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ABSTRACT 

MapReduce programming model has simplified the 
implementation of many data parallel applications. The simplicity 
of the programming model and the quality of services provided by 
many implementations of MapReduce attract a lot of enthusiasm 
among distributed computing communities. From the years of 
experience in applying MapReduce to various scientific 
applications we identified a set of extensions to the programming 
model and improvements to its architecture that will expand the 
applicability of MapReduce to more classes of applications. In 
this paper, we present the programming model and the 
architecture of Twister an enhanced MapReduce runtime that 
supports iterative MapReduce computations efficiently. We also 
show performance comparisons of Twister with other similar 
runtimes such as Hadoop and DryadLINQ for large scale data 
parallel applications.  

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming -
Distributed programming, Parallel Programming. 

General Terms 
Algorithms, Performance, Languages 

Keywords 
MapReduce, Cloud Technologies, Iterative Algorithms. 

1. INTRODUCTION 
The data deluge is experiencing in many domains, and in some 
domains such as astronomy, particle physics and information 
retrieval, the volumes of data are already in peta-scale. The 
increase in the volume of data also increases the amount of 
computing power necessary to transform the raw data into 
meaningful information. In many such situations, the required 
processing power far exceeds the processing capabilities of 
individual computers, mandating the use of parallel/distributed 
computing strategies. These demanding requirements have led to 
the development of new programming models and 
implementations such as MapReduce[1] and Dryad[2]. 

MapReduce programming model has attracted a great deal of 
enthusiasm because of its simplicity and the improved quality of 
services that can be provided. Unlike the classical distributed 

processing runtimes in which the scheduling decisions are made 
mainly based on the availability of the computation resources, 
MapReduce takes a more data centered approach supporting the 
concept of “moving computations to data”. There are many 
published work including some of ours [3-6], showing the 
applicability of MapReduce programming model to various 
data/compute intensive applications. 

Classic parallel applications developed using message passing 
runtimes such as MPI[7] and PVM[8] utilize a rich set of 
communication and synchronization constructs offered by these 
runtimes to create diverse communication topologies.  In contrast, 
MapReduce and similar high-level programming models support 
simple communication topologies and synchronization constructs. 
Although this limits their applicability to the diverse classes of 
parallel algorithms, in our previous papers [3-6] we have shown 
that one can implement many data/compute intensive applications 
using these high level programming models. When the volume of 
the data is large, algorithms based on simple communication 
topologies may produce comparable performances to the 
algorithms with tight synchronization constraints. These 
observations also favor MapReduce since its relaxed 
synchronization constraints do not impose much of an overhead 
for large data analysis tasks. Furthermore, the simplicity and 
robustness of these programming models supersede the additional 
overheads.  

When analyzing a range of applications for which the MapReduce 
can be especially effective, we noticed that by supporting iterative 
MapReduce computations we can expand its applicability to more 
fields such as data clustering, machine learning, and computer 
vision where many iterative algorithms are common. In these 
algorithms, MapReduce is used to handle the parallelism while the 
repetitive application of it completes the iterations. Cheng Tao et 
al. also demonstrated ways of applying MapReduce to iterative 
machine learning algorithms[9].  

There are some existing implementations of MapReduce such as 
Hadoop[10] and Sphere[11] most of which adopt the initial 
programming model and the architecture presented by Google. 
These architectures focus on performing single step MapReduce 
(computations that involve only one application of MapReduce) 
with better fault tolerance, and therefore store most of the data 
outputs to some form of file system throughout the computation. 
Furthermore, in these runtimes, the repetitive application of 
MapReduce creates new map/reduce tasks in each iteration 
loading or accessing any static data repetitively. Although these 
features can be justified for single step MapReduce computations, 
they introduce considerable performance overheads for many 
iterative applications.  

Twister[12] is an enhanced MapReduce runtime with an extended 
programming model that supports iterative MapReduce 
computations efficiently. It uses a publish/subscribe messaging 
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infrastructure for communication and data transfers, and supports 
long running map/reduce tasks, which can be used in “configure 
once and use many times” approach. In addition it provides 
programming extensions to MapReduce with “broadcast” and 
“scatter” type data transfers. These improvements allow Twister 
to support iterative MapReduce computations highly efficiently 
compared to other MapReduce runtimes. We have published some 
of the preliminary results obtained during the development of 
Twister in few other publications [3-6]. In this paper, we discuss 
the extended MapReduce programming model and the 
architecture of Twister in detail. We also present some of the new 
applications that we have developed and their performances. 

In the sections that follow, we first give an overview of the 
MapReduce programming model and the architecture used by 
most of the MapReduce runtimes. Section 3 introduces Twister 
programming model comparing it with the typical MapReduce 
followed by its architecture in section 4. In section 5, we present a 
set of applications that we have developed using Twister and 
provide a performance analysis comparing Twister with other 
parallel/distributed runtimes such as Hadoop, and DryadLINQ 
[13]. We discuss the related work to Twister in section 6, and in 
the final section we draw our conclusions and outline future 
works. 

