
handle failure and recovery autonomously without PolarC-
trl involved.

7.2 Snapshot from Bottom to Top
Snapshot is a common need for databases. PolarFS sup-

ports snapshot feature, which simplifies upper POLARDB
snapshot design.

In PolarFS, the storage layer provides reliable data access
service to upper layers, POLARDB and libpfs have their
own log mechanisms to ensure their transaction atomicity
and durability. PolarFS storage layer provides a snapshot
of disk outage consistency, and POLARDB and libpfs re-
build their own consistent data image from the underlying
PolarFS snapshot.

1857



The disk outage consistency here means that if the snap-
shot command is triggered at a time point T, then some
time point T0 exists so that all the I/O operations before
T0 should be included in the current snapshot, and the I/O
operations after T must be excluded. However, the states of
I/O operations within the interval [T0, T ], which is usually
a very short time span, are undetermined. This behavior
resembles what happens upon power off while a disk is still
being written.

When an unexpected disaster happened or an active au-
diting is need, PolarCtrl assigns the newest data snapshot
to the POLARDB instance, POLARDB and libpfs will use
their logs stored to rebuild a consistent state.

PolarFS implements the disk outage consistency snapshot
in a novel way, which does not block user I/O operations
during snapshot is being made. When user issues a snapshot
command, PolarCtrl notifies PolarSwitch to take a snapshot.
From then on, PolarSwitch adds a snapshot tag, which indi-
cates its host request happened after the snapshot request,
to the following requests. On receiving the request with
a snapshot tag, ChunkServer will make a snapshot before
handling this request. ChunkServer makes a snapshot by
copying block mapping meta information, which is fast, and
handles the future requests which will modify those blocks
in a Copy-on-Write way. After the request with snapshot
tag is finished, PolarSwitch stops adding snapshot tag to
incoming requests.

7.3 Outside Service vs. Inside Reliability
Reliability of an industrial system is extremely important,

especially for the system like PolarFS, which is undertaking
7X24 public cloud services. In such a system, there should
be all sorts of reliability maintaining tasks to prevent loss of
service and related revenue. It is a big challenge for PolarFS
to run these tasks efficiently enough while providing smooth
service for heavy user workloads.

For a practical example, the streaming catch up in Paral-
lelRaft, when undergoing a heavy workload, the leader will
keep generating an overwhelming amount of logs that the
follower cannot catch up even after a long period of log
fetching. The time to copy the whole chunk can also be
quite long and unpredictable due to I/O throttling. That
can lead us to a trade-off: the shorter the recovery time is,
the more resources it takes, and the more sacrifice to system
performance; whereas if it takes a long time to recover, the
system availability would be at risk.

Our solution is to horizontally split one chunk into small
logical pieces, say, pieces of 128 KB. The full data synchro-
nization for a chunk is also split into lots of small subtasks,
each of which only resynchronizes a single 128 KB piece. The
runtime for these smaller subtasks is much shorter and more
predictable. Besides, idle cycles can be inserted between
sub-resync-tasks to control the amount of network/disk band-
width cost for streaming catch up.

Other time-consuming tasks, such as full data validation
routines checking coherency between replicas, can also be
implemented similarly. We have to consider using synchro-
nization flow control to strike a balance between the quality
of external service and the system reliability of PolarFS. Due
to space limitations we will not further discuss the details
of this trade-off here.

8. EVALUATION
We have implemented PolarFS and have also released PO-

LARDB as a public database service on Alibaba cloud. In
this section, we evaluated and analyzed PolarFS and PO-
LARDB performance and scalability. For PolarFS, we eval-
uated it on a cluster by comparing it with Ext4 on local
NVMe and CephFS on Ceph [35], a widely used open source
distributed storage system. For POLARDB, we compared it
with our original MySQL cloud service RDS and POLARDB
on local Ext4.

