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Proteins are essential to life, and understanding their structure can facilitate a
mechanistic understanding of their function. Through an enormous experimental
effort™, the structures of around 100,000 unique proteins have been determined®, but
this represents asmall fraction of the billions of known protein sequences®”’. Structural
coverage is bottlenecked by the months to years of painstaking effort required to
determine asingle proteinstructure. Accurate computational approaches are needed
to addressthis gap and to enable large-scale structural bioinformatics. Predicting the
three-dimensional structure that a protein willadopt based solely onits amino acid
sequence—the structure prediction component of the ‘protein folding problem”®—has
beenanimportant openresearch problem for more than 50 years®. Despite recent
progress'®™, existing methods fall far short of atomic accuracy, especially when no
homologous structure is available. Here we provide the first computational method
that canregularly predict protein structures withatomic accuracy evenin cases in which
no similar structure is known. We validated an entirely redesigned version of our neural
network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein

Structure Prediction (CASP14)", demonstrating accuracy competitive with
experimental structures in amajority of cases and greatly outperforming other
methods. Underpinning the latest version of AlphaFold is anovel machine learning
approachthatincorporates physical and biological knowledge about protein structure,
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

The development of computational methods to predict
three-dimensional (3D) protein structures from the proteinsequence
has proceeded along two complementary paths that focus on either the
physicalinteractions or the evolutionary history. The physical interac-
tion programme heavily integrates our understanding of molecular
driving forcesinto either thermodynamic or kinetic simulation of pro-
tein physics' or statistical approximations thereof”. Although theoreti-
cally very appealing, this approach has proved highly challenging for
even moderate-sized proteins due to the computational intractability
of molecular simulation, the context dependence of protein stability
and the difficulty of producing sufficiently accurate models of protein
physics. The evolutionary programme has provided an alternative in
recentyears, inwhich the constraints on protein structure are derived
from bioinformatics analysis of the evolutionary history of proteins,
homology to solved structures®' and pairwise evolutionary correla-
tions?*2*, This bioinformatics approach has benefited greatly from

the steady growth of experimental protein structures deposited in
the Protein Data Bank (PDB)®, the explosion of genomic sequencing
and the rapid development of deep learning techniques to interpret
these correlations. Despite these advances, contemporary physical
and evolutionary-history-based approaches produce predictions that
arefar short of experimental accuracy in the majority of casesin which
a close homologue has not been solved experimentally and this has
limited their utility for many biological applications.

In this study, we develop the first, to our knowledge, computational
approach capable of predicting protein structures to near experimental
accuracy inamajority of cases. The neural network AlphaFold that we
developed was entered into the CASP14 assessment (May-July 2020;
entered under the team name ‘AlphaFold2’ and a completely different
model from our CASP13 AlphaFold system'). The CASP assessment is
carried out biennially using recently solved structures that have not
been depositedinthe PDB or publicly disclosed so thatitisablind test
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Fig.1| AlphaFold produces highly accurate structures. a, The performance
of AlphaFold onthe CASP14 dataset (n =87 protein domains) relative to the top-
15entries (out of 146 entries), group numbers correspond to the numbers
assigned to entrants by CASP. Data are median and the 95% confidence interval
ofthe median, estimated from10,000 bootstrap samples. b, Our prediction of
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental)
structure (green). Four residuesin the C terminus of the crystal structure are
B-factor outliers and are not depicted. ¢, CASP14 target T1056 (PDB 6Y]1).

for the participating methods, and has long served as the gold-standard
assessment for the accuracy of structure prediction®%,

In CASP14, AlphaFold structures were vastly more accurate than
competing methods. AlphaFold structures had a median backbone
accuracy of 0.96 A r.m.s.d.,; (Ca root-mean-square deviation at 95%
residue coverage) (95% confidence interval = 0.85-1.16 A) whereas
the next best performing method had a median backbone accuracy
of 2.8 A r.m.s.d.s (95% confidence interval = 2.7-4.0 A) (measured on
CASP domains; see Fig.1a for backbone accuracy and Supplementary
Fig.14 for all-atomaccuracy). As acomparison point for this accuracy,
the width of a carbon atom is approximately 1.4 A. In addition to very
accurate domain structures (Fig. 1b), AlphaFold is able to produce
highly accurate side chains (Fig.1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even
when strong templates are available. The all-atom accuracy of Alpha-
Fold was1.5A r.m.s.d., (95% confidence interval =1.2-1.6 A) compared
withthe3.5Ar.m.s.d.,;s (95% confidence interval =3.1-4.2 A) of the best
alternative method. Our methods are scalable to very long proteins with
accurate domains and domain-packing (see Fig. 1d for the prediction
ofa2,180-residue protein with no structural homologues). Finally, the
modelisableto provide precise, per-residue estimates of its reliability
that should enable the confident use of these predictions.

