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ABSTRACT
In many networking systems, Bloom filters are used for high-
speed set membership tests. They permit a small fraction
of false positive answers with very good space efficiency.
However, they do not permit deletion of items from the set,
and previous attempts to extend “standard” Bloom filters to
support deletion all degrade either space or performance.

We propose a new data structure called the cuckoo filter
that can replace Bloom filters for approximate set member-
ship tests. Cuckoo filters support adding and removing items
dynamically while achieving even higher performance than
Bloom filters. For applications that store many items and
target moderately low false positive rates, cuckoo filters have
lower space overhead than space-optimized Bloom filters.
Our experimental results also show that cuckoo filters out-
perform previous data structures that extend Bloom filters to
support deletions substantially in both time and space.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; E.4 [Data]: Data Compaction

and Compression
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Cuckoo hashing; Bloom filters; compression

1. INTRODUCTION
Many databases, caches, routers, and storage systems use

approximate set membership tests to decide if a given item is
in a (usually large) set, with some small false positive prob-
ability. The most widely-used data structure for this test is
the Bloom filter [3], which has been studied extensively due
to its memory efficiency. Bloom filters have been used to:
reduce the space required in probabilistic routing tables [25];
speed longest-prefix matching for IP addresses [9]; improve
network state management and monitoring [24, 4]; and en-
code multicast forwarding information in packets [15], among
many other applications [6].
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A limitation of standard Bloom filters is that one cannot
remove existing items without rebuilding the entire filter (or
possibly introducing generally less desirable false negatives).
Several approaches extend standard Bloom filters to support
deletion, but with significant space or performance overhead.
Counting Bloom filters [12] have been suggested for multiple
applications [24, 25, 9], but they generally use 3–4× space
to retain the same false positive rate as a space-optimized
Bloom filter. Other variants include d-left counting Bloom
filters [5], which are still 1.5× larger, and quotient filters [2],
which provide significantly degraded lookup performance to
yield comparable space overhead to Bloom filters.

This paper shows that supporting deletion in approximate
set membership tests need not impose higher overhead in
space or performance compared to standard Bloom filters.
We propose the cuckoo filter, a practical data structure that
provides four major advantages.

1. It supports adding and removing items dynamically;
2. It provides higher lookup performance than traditional

Bloom filters, even when close to full (e.g., 95% space
utilized);

3. It is easier to implement than alternatives such as the
quotient filter; and

4. It uses less space than Bloom filters in many practical
applications, if the target false positive rate ε is less than
3%.

A cuckoo filter is a compact variant of a cuckoo hash
table [21] that stores only fingerprints—a bit string derived
from the item using a hash function—for each item inserted,
instead of key-value pairs. The filter is densely filled with
fingerprints (e.g., 95% entries occupied), which confers high
space efficiency. A set membership query for item x simply
searches the hash table for the fingerprint of x, and returns
true if an identical fingerprint is found.

When constructing a cuckoo filter, its fingerprint size is
determined by the target false positive rate ε. Smaller values
of ε require longer fingerprints to reject more false queries.
Interestingly, while we show that cuckoo filters are practically
better than Bloom filters for many real workloads, they are
asymptotically worse: the minimum fingerprint size used
in the cuckoo filter grows logarithmically with the number
of entries in the table (as we explain in Section 4). As a
consequence, the per-item space overhead is higher for larger
tables, but this use of extra space confers a lower false positive
rate. For practical problems with a few billion items or fewer,



space cache misses deletion
filter type cost per lookup support

Bloom 1 k no
blocked Bloom 1x 1 no
counting Bloom 3x ∼ 4x k yes
d-left counting Bloom 1.5x ∼ 2x d yes
quotient 1x ∼ 1.2x ≥ 1 yes
cuckoo ≤1x 2 yes

Table 1: Properties of Bloom filters and variants. Assume
standard and counting Bloom filters use k hash functions,
and d-left counting Bloom filters have d partitions.

a cuckoo filter uses less space while supporting deletion than
a non-deletable, space-optimized Bloom filter when ε < 3%.

Cuckoo filters are substantially different from regular hash
tables because only fingerprints are stored in the filter and
the original key and value bits of each item are no longer
retrievable. Because full keys are not stored, a cuckoo fil-
ter cannot even perform standard cuckoo hashing to insert
new items, which involves moving existing keys based on
their hash values. This difference means that the standard
techniques, analyses, and optimizations that apply to cuckoo
hashing do not necessarily carry over to cuckoo filters.

Technical contributions made by this paper include
• Applying partial-key cuckoo hashing—a variant of stan-

dard cuckoo hashing—to build cuckoo filters that sup-
port dynamic addition and deletion of items (Section 3).

• Exploring the reason why partial-key cuckoo hashing
ensures high table occupancy for most real-world appli-
cations (Section 4).

• Optimizing cuckoo filters to outperform Bloom filters in
space efficiency (Section 5).

2. BACKGROUND AND RELATED WORK
2.1 Bloom Filters and Variants

We compare standard Bloom filters and the variants that
include support for deletion or better lookup performance, as
summarized in Table 1. These data structures are evaluated
empirically in Section 7. Cuckoo filters achieve higher space
efficiency and performance than these data structures.

Standard Bloom filters [3] provide a compact representation
of a set of items that supports two operations: Insert and
Lookup. A Bloom filter allows a tunable false positive rate ε
so that a query returns either “definitely not” (with no error),
or “probably yes” (with probability ε of being wrong). The
lower ε is, the more space the filter requires.

A Bloom filter consists of k hash functions and a bit array
with all bits initially set to “0”. To insert an item, it hashes
this item to k positions in the bit array by k hash functions,
and then sets all k bits to “1”. Lookup is processed similarly,
except it reads k corresponding bits in the array: if all the
bits are set, the query returns true; otherwise it returns false.

Bloom filters do not support deletion.
Bloom filters can be very space-efficient, but are not opti-

mal [20]. For a false positive rate ε, a space-optimized Bloom
filter uses k = log2(1/ε) hash functions. Such a Bloom filter
can store each item using 1.44 log2(1/ε) bits, which depends
only on ε rather than the item size or the total number of items.
The information-theoretic minimum requires log2(1/ε) bits
per item, so a space-optimized Bloom filter imposes a 44%
space overhead over the information-theoretic lower bound.