2. MAPREDUCE 
2.1 Programming Model 
MapReduce is a distributed programming technique proposed by 
Google for large-scale data processing in distributed computing 
environments. According to Jeffrey Dean and Sanjay Ghemawat, 
the input for MapReduce computation is a list of (key,value) pairs 
and each map function produces zero or more intermediate 
(key,value) pairs by consuming one input (key,value) pair. The 
runtime groups the intermediate (key,value) pairs based on some 
mechanism like hashing into buckets representing reduce tasks. 
The reduce tasks take an intermediate key and a list of values as 
input and produce zero or more output results [1].  

Furthermore, because of its functional programming inheritance 
MapReduce requires both map and reduce tasks to be “side-effect-
free”. Typically, the map tasks start with a data partition and the 
reduce task performs operations such as “aggregation” or 
“summation”. To support these, MapReduce also requires that the 
operations performed at the reduce task to be both “associative” 
and “commutative”.  These are common requirements for general 
reductions. For example, in MPI the default operations or the user 
defined operations in MPI_Reduce or MPI_Allreduce are also 
required to be associative and may also be commutative. 

2.2 Architectures 
Along with the MapReduce programming model, Jeffrey Dean 
and Sanjay Ghemawat describe in their paper the architecture that 
they adopted at Google. Many of their decisions are based on the 
scale of the problems that they solve using MapReduce and the 
characteristics of the large computing infrastructure in which 
these applications are deployed. Apache Hadoop and several other 
MapReduce runtimes such as Disco [14] and Sector/Sphere also 
adopt most of these architectural decisions. Below we will list 
some of the most important characteristics of their runtime as it 
will be useful to explain and compare the architectural decisions 
we made in Twister later. 

2.2.1 Handling Input and Output Data 
Both Google and Hadoop utilize distributed fault-tolerance file 
systems, GFS[15]  and HDFS[10], in their MapReduce runtimes. 
These file systems use the local disks of the computation nodes to 
create a distributed file system, which can be used to co-locate 
data and computation. They also provide a large disk bandwidth to 
read input data. Both runtimes use the distributed file systems to 
read the input data and store output results. Moreover, these file 
systems are built-in with data duplication strategies so that they 
can recover from failures of individual local disks in data/compute 
nodes. (Note: in MapReduce domain a “node” typically refers to a 
computer that is used for both storing data and also for 
computation. Throughout the paper we also use the term node to 
refer such a computer). 

2.2.2 Handling Intermediate Data 
In most MapReduce runtimes the intermediate data produced after 
the map stage of the computation is first stored in local disks of 
the nodes where they are produced. Then the master scheduler 
assign these outputs to reduce workers, which will then retrieve 
the data via some communication protocol such as HTTP and later 
execute the reduce functions. This approach greatly simplifies the 
handling of failures in the runtime. However, it also adds a 
considerable performance overhead to the overall computation for 
some applications. 

2.2.3 Scheduling Tasks 
Google’s MapReduce and Hadoop use a dynamic scheduling 
mechanism. In this approach, the runtime assigns map/reduce 
tasks to the available computation resources simplifying the 
optimal utilization of heterogeneous computational resources 
while the initial assignment of map tasks is performed based on 
the data locality. This approach also provides an automatic load 
balancing for map tasks with skewed data or computational 
distributions. 

2.2.4 Fault Tolerance 
Handling failures is one of the key considerations in Google’s 
MapReduce architecture. Their approach of writing every data 
product to persistent storage simplifies the failure handling logic. 
In both Google and Hadoop MapReduce, the distributed file 
systems handle the failures of the disks or nodes using data 
replication. A failure of a map task is handled by rerunning the 
failed task while a failure of reduce task requires downloading the 
outputs of map tasks and re-execution of the reduce task. The 
master process that handles the scheduling and keeps track of the 
overall computation is assumed to run on a node that is less 
susceptible to failures. A failure in this node requires restarting of 
the overall runtime. 

3. ITERATIVE MAPREDUCE WITH 
TWISTER 
There are many parallel algorithms with simple iterative 
structures. Most of them can be found in the domains such as data 
clustering, dimension reduction, link analysis, machine learning, 
and computer vision. K-Means[16], Deterministic Annealing 
Clustering[17], pagerank[18], and dimension reduction algorithms 
such as SMACOF[19] are all examples of such algorithms. When 
analyzing algorithms like above, we noticed that the parallel 
sections of such algorithms can easily be implemented as 
MapReduce computations so that the overall computation 
becomes an iterative MapReduce computation. 
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Further analysis revealed some of the interesting characteristics 
such as; they utilize two types of data products – static and 
dynamic, use many iterations until convergence, some requires 
reduce output as a whole to make the decision to continue or stop 
iterations. These features demand an extended MapReduce 
programming model and an efficient runtime implementation, 
which we try to provide in Twister. In the following section, we 
discuss the programming extensions we support in Twister in 
more detail. Figure 1 shows the extended programming model. 