We demonstratein Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to alarge sample of recently released PDB
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Anexample of awell-predicted zinc-binding site (AlphaFold has accurate side
chains eventhoughit does not explicitly predict the zincion).d, CASP target
T1044 (PDB 6VR4)—a2,180-residue single chain—was predicted with correct
domain packing (the prediction was made after CASP using AlphaFold without
intervention). e, Model architecture. Arrows show the information flow among
the various components described in this paper. Array shapes are shownin
parentheses withs, number of sequences (N, in the main text); r, number of
residues (N, in the main text); c,number of channels.

structures; inthis dataset, all structures were deposited in the PDB after
our training data cut-off and are analysed as full chains (see Methods,
Supplementary Fig. 15 and Supplementary Table 6 for more details).
Furthermore, we observe high side-chain accuracy when the back-
bone predictionisaccurate (Fig.2b) and we show that our confidence
measure, the predicted local-distance difference test (pLDDT), reliably
predicts the Calocal-distance difference test (IDDT-Ca) accuracy of the
corresponding prediction (Fig.2c). We also find that the global super-
position metric template modelling score (TM-score)? can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high
accuracy and reliability of AlphaFold on CASP14 proteins also transfers
to an uncurated collection of recent PDB submissions, as would be
expected (see Supplementary Methods 1.15and Supplementary Fig. 11
for confirmation that this high accuracy extends to new folds).

The AlphaFold network

AlphaFold greatly improves the accuracy of structure prediction by
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints
of proteinstructures. In particular, we demonstrate anew architecture
to jointly embed multiple sequence alignments (MSAs) and pairwise
features, anew output representation and associated loss that enable
accurate end-to-end structure prediction, anew equivariant attention
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Fig.2|Accuracy of AlphaFold onrecent PDB structures. The analysed
structures are newer thananystructureinthetrainingset. Further filtering is
applied toreduceredundancy (see Methods). a, Histogram of backbone
r.m.s.d. for full chains (Car.m.s.d. at 95% coverage). Error bars are 95%
confidenceintervals (Poisson). This dataset excludes proteins with atemplate
(identified by hmmsearch) from the training set with more than 40% sequence
identity covering more than1% of the chain (n=3,144 protein chains). The
overallmedianis1.46 A (95% confidence interval=1.40-1.56 A). Note that this
measure will be highly sensitive to domain packing and domain accuracy; a
highr.m.s.d.isexpected for some chains with uncertain packing or packing
errors.b, Correlationbetween backbone accuracy and side-chain accuracy.
Filtered tostructures withany observedside chainsand resolution better than
2.5A(n=5,317 protein chains); side chains were further filtered to

B-factor <30 A2. Arotamer is classified as correct if the predicted torsion angle
iswithin40°. Each pointaggregates arange of IDDT-Ca, with abin size of 2 units
above 70 IDDT-Ca and 5 units otherwise. Points correspond to the mean
accuracy; error bars are 95% confidence intervals (Student t-test) of the mean
onaper-residuebasis. ¢, Confidence score compared to the true accuracy on
chains. Least-squareslinear fit IDDT-Ca=0.997 x pLDDT -1.17 (Pearson’s
r=0.76).n=10,795 protein chains. The shaded region of the linear fit
represents a95% confidence interval estimated from 10,000 bootstrap
samples. In the companion paper®, additional quantification of the reliability
of pLDDT asa confidence measureis provided.d, Correlation between pTM
and full chain TM-score. Least-squares linear fit TM-score=0.98 x pTM + 0.07
(Pearson’sr=0.85).n=10,795 protein chains. The shaded region of the linear fit
represents a95% confidence interval estimated from10,000 bootstrap
samples.

architecture, use ofintermediate losses to achieve iterative refinement
of predictions, masked MSA loss to jointly train with the structure,
learning fromunlabelled protein sequences using self-distillationand
self-estimates of accuracy.