The information theoretic optimum is essentially achiev-
able for a static set by using fingerprints (of length d1/εe
bits) and a perfect hash table [6]. To efficiently handle dele-
tions, we replace a perfect hash function with a well-designed
cuckoo hash table.

Counting Bloom filters [12] extend Bloom filters to allow
deletions. A counting Bloom filter uses an array of counters
in place of an array of bits. An insert increments the value
of k counters instead of simply setting k bits, and a lookup
checks if each of the required counters is non-zero. The delete
operation decrements the values of these k counters. To pre-
vent arithmetic overflow (i.e., incrementing a counter that has
the maximum possible value), each counter in the array must
be sufficiently large in order to retain the Bloom filter’s prop-
erties. In practice, the counter consists of four or more bits,
and a counting Bloom filter therefore requires 4× more space
than a standard Bloom filter. (One can construct counting
Bloom filters to use less space by introducing a secondary
hash table structure to manage overflowing counters, at the
expense of additional complexity.)

Blocked Bloom filters [22] do not support deletion, but pro-
vide better spatial locality on lookups. A blocked Bloom filter
consists of an array of small Bloom filters, each fitting in one
CPU cache line. Each item is stored in only one of these small
Bloom filters determined by hash partitioning. As a result,
every query causes at most one cache miss to load that Bloom
filter, which significantly improves performance. A drawback
is that the false positive rate becomes higher because of the
imbalanced load across the array of small Bloom filters.

d-left Counting Bloom filters [5] are similar to the approach
we use here. Hash tables using d-left hashing [19] store finger-
prints for stored items. These filters delete items by removing
their fingerprint. Compared to counting Bloom filters, they
reduce the space cost by 50%, usually requiring 1.5 − 2× the
space compared to a space-optimized non-deletable Bloom
filter. Cuckoo filters achieve better space efficiency than d-left
counting Bloom filters as we show, and have other advantages,
including simplicity.

Quotient filters [2] are also compact hash tables that store
fingerprints to support deletion. Quotient filters uses a tech-
nique similar to linear probing to locate a fingerprint, and
thus provide better spatial locality. However, they require
additional meta-data to encode each entry, which requires
10 ∼ 25% more space than a comparable standard Bloom
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Figure 1: Illustration of cuckoo hashing

filter. Moreover, all of its operations must decode a sequence
of table entries before reaching the target item, and the more
the hash table is filled, the longer these sequences become.
As a result, its performance drops significantly when the oc-
cupancy of the hash table exceeds 75%.

Other Variants: Other variants have been proposed to im-
prove Bloom filters, either in space and/or performance. Rank-
Indexed Hashing [14] builds linear chaining hash tables to
store compressed fingerprints. Although similar to and some-
what more space efficient than d-left counting Bloom filters,
updating the internal index that reduces the chaining cost is
very expensive, making it less appealing in dynamic settings.
Putze et al. proposed two variants of Bloom filters [22]. One
is the previously discussed Blocked Bloom filter; the other,
called a Golomb-Compressed Sequence stores all items’ fin-
gerprints in a sorted list. Its space is near-optimal, but the
data structure is static and requires non-constant lookup time
to decode the encoded sequence. It is therefore not evalu-
ated with other filters in this paper. Pagh et al. proposed an
asymptotically space-optimal data structure [20] based on
Cleary [8]. This data structure, however, is substantially more
complex than its alternatives and does not appear amenable
to a high performance implementation. In contrast, cuckoo
filters are easy to implement.

2.2 Cuckoo Hash Tables

Cuckoo Hashing Basics: A basic cuckoo hash table [21]
consists of an array of buckets where each item has two
candidate buckets determined by hash functions h1(x) and
h2(x). The lookup procedure checks both buckets to see if
either contains this item. Figure 1(a) shows the example of
inserting a new item x in to a hash table of 8 buckets, where
x can be placed in either buckets 2 or 6. If either of x’s two
buckets is empty, the algorithm inserts x to that free bucket
and the insertion completes. If neither bucket has space,
as is the case in this example, the item selects one of the
candidate buckets (e.g., bucket 6), kicks out the existing item
(in this case “a”) and re-inserts this victim item to its own
alternate location. In our example, displacing “a” triggers

another relocation that kicks existing item “c” from bucket 4
to bucket 1. This procedure may repeat until a vacant bucket
is found as illustrated in Figure 1(b), or until a maximum
number of displacements is reached (e.g., 500 times in our
implementation). If no vacant bucket is found, this hash table
is considered too full to insert. Although cuckoo hashing may
execute a sequence of displacements, its amortized insertion
time is O(1).

Cuckoo hashing ensures high space occupancy because it
refines earlier item-placement decisions when inserting new
items. Most practical implementations of cuckoo hashing
extend the basic description above by using buckets that hold
multiple items, as suggested in [10]. The maximum possi-
ble load when using k hash functions and buckets of size b
assuming all hash functions are perfectly random has been
analyzed [13]. With proper configuration of cuckoo hash
table parameters (explored in Section 5), the table space can
be 95% filled with high probability.

Using Cuckoo Hashing for Set-membership: Recently,
standard cuckoo hash tables have been used to provide set
membership information in a few applications. To support
transactional memory, Sanchez et al. proposed to store the
read/write set of memory addresses of each transaction in
a cuckoo hash table, and to convert this table to Bloom fil-
ters when full [23]. Their design used standard cuckoo hash
tables, and thus required much more space than cuckoo fil-
ters. Our previous study in building high-speed and memory-
efficient key-value stores [17, 11] and software-based Ether-
net switches [26] all applied cuckoo hash tables as internal
data structures. That work was motivated by and also focused
on improving hash table performance by an optimization
called partial-key cuckoo hashing. However, as we show in
this paper, this technique also enabled a new approach to
build a Bloom filter replacement which has not been studied
before. As a result, this paper also applies partial-key cuckoo
hashing, but more importantly it offers an in-depth analysis
of using this technique specifically to serve set membership
tests (rather than key-value queries) and further compares the
performance of cuckoo filters with alternative set membership



data structures.