3.1 Static vs. Variable Data 
Many iterative applications we analyzed show a common 
characteristic of operating on two types of data products called 
static and variable data. Static data (most of the time the largest of 
the two) is used in each iteration and remain fixed throughout the 
computation whereas the variable data is the computed results in 
each iteration and typically consumed in the next iteration in 
many expectation maximization (EM) type algorithms. For 
example, if we consider K-means clustering algorithm[16], during 
the nth iteration the program uses the input data set and the cluster 
centers computed during the (n-1)th iteration to compute the next 
set of cluster centers. To support map/reduce tasks operating with 
these two types of data products we introduced a “configure” 
phase for map and reduce tasks, which can be used to load (read) 
any static data at the  map and reduce tasks. For example, the 
typical map phase of the computation then consumes the variable 
data specified as (key, value) pairs and the static data (already 
loaded) producing a set of output (key, value) pairs.  

 
Figure 1. Iterative MapReduce programming model 

supported by Twister. 

3.2 Long Running Map/Reduce Tasks 
The above programming extension adds capabilities of handling 
both static and variable data in map/reduce tasks. However, 
reading static data in each execution of the MapReduce 
computation is highly inefficient. Although some of the typical 
MapReduce computations such as information retrieval consume 
very large data sets, many iterative applications we encounter 
operate on moderately sized data sets that can fit into the 
distributed memory of the computation infrastructure. This 
observation led us to explore the idea of using long-running 
map/reduce tasks similar to the parallel processes in many MPI 
applications that last throughout the life of the computation. The 
long running (cacheable) map/reduce tasks eliminates the 
necessity of reloading static data in each iteration. Current 
MapReduce implementations such as Hadoop and DryadLINQ do 

not support this behavior and hence they initiate new map/reduce 
tasks and load static data in each iteration incurring considerable 
performance overheads for iterative MapReduce computations. 
Although rare among iterative applications, one can use Twister 
with extremely large data sets that cannot be fit into the 
distributed memory of the computation infrastructure by reading 
data directly from the disks without loading them to memory. 

3.3 Granularity of Tasks 
The applications presented in the Google’s MapReduce paper[1] 
used fine grained map tasks. For example, in word count 
application, the map tasks simply produce (word, 1) pairs for each 
word it encounter. However, for many applications we noticed 
that by increasing the granularity of the map task one can reduce 
the volume of the intermediate data. In the above example, instead 
of sending (word, 1) for every word, the map task can produce 
partial sums such as (word, n). With the option of configurable 
map tasks, the map task can access large blocks of data/or files. In 
Twister, we adopt this approach in many of our data analysis 
applications to minimize the intermediate data volumes and to 
allocate more computation weight to map stage of the 
computation. Hadoop uses an intermediate combiner operation 
just after the map stage of the computation to support similar 
behavior. 

3.4 Side-effect-free Programming 
At first glance the concept of long-running map/reduce tasks 
seems to violate the “side-effect-free” nature of MapReduce 
allowing users to store state information in map/reduce tasks. 
However, in the case of a failure, Twister programming model 
only guarantees the restoring of static configurations such as data 
that can be reloaded using a data partition or static parameters 
shared from the main program. Any transient information stored 
in map/reduce tasks will be lost. Therefore the users of the 
Twister runtime can chose to use the fault tolerance capabilities 
by storing only the static configurations in long running 
map/reduce tasks or use the long running tasks to develop 
MapReduce applications with transient states stored in them (i.e. 
with side effects) without the fault tolerance capabilities. 

3.5 Combine Operation 
In Google’s MapReduce architecture the outputs of the reduce 
tasks are stored in the distributed file system (GFS) in separate 
files. However, most iterative MapReduce computations require 
accessing the “combined” output of the reduce tasks to determine 
whether to proceed with another iteration or not. In Twister we 
have introduced a new phase to MapReduce named “Combine” 
that acts as another level of reduction (Note: this is different to the 
local combine operation that runs just after the map tasks in 
Hadoop). One can use the combine operation to produce a 
collective output from all the reduce outputs.  

3.6 Programming Extensions 
We have also incorporated a set of programming extensions to 
MapReduce in Twister. One of the very useful extensions is 
mapReduceBCast(Value value). As the name implies this 
extension facilitates sending a single Value (Note: MapReduce 
uses (key,value) pairs) to all map tasks. For example, the “Value” 
can be a set of parameters, a resource (file or executable) name, or 
even a block of data. Apart from the above, the “configure” option 
described in section 3.1 is supported in Twister multiple ways. 
Map tasks can be configured using a “partition-file” – a file 
containing the meta-data about data partitions and their locations. 
In addition one can configure map/reduce tasks from a set of 
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values. For example configureMaps(Value[]values) 
and configureReduce(Value[]values) are two 
programming extensions that Twister provides. Twister also 
provides broadcast style operation between map and reduce 
phases allowing it to support complex parallel algorithms. We will 
discuss how these extensions are supported in the coming section. 