The AlphaFold network directly predicts the 3D coordinates of all
heavy atoms for agiven protein using the primary amino acid sequence
and aligned sequences of homologues as inputs (Fig. 1e; see Methods
for details of inputsincluding databases, MSA construction and use of
templates). A description of the mostimportantideas and components
isprovided below. The full network architecture and training procedure
are provided in the Supplementary Methods.

The network comprises two main stages. First, the trunk of the net-
work processes the inputs through repeated layers of a novel neural
network block that we term Evoformer to produce an N, x N, array
(Nseq, number of sequences; N,;, number of residues) that represents
aprocessed MSA and an N, x N, array that represents residue pairs.
The MSA representation is initialized with the raw MSA (although
see Supplementary Methods 1.2.7 for details of handling very deep
MSAs). The Evoformer blocks contain a number of attention-based
and non-attention-based components. We show evidence in‘Interpret-
ing the neural network’ that a concrete structural hypothesis arises
early withinthe Evoformer blocks and is continuously refined. The key
innovationsin the Evoformer block are new mechanisms to exchange
information within the MSA and pair representations that enable direct
reasoning about the spatial and evolutionary relationships.

The trunk of the network is followed by the structure module that
introduces anexplicit3D structureinthe formofarotationand transla-
tion for each residue of the protein (global rigid body frames). These
representations areinitialized ina trivial state with all rotations set to
theidentity and all positions set to the origin, but rapidly develop and
refine a highly accurate protein structure with precise atomic details.
Key innovations in this section of the network include breaking the
chain structure to allow simultaneous local refinement of all parts of
the structure, anovel equivariant transformer to allow the network to
implicitly reason about the unrepresented side-chain atoms and aloss
term that places substantial weight on the orientational correctness
of the residues. Both within the structure module and throughout
the whole network, we reinforce the notion of iterative refinement
by repeatedly applying the final loss to outputs and then feeding the
outputs recursively into the same modules. The iterative refinement
using the whole network (which we term ‘recycling’ and is related to
approachesin computer vision**??) contributes markedly to accuracy
with minor extra training time (see Supplementary Methods 1.8 for
details).

Evoformer

The key principle of the building block of the network—named Evo-
former (Figs. 1e, 3a)—is to view the prediction of protein structures
as agraphinference problem in 3D space in which the edges of the
graph are defined by residues in proximity. The elements of the pair
representation encode information about the relation between the
residues (Fig.3b). The columns of the MSA representation encode the
individual residues of the input sequence while the rows represent
the sequencesinwhich those residues appear. Within this framework,
we define anumber of update operations that are applied in each block
inwhich the different update operations are applied in series.

The MSArepresentation updates the pair representation through an
element-wise outer product that is summed over the MSA sequence
dimension. In contrast to previous work®’, this operation is applied
withinevery block rather than once in the network, which enables the
continuous communication from the evolving MSA representation to
the pair representation.

Within the pair representation, there are two different update pat-
terns. Both are inspired by the necessity of consistency of the pair
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representation—forapairwise description of aminoacidstoberepresent-
ableasasingle 3D structure, many constraints must be satisfied including
the triangle inequality on distances. On the basis of this intuition, we
arrange the update operations on the pair representation in terms of
triangles of edges involving three different nodes (Fig. 3c). In particular,
weadd anextralogit bias to axial attention® to include the ‘missing edge’
ofthe triangle and we define anon-attention update operation ‘triangle
multiplicative update’ that uses two edges to update the missing third
edge (see Supplementary Methods 1.6.5 for details). The triangle multipli-
cative update was developed originally asamore symmetricand cheaper
replacement for the attention, and networks that use only the attention or
multiplicative update are both able to produce high-accuracy structures.
However, the combination of the two updates is more accurate.
Wealso use avariant of axial attention within the MSA representation.
During the per-sequence attention in the MSA, we project additional
logits from the pair stack to bias the MSA attention. This closes theloop
by providing information flow from the pair representation back into
the MSA representation, ensuring that the overall Evoformer block is
ableto fully mixinformation between the pair and MSA representations
and prepare for structure generation within the structure module.
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module. The single representationisacopy of the first row of the MSA
representation. e, Residue gas: arepresentation of each residue as one
free-floating rigid body for the backbone (blue triangles) and y angles for the
sidechains (greencircles). The corresponding atomic structure is shownbelow.
f,Frame aligned point error (FAPE). Green, predicted structure; grey, true
structure; (R, t,), frames; x;, atom positions.