Challenges in Cuckoo Filter: To make cuckoo filters
highly space efficient, we use a multi-way associative cuckoo
hash table to provide high-speed lookup and high table occu-
pancy (e.g., 95% hash table slots filled); to further reduce the
hash table size, each item is first hashed into a constant-sized
fingerprint before inserted into this hash table. The challenge
of applying this data structure is to redesign the insert pro-
cess and carefully configure the hash table to minimize space
usage per item:
• First, storing only fingerprints in the hash table prevents

inserting items using the standard cuckoo hashing ap-
proach. Because in cuckoo hashing the insertion al-
gorithm must be able to relocate existing fingerprints
to their alternative locations. A space-inefficient but
straightforward solution is to store each inserted item in
its entirety (perhaps externally to the table); given the
original item (“key”), calculating its alternate location is
easy. In contrast, cuckoo filters use partial-key cuckoo
hashing to find an item’s alternate location based on only
its fingerprint (Section 3).

• Second, cuckoo filter associates each item with multiple
possible locations in the hash table. This flexibility in
where to store an item improves table occupancy, but
retaining the same false positive rate when probing more
possible locations on each lookup requires more space
for longer fingerprints. In Section 5, we present our anal-
ysis to optimize the balance between the table occupancy
and its size to minimize the average space cost per item.

3. CUCKOO FILTER ALGORITHMS
In this paper, the basic unit of the cuckoo hash tables used

for our cuckoo filters is called an entry. Each entry stores one
fingerprint. The hash table consists of an array of buckets,
where a bucket can have multiple entries.

This section describes how cuckoo filters perform Insert,
Lookup and Delete operations. Section 3.1 presents
partial-key cuckoo hashing, a variant of standard cuckoo
hashing that enables cuckoo filters to insert new items dy-
namically. This technique was first introduced in previous
work [11], but there the context was improving the lookup and
insert performance of regular cuckoo hash tables where full
keys were stored. In contrast, this paper focuses on optimiz-
ing and analyzing the space efficiency when using partial-key
cuckoo hashing with only fingerprints, to make cuckoo filters
competitive with or even more compact than Bloom filters.

3.1 Insert
As previously stated, with standard cuckoo hashing, insert-

ing new items to an existing hash table requires some means
of accessing the original existing items in order to determine
where to relocate them if needed to make room for the new
ones (Section 2.2). Cuckoo filters, however, only store fin-
gerprints and therefore there is no way to restore and rehash
the original keys to find their alternate locations. To over-

Algorithm 1: Insert(x)
f = fingerprint(x);
i1 = hash(x);
i2 = i1 ⊕ hash( f );
if bucket[i1] or bucket[i2] has an empty entry then

add f to that bucket;
return Done;

// must relocate existing items;
i = randomly pick i1 or i2;
for n = 0; n < MaxNumKicks; n++ do

randomly select an entry e from bucket[i];
swap f and the fingerprint stored in entry e;
i = i ⊕ hash( f );
if bucket[i] has an empty entry then

add f to bucket[i];
return Done;

// Hashtable is considered full;
return Failure;

come this limitation, we utilize a technique called partial-key
cuckoo hashing to derive an item’s alternate location based on
its fingerprint. For an item x, our hashing scheme calculates
the indexes of the two candidate buckets as follows:

h1(x) = hash(x),
h2(x) = h1(x) ⊕ hash(x’s fingerprint). (1)

The xor operation in Eq. (1) ensures an important property:
h1(x) can also be calculated from h2(x) and the fingerprint
using the same formula. In other words, to displace a key
originally in bucket i (no matter if i is h1(x) or h2(x)), we
directly calculate its alternate bucket j from the current bucket
index i and the fingerprint stored in this bucket by

j = i ⊕ hash(fingerprint). (2)

Hence, an insertion only uses information in the table, and
never has to retrieve the original item x.

In addition, the fingerprint is hashed before it is xor-ed
with the index of its current bucket to help distribute the
items uniformly in the table. If the alternate location were
calculated by “i⊕fingerprint” without hashing the fingerprint,
the items kicked out from nearby buckets would land close
to each other in the table, if the size of the fingerprint is
small compared to the table size. For example, using 8-bit
fingerprints the items kicked out from bucket i will be placed
to buckets that are at most 256 buckets away from bucket
i, because the xor operation would alter the eight low order
bits of the bucket index while the higher order bits would not
change. Hashing the fingerprints ensures that these items can
be relocated to buckets in an entirely different part of the hash
table, hence reducing hash collisions and improving the table
utilization.

Using partial-key cuckoo hashing, cuckoo filters add new
items dynamically by the process shown in Algorithm 1. Be-
cause these fingerprints can be significantly shorter than the



size of h1 or h2, there are two consequences. First, the total
number of different possible choices of (h1, h2) as calculated
by Eq. (1) can be much smaller than using a perfect hash to
derive h1 and h2 as in standard cuckoo hashing. This may
cause more collisions, and in particular previous analyses for
cuckoo hashing (as in [10, 13]) do not hold. A full analy-
sis of partial-key cuckoo hashing remains open (and beyond
this paper); in Section 4, we provide a detailed discussion of
this issue and consider how to achieve high occupancy for
practical workloads.

Second, inserting two different items x and y that have the
same fingerprint is fine; it is possible to have the same finger-
print appear multiple times in a bucket. However, cuckoo
filters are not suitable for applications that insert the same
item more than 2b times (b is the bucket size), because the
two buckets for this duplicated item will become overloaded.
There are several solutions for such a scenario. First, if the
table need not support deletion, then this issue does not arise,
because only one copy of each fingerprint must be stored.
Second, one could, at some space cost, associate counters
with buckets, and increment/decrement them appropriately.
Finally, if the original keys are stored somewhere (perhaps in
slower external storage), one could consult that record to pre-
vent duplicate insertion entirely, at the cost of slowing down
insertion if the table already contains a (false positive) match-
ing entry for the bucket and fingerprint. Similar requirements
apply to traditional and d-left counting Bloom filters.

Algorithm 2: Lookup(x)
f = fingerprint(x);
i1 = hash(x);
i2 = i1 ⊕ hash( f );
if bucket[i1] or bucket[i2] has f then

return True;

return False;

3.2 Lookup
The lookup process of a cuckoo filter is simple, as shown

in Algorithm 2. Given an item x, the algorithm first calculates
x’s fingerprint and two candidate buckets according to Eq. (1).
Then these two buckets are read: if any existing fingerprint
in either bucket matches, the cuckoo filter returns true, other-
wise the filter returns false. Notice that this ensures no false
negatives as long as bucket overflow never occurs.