4. TWISTER ARCHITECTURE 
Twister is a distributed in-memory MapReduce runtime optimized 
for iterative MapReduce computations. It reads data from local 
disks of the worker nodes and handles the intermediate data in 
distributed memory of the worker nodes. All communication and 
data transfers are performed via a publish/subscribe messaging 
infrastructure. Figure 2 shows the architecture of the Twister 
runtime. (Note: we will simply use the term “broker network” to 
refer to the messaging infrastructure throughout the discussion). 
Twister architecture comprises of three main entities; (i) client 
side driver (Twister Driver) that drives the entire MapReduce 
computation, (ii) Twister Daemon running on every worker node, 
and (iii) the broker network. During the initialization of the 
runtime, Twister starts a daemon process in each worker node, 
which then establishes a connection with the broker network to 
receive commands and data. The daemon is responsible for 
managing map/reduce tasks assigned to it, maintaining a worker 
pool to execute map and reduce tasks, notifying status, and finally 
responding to control events. The client side driver provides the 
programming API to the user and converts these Twister API calls 
to control commands and input data messages sent to the daemons 
running on worker nodes via the broker network.  

 
Figure 2. Architecture of Twister. 

Twister uses a publish/subscribe messaging infrastructure to 
handle four types of communication needs; (i) sending/receiving 
control events, (ii) send data from the client side driver to the 
Twister daemons, (iii) intermediate data transfer between map and 
reduce tasks, and (iv) send the outputs of the reduce tasks back to 
the client side driver to invoke the combine operation.  Currently, 
it supports NaradaBrokering[20] and ActiveMQ[21] messaging 
infrastructures. However, Twister architecture clearly separates 
the communication logics from the implementation of the other 
components so that it is straightforward to use other messaging 
infrastructures such as those are based on persistent queues. 

4.1 Handling Input and Output Data 
Twister provides two mechanisms to access input data for map 
tasks; (i) read data from the local disks of worker nodes and (ii) 

receive data directly via the broker network. The first option 
allows twister to start MapReduce computations using large data 
sets spread across the worker nodes of the computing 
infrastructure. Twister assumes that the data read from the local 
disks are maintained as files and hence supports file based input 
format, which simplifies the implementation of the runtime. The 
use of the native files allows twister to pass data files directly to 
any executable (may be a script running as a map or reduce 
computation) as command line arguments - a feature not possible 
with file systems such as HDFS. A possible disadvantage of this 
approach is that it does require the user to break up large data sets 
into multiple files.  
The meta-data regarding the input file distribution across the 
worker nodes is read from a file called “partition-file”. Currently, 
the partition file contains a list of tuples consisting of file_id, 
node_id, file_path,replication_no fields in them. The concept of 
the partition-file in Twister is inspired by the DryadLINQ’s 
partitioned-file mechanism. Twister provides a tool to perform 
typical file system operations across the worker nodes such as (i) 
create directories, (ii) delete directories, (iii) distribute input files 
across worker nodes, (iv) copy a set of resources/input files to all 
worker nodes, (v) collect output files from the worker nodes to a 
given location, and (vi) create partition-file for a given set of data 
that is distributed across the worker nodes. Although these 
features do not provide the full capabilities that one can achieve 
via a distributed file system such as GFS or HDFS, the above 
services try to capture the key requirements of running 
MapReduce computations using the data read from local disks to 
support the concept of “moving computation to data”. Integrating 
a distributed file system such as HDFS or Sector [11] with Twister 
is an interesting future work. 
Twister also supports sending input data for map task directly via 
the broker network as well. It will be inefficient to send large 
volumes of input data via the broker network for map tasks. 
However, this approach is very useful to send small variable data 
(Note: please refer to the discussion of static vs. variable data in 
section 3.1) to map tasks. For example, a set of parameters, set of 
rows of a matrix, a set of cluster centers are all such data items.  

4.2 Handling Intermediate Data 
To achieve better performance, Twister handles the intermediate 
data in the distributed memory of the worker nodes. The results of 
the map tasks are directly pushed via the broker network to the 
appropriate reduce tasks where they get buffered until the 
execution of the reduce computation. Therefore, Twister assumes 
that the intermediate data produced after the map stage of the 
computation will fit in to the distributed memory. To support 
scenarios with large intermediate results, one can extend the 
Twister runtime to store the reduce inputs in local disks instead of 
buffering in memory.  