8.1 PolarFS Experimental Setup
For file system performance, we focused on the end-to-end

performance of three systems (PolarFS, CephFS and Ext4),
including latency and throughput under different workloads
and access pattern.

The experiment results of PolarFS and CephFS are col-
lected on a cluster of 6 storage nodes and one client node.
Nodes communicates with each other through a RDMA-
enabled NIC.

Ceph version is 12.2.3, and we configure its storage engine
as bluestore and communication massager type as async +
posix. Ceph’s storage engine can be configured to run with
RDMA verbs, but its file system only supports the TCP/IP
network stack, so we configure CephFS to run with TCP/IP.
For Ext4, we make a new fresh Ext4 on a SSD after discard-
ing all its old data.

We use FIO [1] to generate various types of workloads
with different I/O request sizes and parallelism. FIO will
firstly create the files and extend them to the given length
(here is 10G) before its performance evaluation.

8.2 I/O Latency

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

4k 16k 64k 256k 1M

L
a
te

n
c
y
 (

u
s
)

Block Size

CephFS
PolarFS

Ext4

(a) Random Write

 64

 128

 256

 512

 1024

 2048

 4096

4k 16k 64k 256k 1M

L
a
te

n
c
y
 (

u
s
)

Block Size

CephFS
PolarFS

Ext4

(b) Random Read

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

4k 16k 64k 256k 1M

L
a
te

n
c
y
 (

u
s
)

Block Size

CephFS
PolarFS

Ext4

(c) Sequential Write

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

4k 16k 64k 256k 1M

L
a
te

n
c
y
 (

u
s
)

Block Size

CephFS
PolarFS

Ext4

(d) Sequential Read

Figure 9: Average latency with different request
sizes under different access patterns.

As Figure 9 shows, the latency of PolarFS is about 48µs
for 4k random write, which is quite close to the latency of
Ext4 on local SSD (about 10µs) compared with the latency
of CephFS (about 760µs). The average random write la-
tency of PolarFS is 1.6 to 4.7 times slower than local Ext4,
while that of CephFS is 6.5 to 75 times slower than local
Ext4, which means distributed PolarFS almost provides the

1858



same performance like local Ext4. The average sequential
write latency ratios of PolarFS and CephFS to Ext4 are
1.6-4.8 and 6.3-56. The average random read latency ratios
of PolarFS and CephFS to Ext4 are 1.3-1.8 and 2-4. And
the average sequential read latency ratios of PolarFS and
CephFS to Ext4 are 1.5-8.8 and 3.4-14.9.

Large request (1M) performance reduction of PolarFS /
CephFS for Ext4 differs from small request (4k) because the
network and disk data transfer take up most of large request
execution time.

PolarFS performance is much better than that of CephFS,
there are several reasons for this. First, PolarFS processes
I/O with a finite state machine by one thread, as described
in Section 4. This avoids thread context switch and reschedul-
ing required by an I/O pipeline composed by multiple threads
as done by CephFS. Second, PolarFS optimizes memory al-
location and paging, memory pool is employed to allocate
and free memory during an I/O life cycle, reducing object
construction and destruction operations, huge page is also
used to reduce TLB miss and paging, there is no counterpart
in CephFS. Third, all meta data about data objects in Po-
larFS are kept in memory, contrasted with that only partial
meta data are kept in a small cache for each PG(Placement
Group) in CephFS, thereby PolarFS needs no extra I/O for
meta data for most I/O operation, but CephFS sometimes
has to do extra I/Os for meta data. Last but not least, user
space RDMA and SPDK in PolarFS have lower latency than
kernel TCP/IP and block driver in CephFS.

8.3 I/O Throughput
Figure 10 shows the overall I/O throughput of three file

systems. For the random read/write, Ext4 on local SSD,
PolarFS and CephFS IOPS all scale with the client jobs
number; Ext4’s scalability bottleneck is the single local SSD
IOPS, that of PolarFS is network bandwidth, while CephFS’s
bottleneck is its packet processing capacity. The random 4k
write/read I/O throughput of Ext4 and PolarFS are 4.4/5.1,
4/7.7 higher than CephFS.