Algorithm 3: Delete(x)
f = fingerprint(x);
i1 = hash(x);
i2 = i1 ⊕ hash( f );
if bucket[i1] or bucket[i2] has f then

remove a copy of f from this bucket;
return True;

return False;

3.3 Delete

Standard Bloom filters cannot delete, thus removing a sin-
gle item requires rebuilding the entire filter, while counting
Bloom filters require significantly more space. Cuckoo filters
are like counting Bloom filters that can delete inserted items
by removing corresponding fingerprints from the hash ta-
bles on deletion. Other filters with similar deletion processes
prove more complex than cuckoo filters. For example, d-left
counting Bloom filters must use extra counters to prevent the
“false deletion” problem on fingerprint collision1, and quotient
filters must shift a sequence of fingerprints to fill the “empty”
entry after deletion and maintain their “bucket structure”.2

The deletion process of cuckoo filters illustrated in Algo-
rithm 3 is much simpler. It checks both candidate buckets for
a given item; if any fingerprint matches in any bucket, one
copy of that matched fingerprint is removed from that bucket.

Deletion does not have to clean the entry after deleting
an item. It also avoids the “false deletion” problem when
two items share one candidate bucket and also have the same
fingerprint. For example, if both item x and y reside in bucket
i1 and collide on fingerprint f , partial-key cuckoo hashing
ensures that they both can also reside in bucket i2 because
i2 = i1 ⊕ hash( f ). When deleting x, it does not matter if the
process removes the copy of f added when inserting x or y.
After x is deleted, y is still perceived as a set member because
there is a corresponding fingerprint left in either bucket i1
and i2. An important consequence of this is that the false-
positive behavior of the filter is unchanged after deletion. (In
the above example, y being in the table causes false positives
for lookups of x, by definition: they share the same bucket
and fingerprint.) This is the expected false-positive behavior
of an approximate set membership data structure, and its
probability remains bounded by ε.

Note that, to delete an item x safely, it must have been
previously inserted. Otherwise, deleting a non-inserted item
might unintentionally remove a real, different item that hap-
pens to share the same fingerprint. This requirement also
holds true for all other deletion-supporting filters.

1 A naive implementation of d-left counting Bloom filters has a
“false deletion” problem. A d-left counting Bloom filter maps each
item to d candidate buckets, each from a partition of the table, and
stores the fingerprint in one of its d buckets. If two different items
share one and only one bucket, and they have the same fingerprint
(which is likely to happen when the fingerprints are small), directly
deleting the fingerprint from this specific bucket may cause a wrong
item to be removed. To address this issue, d-left counting Bloom
filters use an additional counter in each table entry and additional
indirections [5].

2 In quotient filters, all fingerprints having the same quotient
(i.e., the q most significant bits) must be stored in contiguous entries
according to their numerical order. Thus, removing one fingerprint
from a cluster of fingerprints must shift all the fingerprints after the
hole by one slot, and also modify their meta-data bits [2].
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Figure 2: Load factor α achieved by using f -bit fingerprint using partial-key cuckoo hashing, in tables of different sizes
(m = 215, 220, 225 and 230 buckets). Short fingerprints suffice to approach the optimal load factor achieved by using two
fully independent hash functions. α = 0 means empty and 1 means completely full. Each point is the minimal load factor
seen in 10 independent runs.

4. ASYMPTOTIC BEHAVIOR
Here we show that using partial-key cuckoo hashing to

store fingerprints in a cuckoo filter to leads to a lower bound
on fingerprint sizes that grows slowly with the filter size. This
contrasts with other approaches (such as fingerprints and per-
fect hashing for a static Bloom filter, previously discussed)
where the fingerprint size depended only on the desired false
positive probability. While this might seem like a negative,
in practice the effect seems unimportant. Empirically, a fil-
ter containing up to 4 billion items can effectively fill its
hash table with loads of 95% when each bucket holds four
fingerprints that are 6 bits or larger.

The notation used for our analysis in this and the next
section is:

ε target false positive rate
f fingerprint length in bits
α load factor (0 ≤ α ≤ 1)
b number of entries per bucket
m number of buckets
n number of items
C average bits per item

Minimum Fingerprint Size: Our proposed partial-key
cuckoo hashing derives the alternate bucket of a given item
based on its current location and the fingerprint (Section 3).
As a result, the candidate buckets for each item are not in-
dependent. For example, assume an item can be placed in
bucket i1 or i2. According to Eq. (1), the number of possible
values of i2 is at most 2 f when using f -bit fingerprints. Using
1-byte fingerprints, given i1 there are only up to 2 f = 256
different possible values of i2. For a table of m buckets, when
2 f < m (or equivalently f < log2 m bits), the choice of i2 is
only a subset of all m buckets of the entire hash table.

Intuitively, if the fingerprints are sufficiently long, partial-
key cuckoo hashing could still be a good approximation to
standard cuckoo hashing; however, if the hash table is very
large and stores relatively short fingerprints, the chance of
insertion failures will increase due to hash collisions, which
may reduce the table occupancy. This situation may arise
when a cuckoo filter targets a large number of items but only
a moderately low false positive rate. In the following, we
determine analytically a lower bound of the probability of
insertion failure.

Let us first derive the probability that a given set of q items
collide in the same two buckets. Assume the first item x has
its first bucket i1 and a fingerprint tx. If the other q − 1 items
have the same two buckets as this item x, they must 3 (1) have
the same fingerprint tx, which occurs with probability 1/2 f ;
and (2) have their first bucket either i1 or i1 ⊕ h(tx), which
occurs with probability 2/m. Therefore the probability of
such q items sharing the same two buckets is

(
2/m · 1/2 f

)q−1
.