4.3 Use of Pub/Sub Messaging 
The use of publish/subscribe messaging infrastructure improves 
the efficiency of Twister runtime. However, to make the runtime 
scalable the communication infrastructure should also be scalable. 
NaradaBrokering messaging infrastructure we used in Twister can 
be configured as a broker network (as shown in figure 2), so that 
the Twister daemons can connect to different brokers in the 
network reducing the load on a given broker. This is especially 
useful when the application uses mapReduceBcast() with 
large data sets. A benchmark performed using 624 Twister 
daemons revealed that by using 5 brokers (connected 
hierarchically with 1 root broker and 4 leaf brokers) rather than 1 
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broker can improve the broadcast time by 4 folds for 20MB 
messages.  

4.4 Scheduling Tasks 
The cacheable map/reduce tasks used in Twister are only 
beneficial if the cached locations remain fixed. Therefore, Twister 
schedules map/reduce tasks statically. However, in an event of 
failure of worker nodes, it will reschedule the computation on 
different set of nodes. The static scheduling may lead to un-
optimized resource utilization with skewed input data or execution 
times of the map tasks. However, one can minimize this effect by 
randomizing the input data assignment to the map tasks.  

4.5 Fault Tolerance 
Twister provides fault tolerance for iterative MapReduce 
computations. Our approach is to save the application state of the 
computation between iterations so that in the case of a failure the 
entire computation can be rolled back few iterations. Supporting 
individual map or reduce failures require adopting an architecture 
similar to Google, which will eliminate most of the efficiencies 
that we have gained using Twister for iterative MapReduce 
computations. Therefore, we decided to provide fault tolerance 
support only for iterative MapReduce computations in Twister 
based on the following three assumptions: (i) Similar to Google 
and Hadoop implementations, we also assume that the master 
node failures are rare and hence provide no support for master 
node failures and (ii) the communication infrastructure can be 
made fault tolerance independent of the Twister runtime, and (iii) 
the data is replicated among the nodes of the computation 
infrastructure. Based on these assumptions we try to handle 
failures of map/reduce tasks, daemons, and worker nodes failures.  

The combine operation is an implicit global barrier in iterative 
MapReduce computations. This feature simplifies the amount of 
state Twister need to remember in case of a failure to recover. To 
enable fault tolerance Twister saves the configurations 
(information about the static data) used to configure map/reduce 
tasks before starting the MapReduce iterations. Then it also saves 
the input data (if any) that is sent directly from the main program 
to the map tasks. In case of a failure Twister simply re-configures 
map/reduce tasks using the available resources scheduling them 
based on the data locality, and restart the computation from the 
last saved state. If there are no replications of a particular data 
partition available among the remaining computation nodes the 
recovery operation will terminate. 

5. APPLICATIONS AND PERFORMANCES 
We have implemented a series of MapReduce applications using 
Twister, and the details of some of these applications have been 
presented in our previous publications [4-6]. Here we will 
describe some new applications that we have developed using 
Twister and provide a performance comparison with other 
MapReduce runtimes such as Hadoop and DryadLINQ.   For 
performance analysis we used two computation clusters as 
follows. 

Table 1. Details of the computation clusters used. 
Cluster ID Cluster-I Cluster-II 
# nodes 32 230 

# CPUs in each node 6 2 

# Cores in each CPU 8 4 

Total CPU cores 768 1840 

CPU Intel(R) Xeon(R) 
E7450 2.40GHz 

Intel(R) Xeon(R)           
E5410   2.33GHz 

Memory Per Node 48GB 16GB 

Network Gigabit Gigabit 

Cluster-I can be booted in to both Linux (Red Hat Enterprise 
Linux Server release 5.4 -64 bit) and Windows (Windows Server 
2008 -64 bit) while the Cluster-II runs Red Hat Enterprise Linux 
Server release 5.4 -64 bit  operating system. We use the academic 
release of DryadLINQ, Apache Hadoop version 0.20.2, and 
Twister for our performance comparisons. Both Twister and 
Hadoop use JDK (64 bit) version 1.6.0_18, while DryadLINQ and 
MPI uses Microsoft .NET version 3.5.  

5.1 Pairwise Distance Calculation 
Calculating similarity or dissimilarity between each element of a 
data set with each element in another data set is a common 
problem and is generally known as an All-pairs[22] problem. The 
application we have selected calculates the Smith Waterman 
Gotoh(SW-G)[23] distance (say 𝛿𝛿𝑖𝑖𝑖𝑖   –distance between gene i and 
gene j) between each pair of genes in a given gene collection.  