For the sequential read/write, almost all requests are han-
dled by a single disk both for the local system and for the
distributed systems. Ext4 and PolarFS all can scale well
with the number of client jobs until they have reached their
limit due to the I/O bottleneck, while CephFS’s bottleneck
is its software, it can not saturate the disk I/O bandwidth.

Without extra network I/O, Ext4’s sequential read through-
put with 1 client is much higher than PolarFS and CephFS,
but its sequential read throughput drops dramatically with
client number increasing to 2, the throughput is about the
same value as its random read throughput with 2 clients.
We repeated the evaluation for several times and the result
is reproducible. We guess it is caused by the characteristic
of our NVMe SSD. The NVMe SSD has a built-in DRAM
buffer. When the firmware guesses the workload looks like
sequential read, it would prefetch subsequent data blocks
into the DRAM buffer. We guess the prefetch mechanism
would work much better with non-interleaved I/O pattern.

8.4 Evaluating POLARDB
To demonstrate the benefits of our ultra-low I/O latency

PolarFS for databases, we carried out some preliminary tests
on POLARDB, a share-storage cloud database specifically
developed with PolarFS. We compared the throughput of
three systems: (1) POLARDB on PolarFS, (2) POLARDB

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

1 2 4 8 16 32 64 128

IO
P

S
 (

th
o
u
s
a
n
d
)

Jobs Number

Ext4
PolarFS
CephFS

(a) Random Write

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

1 2 4 8 16 32 64 128

IO
P

S
 (

th
o
u
s
a
n
d
)

Jobs Number

Ext4
PolarFS
CephFS

(b) Random Read

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

1 2 4 8 16 32 64 128

IO
P

S
 (

th
o
u
s
a
n
d
)

Jobs Number

Ext4
PolarFS
CephFS

(c) Sequential Write

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

1 2 4 8 16 32 64 128

IO
P

S
 (

th
o
u
s
a
n
d
)

Jobs Number

Ext4
PolarFS
CephFS

(d) Sequential Read

Figure 10: Throughput with 4K request sizes under
different access patterns.

on local Ext4, and (3) Alibaba MySQL cloud service RDS
for reference. Tests (1) and (2) are under the same hardware
environment as the previous PolarFS hardware environment.

We separately evaluated three databases by running Sys-
bench [21] under simulated read-only, write-only (update :
delete : insert = 2:1:1) and read/write-mixed (read : write
= 7:2) OLTP workloads. The dataset used in this exper-
iment consists of 250 tables, and each table has 8,500,000
records. The total size of the tested data is 500 GB.

As shown in Figure 11, the throughput of POLARDB
on PolarFS is very close to that on the local Ext4, while
PolarFS provides additional 3-replica high availability. PO-
LARDB on PolarFS achieved 653K read/sec, 160K write/sec
and 173K read-write/sec.

0 

100000 

200000 

300000 

400000 

500000 

600000 

700000 

Write Only Read Write Read Only 

Aliyun RDS PolarFS Ext4 

R
e

a
d

 /
 W

ri
te

 p
e

r 
s
e

c
o

n
d

Request Type

Figure 11: Performance comparison for Aliyun
RDS, PolarDB on PolarFS and PolarDB on Ext4
using read/write executed per second as metric.

In addition to integrating with PolarFS, POLARDB also
applied a bunch of database optimizations based on Aliyun
RDS. As a result, POLARDB achieved almost 2.79/4.72/1.53
times higher Read/Write/RW-Mixed throughput than RDS
as shown in the figure. Database-level optimization is be-
yond the scope of this paper.