Now consider a construction process that inserts n random
items to an empty table of m = cn buckets for a constant c
and constant bucket size b. Whenever there are q = 2b + 1
items mapped into the same two buckets, the insertion fails.
This probability provides a lower bound for failure (and, we
believe, dominates the failure probability of this construction
process, although we do not prove this and do not need to
in order to obtain a lower bound). Since there are in total(

n
2b+1

)
different possible sets of 2b+1 items out of n items, the

expected number of groups of 2b + 1 items colliding during

3Here we assume hashing the fingerprints (i.e., tx → h(tx)) is
collision-free, because in practice tx is a few bits and h(tx) is much
longer.



the construction process is(
n

2b + 1

) (
2

2 f · m

)2b

=

(
n

2b + 1

) (
2

2 f · cn

)2b

= Ω

( n
4b f

)
(3)

We conclude that 4b f must be Ω(n) to avoid a non-trivial
probability of failure, as otherwise this expectation is Ω(1).
Therefore, the fingerprint size must be f = Ω(log n/b) bits.

This result seems somewhat unfortunate, as the number of
bits required for the fingerprint is Ω(log n); recall that Bloom
filters use a constant (approximately ln(1/ε) bits) per item.
We might therefore have concerns about the scalability of this
approach. As we show next, however, practical applications
of cuckoo filters are saved by the b factor in the denomina-
tor of the lower bound: as long as we use reasonably sized
buckets, the fingerprint size can remain small.

Empirical Evaluation: Figure 2 shows the load factor
achieved with partial-key cuckoo hashing as we vary the
fingerprint size f , bucket size b, and number of buckets in
the table m. For the experiments, we varied the fingerprint
size f from 1 to 20 bits. Random 64-bit keys are inserted to
an empty filter until a single insertion relocates existing fin-
gerprints more than 500 times before finding an empty entry
(our “full” condition), then we stop and measure achieved
load factor α. We run this experiment ten times for filters
with m = 215, 220, 225, and 230 buckets, and measured their
minimum load over the ten trials. We did not use larger tables
due to the memory constraint of our testbed machine.

As shown in Figure 2, across different configurations, fil-
ters with b = 4 could be filled to 95% occupancy, and with
b = 8 could be filled to 98%, with sufficiently long finger-
prints. After that, increasing the fingerprint size has almost
no return in term of improving the load factor (but of course
it reduces the false positive rate). As suggested by the theory,
the minimum f required to achieve close-to-optimal occu-
pancy increases as the filter becomes larger. Also, comparing
Figure 2(a) and Figure 2(b), the minimum f for high occu-
pancy is reduced when bucket size b becomes larger, as the
theory also suggests. Overall, short fingerprints appear to
suffice for realistic sized sets of items. Even when b = 4 and
m = 230, so the table could contain up to four billion items,
once fingerprints exceed six bits, α approaches the “optimal
load factor” that is obtained in experiments using two fully
independent hash functions.

Insights: The lower bound of fingerprint size derived in
Eq. (3), together with the empirical results shown in Figure 2,
give important insights into the cuckoo filter. While in the-
ory the space cost of cuckoo filters is “worse” than Bloom
filters—Ω(log n) versus a constant—the constant terms are
very important in this setting. For a Bloom filter, achiev-
ing ε = 1% requires roughly 10 bits per item, regardless
of whether one thousand, one million, or billion items are
stored. In contrast, cuckoo filters require longer fingerprints
to retain the same high space efficiency of their hash tables,
but lower false positive rates are achieved accordingly. The

Ω(log n) bits per fingerprint, as also predicted by the theory,
grows slowly if the bucket size b is sufficiently large. We find
that, for practical purposes, it can be treated as a reasonable-
sized constant for implementation. Figure 2 shows that for
cuckoo filters targeting a few billion items, 6-bit fingerprints
are sufficient to ensure very high utilization of the hash table.

As a heuristic, partial-key cuckoo hashing is very efficient,
as we show further in Section 7. Several theoretical questions
regarding this technique, however, remain open for future
study, including proving bounds on the cost of inserting a new
item and studying how much independence is required of the
hash functions.

5. SPACE OPTIMIZATIONS
The basic algorithms for cuckoo filter operations Insert,

Lookup, and Delete presented in Section 3 are indepen-
dent of the hash table configuration (e.g., how many entries
each bucket has). However, choosing the right parameters for
cuckoo filters can significantly affect space efficiency. This
section focuses on optimizing the space efficiency of cuckoo
filters, through parameter choices and additional mechanisms.

Space efficiency is measured by the average number of bits
to represent each item in a full filter, derived by the table
size divided by the total number of items that a filter can
effectively store. Recall that, although each entry of the hash
table stores one fingerprint, not all entries are occupied: there
must be some slack in the table for the cuckoo filter or there
will be failures when inserting items. As a result, each item
effectively costs more to store than a fingerprint: if each
fingerprint is f bits and the hash table has a load factor of α,
then the amortized space cost C for each item is

C =
table size
# of items

=
f · (# of entries)
α · (# of entries)

=
f
α

bits. (4)

As we will show, both f and α are related to the bucket size
b. The following section studies how to (approximately) min-
imize Eq. (4) given a target false positive rate ε by choosing
the optimal bucket size b.

5.1 Optimal Bucket Size
Keeping a cuckoo filter’s total size constant but changing

the bucket size leads to two consequences:

(1) Larger buckets improve table occupancy (i.e., higher
b→ higher α). With k = 2 hash functions, the load factor α is
50% when the bucket size b = 1 (i.e., the hash table is directly
mapped), but increases to 84%, 95% or 98% respectively
using bucket size b = 2, 4 or 8.

(2) Larger buckets require longer fingerprints to retain
the same false positive rate (i.e., higher b → higher f ).
With larger buckets, each lookup checks more entries and
thus has a higher chance to see fingerprint collisions. In
the worst case of looking up a non-existent item, a query
must probe two buckets where each bucket can have b entries.
(While not all of these buckets may be filled, we analyze here



avg. # memory references / lookup
bits per item load factor α positive query negative query

space-optimized Bloom filter 1.44 log2(1/ε) − log2 (1/ε) 2
cuckoo filter (log2(1/ε) + 3)/α 95.5% 2 2
cuckoo filter w/ semi-sort (log2(1/ε) + 2)/α 95.5% 2 2

Table 2: Space and lookup cost of Bloom filters and three cuckoo filters.
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Figure 3: Amortized space cost per item vs. measured
false positive rate, with different bucket size b = 2, 4, 8.
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the worst case in which they are; this gives us a reasonably
accurate estimate for a table that is 95% full.) In each entry,
the probability that a query is matched against one stored
fingerprint and returns a false-positive successful match is
at most 1/2 f . After making 2b such comparisons, the upper
bound of the total probability of a false fingerprint hit is

1 − (1 − 1/2 f )2b ≈ 2b/2 f , (5)

which is proportional to the bucket size b. To retain the target
false positive rate ε, the filter ensures 2b/2 f ≤ ε, thus the
minimal fingerprint size required is approximately:

f ≥
⌈
log2 (2b/ε)

⌉
=

⌈
log2 (1/ε) + log2 (2b)

⌉
bits. (6)

Upper Bound of Space Cost As we have shown, both f and
α depend on the bucket size b. The average space cost C by
Eq. (4) is bound by:

C ≤
⌈
log2 (1/ε) + log2 (2b)

⌉
/α, (7)

where α increases with b. For example, when b = 4 so
1/α ≈ 1.05, Eq. (7) shows cuckoo filters are asymptotically
better (by a constant factor) than Bloom filters, which require
1.44 log2 (1/ε) bits or more for each item.