We mapped the above application to the MapReduce 
programming model by adopting a coarse grain task 
decomposition approach. To clarify our algorithm, let’s consider 
an example where N gene sequences produces a pairwise distance 
matrix of size NxN. We decompose the computation task by 
considering the resultant matrix and group the overall 
computation into a block matrix of size DxD. Due to the 
symmetry of the distances 𝛿𝛿𝑖𝑖𝑖𝑖   and 𝛿𝛿𝑖𝑖𝑖𝑖   we only calculate the 
distances in the blocks of the upper triangle of the block matrix as 
shown in Figure 3 . The blocks in the upper triangle are used as 
the values for map tasks along with the block coordinates as the 
keys. Once maps calculate the SW-G distance for a given block, it 
will emit two copies of the resulting matrix of distances 
corresponding to the results for the current block (i,j) and the 
block (j,i) due to symmetry. The block (j,i) is marked to read as a 
transpose matrix. The row number of a given block is used as the 
input key for the reduce tasks, which simply collect the data 
blocks corresponding to a row and write to output files after 
organizing them in their correct order. At the end of the 
computation all the blocks corresponding to a single row block 
will be written to a data file by the reduce tasks. We have 
developed three implementations of the same application using 
Twister, Hadoop, and DryadLINQ runtimes. In both Hadoop and 
Twister programs the calculation of the SW-G distance is done 
using the JAligner[24] program, a java implementation of the 
NAligner[24] program which we have used in DryadLINQ. More 
information about these implementations can be found in [25]. 

 
Figure 3. Twister implementation of the SW-G distance 

calculation program. 
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SW-G distance calculation is a typical MapReduce computation 
similar to the “word-count” or “grep” applications. However, 
unlike those synthetic applications, the SW-G performs 
considerable amount of computation at the map task and transfer a 
large matrix as the intermediate results between map and reduce 
phases. We use this application to demonstrate the ability of 
Twister to support typical MapReduce computations although the 
runtime is optimized for iterative MapReduce computations. A 
High Energy Physics data analysis that belongs to the same class 
of applications was explained in our previous work[4]. 

We identified samples of the human and Chimpanzee Alu gene 
sequences using Repeatmasker[26] with Repbase Update [27] and 
produced a data set of 50000 genes replicating a random sample 
of 10000 genes from the original data. We used this data set to 
measure parallel performance of DryadLINQ, Hadoop, and 
Twister runtimes. Figure 4 shows the parallel efficiency (η) of 
each runtime under varying data sizes calculated using the 
following formula in which p is the number of parallel units, T(p) 
is the running time with p parallel units, and T(1) is the sequential 
running time. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝑖𝑖𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸 (η) =
T(1)

p. T(p)                    (1) 

 
Figure 4. Parallel Efficiency of the different parallel runtimes 

for the SW-G program (Using 744 CPU cores in Cluster-I). 
For the above calculation, we estimated the serial running time by 
simply summing up the times spent on each map and reduce tasks. 
The results clearly show that all three runtimes achieve maximum 
efficiencies and maintains them with the increase of data. 
Although the absolute efficiency is not correctly reflected by the 
estimated serial time, it provides a valuable base point for our 
comparisons. Since this is a typical MapReduce computation, we 
expect all runtimes to achieve higher absolute efficiencies. 
Twister outperforms Hadoop, because of its faster data 
communication mechanism, and the lower overhead in the static 
task scheduling. Moreover, in Hadoop each map/reduce task is 
executed as separate process (Java Virtual Machine - JVM) where 
as Twister uses a hybrid approach in which the map/reduce tasks 
assigned to a given daemon is executed within one JVM. The 
Lower efficiency in DryadLINQ was mainly due to an inefficient 
task scheduling mechanism used in the initial academic release[3].  

To evaluate the scalability of the Twister runtime further, we 
performed another benchmark using 1632 CPU cores of Cluster-
II. In this evaluation, the Twister runtime is configured to use a 
daemon in each CPU core simulating a cluster of 1632 single core 
nodes. The efficiencies calculated for this evolution shows a value 
of 79% indicating that the runtime is scalable to such number of 
nodes. These results also prove that Twister is capable of running 

typical MapReduce computations although we have added 
enhancements focusing on iterative MapReduce computations.  

5.2 Multidimensional Scaling 
Multidimensional scaling (MDS) is a general term for the 
techniques to configure low dimensional mappings of given high-
dimensional data with respect to the pairwise proximity 
information, while the pairwise Euclidean distance within the 
target dimension of each pair is approximated to the 
corresponding original proximity value.  In other words, it is a 
non-linear optimization problem to find low-dimensional 
configuration which minimizes the objective function, called 
STRESS[28] or SSTRESS [29]. 

Among many MDS solutions, we are using a well-known EM-like 
method called SMACOF (Scaling by Majorizing of COmplicated 
Function)[19] in this paper.  SMACOF is based on iterative 
majorization approach and is calculated by iterative matrix 
multiplication.  For the stop condition, SMACOF algorithm 
measures the STRESS value of current mapping and compare to 
the STRESS value of the previous mapping result.  If the 
difference of STRESS value between previous one and the current 
one is smaller than threshold value, then it stops iteration.  For 
details of the SMACOF algorithm, please refer to[30]. 