9. RELATED WORK
Storage System. GFS [11] and its open source imple-

mentation HDFS [5], provides the distributed system ser-
vice, both GFS and HDFS adopt the master slave archi-

1859



tecture, the master maintains the system meta information,
data chunk leader lease, and it is also in charge of the fail-
ure recovery. Unlike GFS and HDFS, PolarFS adopts a
hybrid architecture. The master node of PolarFS is mainly
in charge of resource management, it generally does not add
interference in the I/O path, which makes master upgrade
and fault tolerance easier.

Ceph [35] is a widely deployed storage systems. It uses
CRUSH hash algorithm to locate data object which brings
a simple design for both normal I/O execution and fault
tolerance. RAMCloud [29] is a low latency key value system
which provides fast recovery by replicating data among the
cluster in a random way and harnessing the cluster resource
to recover failure in parallel. The random data placement
will make a machine hosting thousand of users’ data in cloud
environment, this means a single machine crash will impact
thousand of users, which is unacceptable for cloud service
providers. PolarFS control master provides a fine-grained
trade-off between failure impacting and I/O performance
during allocating data chunks to real servers.

ReFlex [20] uses NVMe SSD to implement a remote disk,
it proposes a QoS scheduler that can enforce tail latency and
throughput service-level objectives, but unlike PolarFS, its
remote disk is single replica and has no reliability support.
CORFU [3] organizes a cluster of flash devices as a single,
shared log that can be accessed concurrently by multiple
clients over the network. The shared log design simplifies
snapshot and replication in distributed environment, but it
raises the engineering difficulty for the existing system to
use CORFU, otherwise PolarFS provides a block disk ab-
straction and POSIX-like file system interfaces to users.

Aurora [32] is Amazon’s cloud relational database service
on the top of its ECS service. Aurora addresses the net-
work performance constraint between the computation side
and storage side by pushing database redo log processing
to the storage side. Aurora also modified MySQL’s innodb
transaction manager to facilitate log replications, whereas
POLARDB makes heavy investment in PolarFS but with
POSIX-like API which ends up with little modifications to
the database engine itself. Aurora’s redo logic pushing down
design breaks the abstract between database and storage,
which make each layer modification harder, while PolarFS
and POLARDB keep each layer’s abstraction, which makes
each layer adopt its newest technologies more easily.

Consensus Protocols. Paxos [22] is one of the most fa-
mous consensus algorithm for distributed system. However,
it is hard to understand and correctly implement. The au-
thor of Paxos only proved that Paxos can solve consensus
problem for one instance, and not show how to use ”Multi-
Paxos” to solve practical problems. Currently, most of the
consensus algorithms, such as Zab [16] used by zookeeper,
are regarded as the variety of the ”Multi-Paxos” algorithm.
Zab is used to provide the atomic broadcast primitive prop-
erty, but it is also hard to understand. Raft [28] is designed
for understandability, which is also a variety of ”Multi-Paxos”
algorithm. It introduces two main constraints, the first one
is that the commit log must be sequential, and the second
one is that the commit order must be serialized. These two
constraints make Raft easily understandable, but also in-
troduce impact on concurrent I/O performance. Some sys-
tems use multi groups raft to improve I/O parallelism, which
splits the keys into groups, but it cannot solve the prob-
lem that a commit log include keys crossing many groups.

ParallelRaft achieve this goal through a different way. The
commit log is allow to have holes and the log entries can
be committed out of order except for the conflicting ones,
which will be committed in a strict order.

RDMA Systems. Compared with the traditional TCP
/ UDP network protocol, RDMA reduces round trip la-
tency by a order of magnitude with less CPU utilization,
a lot of new systems use RDMA to improve performance.
FaRM [9] is a distributed shared memory based on RDMA,
users can use its program primitives to build their applica-
tion. DrTM [34] is a distributed in-memory database based
on RDMA and hardware transaction memory, RDMA can
access data from remote side fast and can also cause the local
transaction in hardware transaction memory abort, DrTM
combines RDMA and hardware transaction memory to im-
plement distributed transaction. Both FaRM and DrTM are
focused on in-memory transaction, however PolarFS uses
RDMA to build a distributed storage.