Optimal bucket size b To compare the space efficiency by
using different bucket sizes b, we run experiments that first
construct cuckoo hash tables by partial-key cuckoo hashing
with different fingerprint sizes, and measure the amortized
space cost per item and their achieved false positive rates. As

shown in Figure 3, the space-optimal bucket size depends on
the target false positive rate ε: when ε > 0.002, having two
entries per bucket yields slightly better results than using four
entries per bucket; when ε decreases to 0.00001 < ε ≤ 0.002,
four entries per bucket minimizes space.

In summary, we choose (2, 4)-cuckoo filter (i.e., each item
has two candidate buckets and each bucket has up to four
fingerprints) as the default configuration, because it achieves
the best or close-to-best space efficiency for the false positive
rates that most practical applications [6] may be interested
in. In the following, we present a technique that further saves
space for cuckoo filters with b = 4 by encoding each bucket.

5.2 Semi-sorting Buckets to Save Space
This subsection describes a technique for cuckoo filters

with b = 4 entries per bucket that saves one bit per item. This
optimization is based on the fact that the order of fingerprints
within a bucket does not affect the query results. Based on
this observation, we can compress each bucket by first sorting
its fingerprints and then encoding the sequence of sorted
fingerprints. This scheme is similar to the “semi-sorting
buckets” optimization used in [5].

The following example illustrates how the compression
saves space. Assume each bucket contains b = 4 fingerprints
and each fingerprint is f = 4 bits (more general cases will be
discussed later). An uncompressed bucket occupies 4×4 = 16
bits. However, if we sort all four 4-bit fingerprints stored in
this bucket (empty entries are treated as storing fingerprints
of value “0”), there are only 3876 possible outcomes in total
(the number of unique combinations with replacement). If we
precompute and store these 3876 possible bucket-values in
an extra table, and replace the original bucket with an index
into this precomputed table, then each original bucket can
be represented by a 12-bit index (212 = 4096 > 3876) rather
than 16 bits, saving 1 bit per fingerprint.4

Note that this permutation-based encoding (i.e., indexing
all possible outcomes) requires extra encoding/decoding ta-
bles and indirections on each lookup. Therefore, to achieve
high lookup performance it is important to make the encod-
ing/decoding table small enough to fit in cache. As a result,
our “semi-sorting” optimization only apply this technique for
tables with buckets of four entries. Also, when fingerprints
are larger than four bits, only the four most significant bits of

4If the cuckoo filter does not need to support deletion, then it can
ignore duplicate entries in the fingerprint list, creating the potential
for saving an additional fraction of a bit per entry.
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filters are obtained empirically.

each fingerprint are encoded; the remainder are stored directly
and separately.

6. COMPARISON WITH BLOOM FILTER
We compare Bloom filters and cuckoo filters using the

metrics shown in Table 2 and several additional factors.

Space Efficiency: Table 2 compares space-optimized Bloom
filters and cuckoo filters with and without semi-sorting. Fig-
ure 4 further shows the bits to represent one item required by
these schemes, when ε varies from 0.001% to 10%. The infor-
mation theoretical bound requires log2(1/ε) bits for each item,
and an optimal Bloom filter uses 1.44 log2(1/ε) bits per item,
for a 44% overhead. Thus cuckoo filters with semi-sorting
are more space efficient than Bloom filters when ε < 3%.

Number of Memory Accesses: For Bloom filters with k
hash functions, a positive query must read k bits from the
bit array. For space-optimized Bloom filters that require
k = log2(1/ε), as ε gets smaller, positive queries must probe
more bits and are likely to incur more cache line misses when
reading each bit. For example, k = 2 when ε = 25%, but k is
7 when ε = 1%, which is more commonly seen in practice. A
negative query to a space optimized Bloom filter reads two
bits on average before it returns, because half of the bits are
set. Any query to a cuckoo filter, positive or negative, always
reads a fixed number of buckets, resulting in (at most) two
cache line misses.

Value Association: Cuckoo filters can be extended to also
return an associated value (stored external to the filter) for
each matched fingerprint. This property of cuckoo filters
provides an approximate table lookup mechanism, which
returns 1 + ε values on average for each existing item (as it
can match more than one fingerprint due to false positive hits)
and on average ε values for each non-existing item. Standard
Bloom filters do not offer this functionality. Although variants
like Bloomier filters can generalize Bloom filters to represent

functions, these structures are more complex and require more
space than cuckoo filters [7].

Maximum Capacity: Cuckoo filters have a load threshold.
After reaching the maximum feasible load factor, insertions
are non-trivially and increasingly likely to fail, so the hash
table must expand in order to store more items. In contrast,
one can keep inserting new items into a Bloom filter, at the
cost of an increasing false positive rate. To maintain the same
target false positive rate, the Bloom filter must also expand.

Limited Duplicates: If the cuckoo filter supports deletion,
it must store multiple copies of the same item. Inserting the
same item kb + 1 times will cause the insertion to fail. This
is similar to counting Bloom filters where duplicate insertion
causes counter overflow. However, there is no effect from
inserting identical items multiple times into Bloom filters, or
a non-deletable cuckoo filter.