We implemented the above algorithm using Twister and evaluated 
its performance and scalability characteristic. As we have shown 
in [3, 4] both Hadoop and DryadLINQ showed extremely high 
overheads for iterative applications such as K-Means clustering or 
matrix multiplication. The MDS uses three MapReduce 
computations in a single iteration involving two matrix- vector 
multiplications and one STRESS calculation. Thus we expect both 
Hadoop and DryadLINQ to be highly inefficient for this 
application and hence did not implement MDS using those 
runtimes. To evaluate the performance of our implementation, we 
used a data set comprising of 35339 genes producing 1.24 billion 
pair-wise distances. Estimating the serial running time for MDS 
application is not straightforward and hence we calculated the 
parallel efficiency using the formula (2) below in which α = p1/p2 
and p2 is the smallest number of CPU cores for the experiment, so 
alpha ≥ 1. This will calculate the parallel efficiency with respect 
to the minimum number of CPU cores used for the experiment. 
The outcome of this benchmark is shown in Figure 5. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝑖𝑖𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸 (η) =
T(p2)
α. T(p1)                    (2) 

 
Figure 5. Efficiency of the MDS application (in Cluster–II). 

For the selected data set, Twister maintains higher efficiencies 
(>80%) for considerable number of CPU cores. With large data, 
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we expect it to maintain similar efficiencies for even higher 
number of CPU cores. 

5.3 Pagerank 
PageRank algorithm calculates numerical value to each web page 
in World Wide Web, which reflects the probability that the 
random surfer will access that page. The process of PageRank can 
be understood as a Markov Chain which needs recursive 
calculation to converge.  An iteration of the algorithm calculates 
the new access probability for each web page based on values 
calculated in the previous computation. The iterating will not stop 
until the difference (δ) is less than a predefined threshold, where δ 
is the vector distance between the page access probabilities in Nth 
iteration and those in (N+1)th iteration. 
There already exist many published work optimizing PageRank 
algorithm, like some of them accelerate computation by exploring 
the block structure of hyperlinks[31, 32]. In this paper we do not 
create any new PageRank algorithm, but implement the most 
general RageRank algorithm [33] with MapReduce programming 
model on Twister system. The web graph is stored as an 
adjacency matrix (AM) and is partitioned to use as static data in 
map tasks. The variable input of map task is the initial page rank 
score. The output of reduce task is the input for the map task in 
the next iteration. 
By leveraging the features of Twister, we did several 
optimizations of PageRank so as to extend it to larger web graphs; 
(i) configure the adjacency matrix as a static input data on each 
compute node and (ii) used the broadcast feature to send input 
data (variable data) the map tasks. Further optimizations that are 
independent of Twister include; (i) increase the map task 
granularity by wrapping certain number of URLs entries together 
and (ii) merge all the tangling nodes as one node to save the 
communication and computation cost.  
We investigated Twister PageRank performance using ClueWeb 
data set [34] collected in January 2009. We built the adjacency 
matrix using this data set and tested the page rank application 
using 32 computer nodes of Cluster-II. Table 2 summarizes the 
characteristic of three ClueWeb data sets we used in our tests.  

Table 2. Characteristics of data sets (B stands for Billions) 
ClueWeb data set CWDS1 CWDS3 CWDS5 

Number of AM partitions 4000 2400 800 

Number of web pages 49.5M 31.2M 11.7M 
Number of links 1.40B 0.83B 0.27B 

Average out-degree 28.3 26.8 22.9 

 
Figure 6. Total running rime for 20 iterations of the Pagerank 

implementation (Using 256 CPU cores in Cluster-II). 

Figure 6 shows the scalability of the pagerank application under 
different data sizes. We also calculated the efficiency of the 
PageRank application using formula (2) above with p1 and p2 
times are taken from runs on 128 and 256 CPU cores respectively 
for the CWDS3 data set. The results revealed that the Twister 
version of the application can maintain above 80% efficiency at 
256 CPU cores as well. 

6. RELATED WORK 
MapReduce simplifies the programming of many pleasingly 
parallel applications. Currently, there are several MapReduce 
implementations available based on the Google’s MapReduce 
architecture and some of which have improvements/features over 
the initial MapReduce model proposed by Google. However for 
our knowledge there are no other implementations that support 
features such as long running map/reduce tasks or the MapReduce 
extensions to support iterative MapReduce computations 
efficiently for large-scale data analysis applications as in Twister. 
The paper presented by Cheng-Tao et al. discusses their 
experience in developing a MapReduce implementation for multi-
core machines[9]. They used the MapReduce runtime to 
implement several machine learning algorithms showing that 
MapReduce is especially effective for many algorithms that can 
be expressible in certain “summation form”. Phoenix runtime, 
presented by Colby Ranger et al., is a MapReduce implementation 
for multi-core systems and multiprocessor systems [35]. The 
evaluations used by Ranger et al. comprises of typical use cases 
found in Google's MapReduce paper such as word count, reverse 
index and also iterative computations such as Kmeans. Some of 
our design decisions in Twister were inspired by the benefits 
obtained in these shared memory runtimes. For example, in the 
above runtimes the data transfer simply requires sharing memory 
references, in Twister we use distributed memory transfers using 
pub/sub messaging. Sending some data value to all map tasks is a 
trivial operation with shared memory, in Twister we introduced 
mapReduceBcast() to handle such requirements.  