Pilaf [27] is a key value store based on RDMA and self-
verifying data structure, but unlike PolarFS, the key value
interface is relatively simple and there is no distributed con-
sensus protocol in Pilaf.

APUS [33] uses RDMA to build a scalable Paxos, while
PolarFS provides a Parallel raft which is friendly to high par-
allelism I/O. PolarFS use RDMA to build a reliable block
device, since RDMA consumes less CPU than traditional
network protocol, PolarFS can process I/O in a run-to-
completion way which avoids context switch. Combining
RDMA and SPDK, storage node can finish I/O without
touching its payload during the whole I/O life cycle, all the
payload movement is done by the hardware.

10. CONCLUSION
PolarFS is a distributed file system which delivers extreme

performance with high reliability. PolarFS adopts emerg-
ing hardware and state-of-the-art optimization techniques,
such as OS-bypass and zero-copy, allowing it to have the
latency comparable to a local file system on SSD. To meet
the high IOPS requirements of database applications, we de-
velop a new consensus protocol, ParallelRaft. ParallelRaft
relaxes Raft’s strictly sequential order of write without sac-
rificing the consistency of storage semantics, which improves
the performance of parallel writes of PolarFS. Under heavy
loads, our approach can halve average latency and double
system bandwidth. PolarFS implements POSIX-like inter-
faces in user space, which enables POLARDB to achieve
performance improvement with minor modifications.

11. ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd

Theodore Johnson for their valuable suggestions and opin-
ions that helped improve the paper. We also express our
gratitude to JingXian Cai, Feng Yu, DongLai Xu, Zun-
Bao Feng, Liang Yin, ChengZhong Yang, QingAn Fan, Xiao
Lou, ZhenDong Huang, ZhuShi Cheng, Xi Chen, Ming Zhao,
GuangQing Dong, Jian Chen, Jian Zhang, WeiXiang Zhai,
ZongZhi Chen, Jun He, GaoSheng Xu, HongYang Shi, FeiFei
Fan, Tao Ma, JingXuan Li, Gang Deng, Zheng Liu, ShiKun
Tian, HaiPing Zhao, Bing Lang, and Kai Ma who offered
significant help for this work.

1860



12. REFERENCES
[1] Fio: Flexible I/O tester.

https://github.com/axboe/fio.

[2] Alibaba Group. Alisql.
https://github.com/alibaba/AliSQL.

[3] M. Balakrishnan, D. Malkhi, V. Prabhakaran,
T. Wobber, M. Wei, and J. D. Davis. Corfu: A shared
log design for flash clusters. In NSDI, pages 1–14,
2012.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37,
pages 164–177. ACM, 2003.

[5] D. Borthakur et al. Hdfs architecture guide. Hadoop
Apache Project, 53, 2008.

[6] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation,
non-volatile memories. In 2010 43rd Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 385–395, 2010.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In Proceedings
of the twenty-sixth annual ACM symposium on
Principles of distributed computing, pages 398–407.
ACM, 2007.

[8] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store.
ACM SIGOPS operating systems review,
41(6):205–220, 2007.

[9] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. Farm: Fast remote memory. In Proceedings
of the 11th USENIX Conference on Networked
Systems Design and Implementation, pages 401–414,
2014.

[10] E. Gafni and L. Lamport. Disk paxos. Distributed
Computing, 16(1):1–20, 2003.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In ACM SIGOPS operating systems
review, volume 37, pages 29–43. ACM, 2003.

[12] Intel. Intel storage performance development kit.
http://www.spdk.io.

[13] Intel. Nvm express revision 1.1.
http://www.nvmexpress.org/wp-content/uploads/

NVM-Express-1_1.pdf.