7. EVALUATION
Our implementation5 consists of approximately 500 lines

of C++ code for standard cuckoo filters, and 500 lines for
the support of the “semi-sorting” optimization presented in
Section 5.2. In the following, we denote a basic cuckoo filter
as “CF”, and a cuckoo filter with semi-sorting as “ss-CF”. In
addition to cuckoo filters, we implemented four other filters
for comparison:
• Standard Bloom filter (BF) [3]: We evaluated standard

Bloom filters as the baseline. In all of our experiments,
the number of hash functions k are configured to achieve
the lowest false positive rate, based on the filter size and
the total number of items. In addition, a performance
optimization is applied to speed up lookups and inserts
by doing less hashing [16]. Each insert or lookup only
requires two hash functions h1(x) and h2(x), and then
uses these two hashes to simulate the additional k − 2
hash functions in the form of

gi(x) = h1(x) + i · h2(x).

• Blocked Bloom filter (blk-BF) [22]: Each filter consists
of an array of blocks and each block is a small Bloom
filter. The size of each block is 64 bytes to match a CPU
cache line in our testbed. For each small Bloom filter, we
also apply the same optimization of simulating multiple
hash functions as in standard Bloom filters.

• Quotient filter (QF) [2]: We evaluated our own imple-
mentation of quotient filters6. This filter stores three
extra bits for each item as the meta-data to help locate
items. Because the performance of quotient filters de-
grades as they become more loaded, we set the maximum
load factor to be 90% as evaluated in [2].

• d-left counting Bloom filter (dl-CBF) [5]: The filter is
configured to have d = 4 hash tables. All hash tables

5https://github.com/efficient/cuckoofilter
6The source code from the original authors was not publicly

available for comparison due to license issues.

https://github.com/efficient/cuckoofilter


metrics CF ss-CF BF blk-BF QF dl-CBF

# of items (million) 127.78 128.04 123.89 123.89 120.80 103.82
bits per item 12.60 12.58 13.00 13.00 13.33 15.51
false positive rate 0.19% 0.09% 0.19% 0.43% 0.18% 0.76%
constr. speed (million keys/sec) 5.00 3.13 3.91 7.64 1.91 4.78

Table 3: Space efficiency and construction speed. All filters are 192MB. Entries in bold are the best among the row.

have the same number of buckets; each bucket has four
entries.

We emphasize that the standard and blocked Bloom filters do
not support deletion, and thus are compared as a baseline.

Experiment Setup: All the items to insert are pre-generated
64-bit integers from random number generators. We did
not eliminate duplicated items because the probability of
duplicates is very small.

On each query, all filters first generate a 64-bit hash of the
item using CityHash [1]. Each filter then partitions these 64
bits in this hash as it needed. For example, Bloom filters treat
the high 32 bits and low 32 bits as the first two independent
hashes respectively, then use these two 32-bit values to calcu-
late the other k − 2 hashes. The time to compute the 64-bit
hash (about 20 ns per item in our testbed) is included in our
measurement. All experiments use a machine with two Intel
Xeon processors (L5640@2.27GHz, 12MB L3 cache) and 32
GB DRAM.

Metrics: To fully understand how different filters realize the
trade-offs in function, space and performance, we compare
above filters by the following metrics:
• Space efficiency: measured by the filter size in bits di-

vided by the number of items a full filter contains.
• Achieved false positive rate: measured by querying a

filter with non-existing items and counting the fraction
of positive return values.

• Construction rate: measured by the number of items that
a full filter contains divided by the time to construct this
full filter from empty.

• Lookup, Insert and Delete throughput: measured by the
average number of operations a filter can perform per
second. The value can depend on the workload and the
occupancy of the filter.

7.1 Achieved False Positive Rate
We first evaluate the space efficiency and false positive

rates. In each run, all filters are configured to have the same
size (192 MB). Bloom filters are configured to use nine hash
functions, which minimizes the false positive rate with thir-
teen bits per item. For cuckoo filters, their hash tables have
m = 225 buckets each consisting of four 12-bit entries. The
d-left counting Bloom filter have the same number of hash
table entries, but divided into d = 4 partitions. Quotient filter
also has 227 entries where each entry stores 3-bit meta-data
and a 9-bit remainder.

Each filter is initially empty and items are placed until

either the filter sees an insert failure (for CF, and dl-CBF), or
it has reached the target capacity limit (for BF, blk-BF, and
QF). The construction rate and false positive rate of different
filters are shown in Table 3.

Among all filters, the ss-CF achieves the lowest false pos-
itive rate. Using about the same amount of space (12.60
bits/item), enabling semi-sorting can encode one more bit
into each item’s fingerprint and thus halve the false positive
rate from 0.19% to 0.09%, On the other hand, semi-sorting
requires encoding and decoding when accessing each bucket,
and thus the construction rate is reduced from 5.00 to 3.13
million items per second.

The BF and blk-BF both use 13.00 bits per item with k = 9
hash functions, but the false positive rate of the blocked filter
is 2× higher than the BF and 4× higher than the best CF. This
difference is because the blk-BF assigns each item to a single
block by hashing and an imbalanced mapping will create “hot”
blocks that serve more items than average and “cold” blocks
that are less utilized. Unfortunately, such an imbalanced
assignment happens across blocks even when strong hash
functions are used [18], which increases the overall false
positive rate. On the other hand, by operating in a single
cache line for any query, the blk-BF achieves the highest
construction rate.

The QF spends more bits per item than BFs and CFs,
achieving the second best false positive rate. Due to the
cost of encoding and decoding each bucket, its construction
rate is the lowest.

Finally, the dl-CBF sees insert failures and stops construc-
tion when the entire table is about 78% full, thus storing
many fewer items. Its achieved false positive rate is much
worse than the other filters because each lookup must check
16 entries, hence having a higher chance of hash collisions.

7.2 Lookup Performance

Different Workloads We next benchmark lookup perfor-
mance after the filters are filled. This section compares the
lookup throughput and latency with varying workloads. The
workload is characterized by the fraction of positive queries
(i.e., items in the table) and negative queries (i.e., items not
in the table), which can affect the lookup speed. We vary the
fraction p of positive queries in the input workload from 0%
(all queries are negative) to 100% (all queries are positive).

The benchmark result of lookup throughput is shown in
Figure 5. Each filter occupies 192 MB, much larger than the
L3 cache (20 MB) in our testbed.