Sphere[11]  is a parallel runtime that operates on Sector[11] 
distributed file system. Sector is similar to HDFS in functionality; 
however it expects the data to be stored as files and leaves the data 
splitting for the users to manage. Unlike map/reduce Sphere 
executes user defined functions on these data splits. The authors 
show that it can also be used to execute MapReduce style 
computations as well. However we noticed that their approach 
requires more user involvement in managing the computations. 
Supporting MapReduce in various programming languages is a 
motivation in many map reduce runtimes such as Disco, Qizmt, 
and Skynet. 
Parallel runtimes that support Directed Acyclic Graph (DAG) 
based execution flows provide more parallel topologies compared 
to the MapReduce programming model. Condor DAGMan [36]  is 
a well-known parallel runtime that supports applications 
expressible as DAGs. Many workflow runtimes supports DAG 
based execution flows as well. In these runtimes the parallel task 
can read from several input sources and produce one or more 
outputs. Typically, the granularity of the computations executed in 
these tasks is larger than the granularity of the computations 
performed in map/reduce functions in MapReduce. For example, 
in workflow runtimes a task can be a separate parallel program 
running on multiple computers.  One can simulate the DAGs 
using MapReduce by orchestrating multiple MapReduce 
computations. In this regard, Twister will support it better due to 
its capabilities to send input data directly from the main program 
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to map/reduce tasks and collect the reduce outputs back to the  
main program. 
Microsoft Dryad[2] also uses a DAG based execution model in its 
distributed execution engine. The task granularity in vertices in 
Dryad is more similar to the task granularity of map/reduce in 
MapReduce and hence the authors call it a superset of 
MapReduce. Extending the Twister runtime to execute more 
general user defined functions and DAG based execution flows is 
an interesting future work. However, programming such a runtime 
is not straightforward and that could be the very reason why 
Microsoft introduced DryadLINQ. 
DryadLINQ provides a LINQ [37] based programming API for 
Dryad and hence it is more suitable for applications that process 
structured data. Performing computations that involve legacy 
applications or scripts using DryadLINQ is not so straightforward. 
DryadLINQ also supports “loop unrolling” a feature that can be 
used to create aggregated execution graphs combing a few 
iterations of iterative computations. The number of iterations that 
can be unrolled depends on the application and the available 
memory in the machine. Typically it is only a few iterations. 
Therefore, as we have shown in our previous paper[3]  it does not 
reduce the overhead of the programming model for iterative 
applications. Iterative applications we have tested perform up to 
10,000 iterations even in our initial modest size problems. They 
benefit greatly from the long running map/reduce computation 
tasks in Twister. Furthermore, DryadLINQ also uses file based 
communication mechanism to transfer data incurring higher 
overheads. 
Swift [38] is a scripting language and an execution and 
management runtime for developing parallel applications with the 
added support for defining typed data products via schemas. Its 
main focus is expressing computations with simple parallel 
structures that are coupled with data partitions more easily and 
scheduling those using Grid/Cluster infrastructures. Once a data 
partition is available one can easily uses MapReduce to schedule a 
“map-only” operation (Twister also support this) to process them 
as a many task computation without using the full MapReduce 
cycle. Swift also support iterative execution of parallel tasks, but 
does not provide optimizations such as long running tasks or 
faster data transfers as in Twister. 
There is a rich set of future research topics examining additional 
features for Twister based on lessons from the other projects 
discussed in this section. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper we discussed our experience in designing and 
implementing Twister - a distributed in-memory MapReduce 
runtime optimized for iterative MapReduce computations. We 
have discussed the extended programming model of Twister and 
its architecture comparing them with the typical MapReduce and 
its current architectures showing how Twister extends the envelop 
of MapReduce to more classes of applications. We have also 
presented the results of a set of applications with voluminous data 
sets. Some of the benchmarks performed with Twister use a 1632 
CPU core cluster. The results, including some of the complex 
iterative applications such as MDS, indicate that Twister performs 
and scales well for many iterative MapReduce computations  
We plan to extend our future research in three areas; (i) research 
on different communication infrastructures that can be used with 
Twister and identify ways to reduce the load on messaging 
infrastructure, (ii) explore the possible distributed file systems that 
can be incorporated with Twister to provide better data handling 

capabilities and better fault tolerance while retaining most of the 
efficiencies we have in Twister intact, and (iii) extending the 
programming model further to support more classes of 
applications. With the above enhancements, Twister will provide 
a valuable tool for MapReduce that supports data-intensive 
disciplines such as physics, chemistry and the medical and life 
sciences as well. 
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