[14] J. Jose, H. Subramoni, K. Kandalla, M. Wasi-ur
Rahman, H. Wang, S. Narravula, and D. K. Panda.
Scalable memcached design for infiniband clusters
using hybrid transports. In Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 236–243, 2012.

[15] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. Wasi-ur Rahman, N. S. Islam, X. Ouyang,
H. Wang, S. Sur, et al. Memcached design on high
performance rdma capable interconnects. In Parallel
Processing (ICPP), 2011 International Conference on,
pages 743–752, 2011.

[16] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup

systems. In Dependable Systems & Networks (DSN),
2011 IEEE/IFIP 41st International Conference on,
pages 245–256. IEEE, 2011.

[17] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
rdma efficiently for key-value services. In ACM
SIGCOMM Computer Communication Review, 2014.

[18] J. Kirsch and Y. Amir. Paxos for system builders: An
overview. In Proceedings of the 2nd Workshop on
Large-Scale Distributed Systems and Middleware,
page 3. ACM, 2008.

[19] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the linux virtual machine monitor.
In Proceedings of the Linux symposium, volume 1,
pages 225–230, 2007.

[20] A. Klimovic, H. Litz, and C. Kozyrakis. Reflex:
Remote flash local flash. In Proceedings of the
Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 345–359. ACM, 2017.

[21] A. Kopytov. Sysbench: a system performance
benchmark. URL: http://sysbench. sourceforge. net,
2004.

[22] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[23] L. Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[24] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia,
M. Kaminsky, D. G. Andersen, O. Seongil, S. Lee, and
P. Dubey. Architecting to achieve a billion requests
per second throughput on a single key-value store
server platform. In ACM SIGARCH Computer
Architecture News, 2015.

[25] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
Mica: A holistic approach to fast in-memory key-value
storage. In Proc. USENIX NSDI, 2014.

[26] D. Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux
Journal, 2014(239):2, 2014.

[27] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In
USENIX Annual Technical Conference, pages
103–114, 2013.

[28] D. Ongaro and J. K. Ousterhout. In search of an
understandable consensus algorithm. In USENIX
Annual Technical Conference, pages 305–319, 2014.

[29] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, et al. The case for
ramclouds: scalable high-performance storage entirely
in dram. ACM SIGOPS Operating Systems Review,
43(4):92–105, 2010.

[30] P. Stuedi, A. Trivedi, and B. Metzler. Wimpy nodes
with 10gbe: Leveraging one-sided operations in
soft-rdma to boost memcached. In USENIX Annual
Technical Conference, pages 347–353, 2012.

[31] S. Swanson and A. M. Caulfield. Refactor, reduce,
recycle: Restructuring the i/o stack for the future of
storage. IEEE Trans. Computers, 46(8):52–59, 2013.

[32] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon aurora: Design

1861



considerations for high throughput cloud-native
relational databases. In Proceedings of the 2017 ACM
International Conference on Management of Data,
pages 1041–1052. ACM, 2017.

[33] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui. Apus:
Fast and scalable paxos on rdma. In Proceedings of the
2017 Symposium on Cloud Computing, pages 94–107.
ACM, 2017.

[34] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
in-memory transaction processing using rdma and
htm. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 87–104. ACM,
2015.

[35] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance

distributed file system. In Proceedings of the 7th
symposium on Operating systems design and
implementation, pages 307–320. USENIX Association,
2006.

[36] J. Yang, D. B. Minturn, and F. Hady. When poll is
better than interrupt. In FAST, volume 12, pages 3–3,
2012.

[37] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi,
H. S. Kim, H. Eom, and H. Y. Yeom. Optimizing the
block i/o subsystem for fast storage devices. ACM
Trans. Computer Systems, 32(2), 2014.

[38] J. Zheng, Q. Lin, J. Xu, C. Wei, C. Zeng, P. Yang, and
Y. Zhang. Paxosstore: high-availability storage made
practical in wechat. PVLDB, 10(12):1730–1741, 2017.

1862