 0

 2

 4

 6

 8

 10

 12

 14

 16

0% 25% 50% 75% 100%

lo
ok

up
 th

ro
ug

hp
ut

 (m
ill

io
n 

O
P

S
)

p: fraction of queries on existing items

CF
ss-CF

BF

blk-BF
QF

dl-CBF

Figure 5: Lookup performance when a filter achieves its
capacity. Each point is the average of 10 runs.

The blk-BF performs well when all queries are negative,
because each lookup can return immediately after fetching
the first “0” bit. However, its performance declines when
more queries are positive, because it must read additional
bits as part of the lookup. The throughput of BF changes
similarly when p increases, but is about 4 MOPS slower.
This is because the BF may incur multiple cache misses to
complete one lookup whereas the blocked version can always
operate in one cache line and have at most one cache miss for
each lookup.

In contrast, a CF always fetches two buckets7, and thus
achieves the same high performance when queries are 100%
positive and 100% negative. The performance drops slightly
when p = 50% because the CPU’s branch prediction is least
accurate (the probability of matching or not matching is ex-
actly 1/2). With semi-sorting, the throughput of CF shows a
similar trend when the fraction of positive queries increases,
but it is lower due to the extra decoding overhead when read-
ing each bucket. In return for the performance penalty, the
semi-sorting version reduces the false positive rate by a factor
of two compared to the standard cuckoo filter. However, the
ss-CF still outperforms BFs when more than 25% of queries
are positive.

The QF performs the worst among all filters. When a QF is
90% filled, a lookup must search a long chain of table entries
and decode each of them for the target item.

The dl-CBF outperforms the ss-CF, but 30% slower than a
BF. It also keeps about the same performance when serving
all negative queries and all positive queries, because only a
constant number of entries are searched on each lookup.

Different Occupancy In this experiment, we measure the
lookup throughput when the these filters are filled at different
levels of occupancy. We vary their load factor α of each filter
from 0 (empty) to its maximum occupancy. Figure 6 shows
the average instantaneous lookup throughput when all queries
are negative (i.e., for non-existing items) and all queries are

7 Instead of checking each item’s two buckets one by one, our
implementation applies a performance optimization that tries to issue
two memory loads together to hide the latency of the second read.
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Figure 7: Insert throughput at different occupancy. In-
sert random keys in a large universe until each data struc-
ture achieves its designed capacity. Each point is the av-
erage of 10 runs.

positive (i.e., for existing items).
The throughput of CF and ss-CF is mostly stable across dif-

ferent load factor levels on both negative and positive queries.
This is because the total number of entries to read and com-
pare remains constant even as more items are inserted.

In contrast, the throughput of QF decreases substantially
when more loaded. This filter searches an increasingly long
chain of entries for the target item as the load factor grows.

Both BF and blk-BF behave differently when serving neg-
ative and positive queries. For positive queries, they must
always check in total k bits, no matter how many items have
been inserted, thus providing constant lookup throughput;
while for negative queries, when the filter is less loaded, fewer
bits are set and a lookup can return earlier when seeing a “0”.

The dl-CBF behaves differently from the BF. When all
lookups are negative, it ensures constant throughput like the
CF, because a total of 16 entries from four buckets must
be searched, no matter how many items this filter contains.
For positive queries, if there are fewer items inserted, the
lookup may return earlier before all four buckets are checked;
however, this difference becomes negligible after the dl-CBF
is about 20% filled.

7.3 Insert Performance
The overall construction speed, measured based on the to-

tal number of items a full filter contains and the total time to
insert these items, is shown in Table 3. We also study the in-
stantaneous insert throughput across the construction process.
Namely, we measure the insert throughput of different filters
when they are at levels of load factors, as shown in Figure 7.

In contrast to the lookup throughput shown in Figure 6,
both types of CF have decreasing insert throughput when they
are more filled (though their overall construction speed is
still high), while both BF and blk-BF ensure almost constant
insert throughput. The CF may have to move a sequence of
existing keys recursively before successfully inserting a new
item, and this process becomes more expensive when the load
factor grows higher. In contrast, both Bloom filters always
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Figure 6: Lookup throughput (MOPS) at different occupancy. Each point is the average of 10 runs.
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ferent occupancy. Each point is the average of 10 runs.

set k bits, regardless of the load factor.
The QF also has decreasing insert throughput, because it

must shift a sequence of items before inserting a new item,
and this sequence grows longer when the table is more filled.

The dl-CBF keeps constant throughput. For each insert, it
must only find an empty entry in up to four buckets; if such
an entry can not be found, the insert stops without relocating
existing items as in cuckoo hashing. This is also why its
maximum load factor is no more than 80%.

7.4 Delete Performance
Figure 8 compares the delete performance among filters

supporting deletion. The experiment deletes keys from an ini-
tially full filter until it is empty. The CF achieves the highest
throughput. Both CF and ss-CF provide stable performance
through the entire process. The dl-CBF performs the second
best among all filters. The QF is the slowest when close to
full, but becomes faster than ss-CF when close to empty.

Evaluation Summary: The CF ensures high and stable
lookup performance for different workloads and at different
levels of occupancy. Its insert throughput declines as the
filter is more filled, but the overall construction rate is still

faster than other filters except the blk-BF. Enabling semi-
sorting makes cuckoo filters more space-efficient than space-
optimized BFs. It also makes lookups, inserts, and deletes
slower, but still faster than conventional BFs.

8. CONCLUSION
Cuckoo filters are a new data structure for approximate set

membership queries that can be used for many networking
problems formerly solved using Bloom filters. Cuckoo filters
improve upon Bloom filters in three ways: (1) support for
deleting items dynamically; (2) better lookup performance;
and (3) better space efficiency for applications requiring low
false positive rates (ε < 3%). A cuckoo filter stores the fin-
gerprints of a set of items based on cuckoo hashing, thus
achieving high space occupancy. As a further key contri-
bution, we have applied partial-key cuckoo hashing, which
makes cuckoo filters significantly more efficient by allowing
relocation based on only the stored fingerprint. Our configu-
ration exploration suggests that the cuckoo filter, which uses
buckets of size 4, will perform well for a wide range of appli-
cations, although appealingly cuckoo filter parameters can be
easily varied for application-dependent tuning.

While we expect that further extensions and optimizations
to cuckoo filters are possible and will further provide impetus
for their use, the data structure as described is a fast and
efficient building block already well-suited to the practical
demands of networking and distributed systems.
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