End-to-end structure prediction

The structure module (Fig. 3d) operates on a concrete 3D backbone
structure using the pair representation and the original sequence row
(singlerepresentation) of the MSA representation from the trunk. The
3D backbone structure is represented as N, independent rotations
and translations, each with respect to the global frame (residue gas)
(Fig.3e). Theserotations and translations—representing the geometry
of the N-Ca-C atoms—prioritize the orientation of the protein back-
bone so that the location of the side chain of each residue is highly
constrained within that frame. Conversely, the peptide bond geometry
iscompletely unconstrained and the network is observed to frequently
violate the chainconstraint during the application of the structure mod-
ule as breaking this constraint enables the local refinement of all parts
ofthe chain without solving complex loop closure problems. Satisfac-
tion of the peptide bond geometry is encouraged during fine-tuning
by aviolationloss term. Exact enforcement of peptide bond geometry
isonly achieved in the post-prediction relaxation of the structure by
gradient descentinthe Amber® force field. Empirically, this final relaxa-
tion does not improve the accuracy of the model as measured by the



global distance test (GDT)* or IDDT-Ca** but does remove distracting
stereochemical violations without the loss of accuracy.

The residue gas representation is updated iteratively in two stages
(Fig. 3d). First, ageometry-aware attention operation that we term
‘invariant point attention’ (IPA) is used to update an N, set of neural
activations (single representation) without changing the 3D positions,
thenanequivariant update operationis performed ontheresidue gas
using the updated activations. The IPA augments each of the usual
attention queries, keys and values with 3D points that are produced
in the local frame of each residue such that the final value is invariant
toglobal rotations and translations (see Methods ‘IPA’ for details). The
3D queries and keys also impose a strong spatial/locality bias on the
attention, whichis well-suited to the iterative refinement of the protein
structure. After each attention operationand element-wise transition
block, the module computes an update to the rotation and translation
of each backbone frame. The application of these updates within the
local frame of each residue makes the overall attention and update
block an equivariant operation on the residue gas.

Predictions of side-chain y angles as well as the final, per-residue
accuracy of thestructure (pLDDT) are computed with small per-residue
networks on the final activations at the end of the network. The estimate
ofthe TM-score (pTM) is obtained from a pairwise error prediction that
iscomputed asalinear projection fromthe final pair representation. The
finalloss (whichwe term the frame-aligned point error (FAPE) (Fig. 3f))
compares the predicted atom positions to the true positions under
many different alignments. For each alignment, defined by aligning
the predicted frame (R,, t,) to the corresponding true frame, we com-
pute the distance of all predicted atom positions x;from the true atom
positions. The resulting Neames X Naoms diStances are penalized with a
clamped 'loss. This creates astrong bias for atoms to be correct relative
tothelocal frame of each residue and hence correct with respect toits
side-chaininteractions, as well as providing the main source of chirality
for AlphaFold (Supplementary Methods 1.9.3 and Supplementary Fig.9).

Training with labelled and unlabelled data

The AlphaFold architectureis able to trainto high accuracy using only
supervised learning on PDB data, but we are able to enhance accuracy
(Fig. 4a) using an approach similar to noisy student self-distillation®.
Inthis procedure, we use atrained network to predict the structure of
around 350,000 diverse sequences from Uniclust30% and make anew
dataset of predicted structuresfiltered to a high-confidence subset. We
then trainthe same architecture again from scratch using a mixture of
PDB data and this new dataset of predicted structures as the training
data, in which the various training data augmentations such as crop-
ping and MSA subsampling make it challenging for the network to
recapitulate the previously predicted structures. This self-distillation
procedure makes effective use of the unlabelled sequence data and
considerably improves the accuracy of the resulting network.
Additionally, we randomly mask out or mutate individual residues
within the MSA and have a Bidirectional Encoder Representations from
Transformers (BERT)-style” objective to predict the masked elements of
the MSA sequences. This objective encourages the network to learn to
interpret phylogenetic and covariation relationships without hardcoding
aparticular correlation statistic into the features. The BERT objective is
trained jointly with the normal PDB structure loss on the same training
examplesand is not pre-trained, in contrast to recentindependent work®,

Interpreting the neural network

To understand how AlphaFold predicts protein structure, we trained
aseparate structure module for each of the 48 Evoformer blocks in
the network while keeping all parameters of the main network fro-
zen (Supplementary Methods 1.14). Including our recycling stages,
this provides atrajectory of 192 intermediate structures—one per full

Test set of CASP14 domains Test set of PDB chains
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Fig.4|Interpreting the neural network. a, Ablationresults on two target sets:
the CASP14 set of domains (n =87 protein domains) and the PDB test set of
chains with template coverage of <30% at 30% identity (n=2,261 protein
chains). Domains are scored with GDT and chains are scored with IDDT-Ca.. The
ablations arereported asadifference compared with the average of the three
baseline seeds. Means (points) and 95% bootstrap percentile intervals (error
bars) arecomputed using bootstrap estimates of 10,000 samples. b, Domain
GDT trajectory over 4 recyclingiterations and 48 Evoformer blocks on CASP14
targets LmrP (T1024) and Orf8 (T1064) where D1and D2 refer to the individual
domains as defined by the CASP assessment. Both T1024 domains obtain the
correctstructureearly inthe network, whereas the structure of T1064 changes
multiple times and requires nearly the full depth of the network to reach the
final structure. Note, 48 Evoformer blocks comprise one recyclingiteration.

Evoformer block—in which eachintermediate represents the belief of
the network of the most likely structure at that block. The resulting
trajectories are surprisingly smooth after the first few blocks, show-
ing that AlphaFold makes constantincremental improvements to the
structure until it can no longer improve (see Fig. 4b for a trajectory of
accuracy). These trajectories alsoillustrate the role of network depth.
For very challenging proteins such as ORF8 of SARS-CoV-2 (T1064),
the network searches and rearranges secondary structure elements
for many layers before settling on agood structure. For other proteins
suchasLmrP (T1024), the network finds the final structure within the
firstfew layers. Structure trajectories of CASP14 targets T1024, T1044,
T1064 and T1091 that demonstrate a clear iterative building process
forarange of proteinsizes and difficulties are shownin Supplementary
Videos 1-4.InSupplementary Methods 1.16 and Supplementary Figs. 12,
13, we interpret the attention maps produced by AlphaFold layers.
Figure 4acontains detailed ablations of the components of AlphaFold
that demonstrate that a variety of different mechanisms contribute
to AlphaFold accuracy. Detailed descriptions of each ablation model,
their training details, extended discussion of ablation results and the
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effect of MSA depth on each ablation are provided in Supplementary
Methods 1.13 and Supplementary Fig. 10.

MSA depth and cross-chain contacts

Although AlphaFold has a high accuracy across the vast majority of
deposited PDB structures, we note that there are still factors that affect
accuracy or limit the applicability of the model. The model uses MSAs
and the accuracy decreases substantially when the median alignment
depth is less than around 30 sequences (see Fig. 5a for details). We
observe a threshold effect where improvements in MSA depth over
around 100 sequences lead to small gains. We hypothesize that the MSA
information is needed to coarsely find the correct structure within the
early stages of the network, but refinement of that predictionintoa
high-accuracy model does not depend crucially on the MSA information.
The other substantial limitationthat we have observed is that AlphaFold
ismuch weaker for proteins that have few intra-chain orhomotypic con-
tacts compared to the number of heterotypic contacts (further details
are provided inacompanion paper®). This typically occurs for bridging
domains within larger complexes in which the shape of the protein is
created almost entirely by interactions with other chains inthe complex.
Conversely, AlphaFold s often able to give high-accuracy predictions for
homomers, even when the chains are substantially intertwined (Fig. 5b).
Weexpect that theideas of AlphaFold arereadily applicable to predicting
fullhetero-complexesinafuture system andthat this will remove the dif-
ficulty with protein chains that have alarge number of hetero-contacts.

Related work

The prediction of protein structures hashad along and varied develop-
ment, whichis extensively coveredinanumber of reviews'#°*3, Despite
thelong history of applying neural networks to structure prediction™***,
they have only recently come to improve structure prediction'®™#+45,
These approaches effectively leverage the rapid improvement in com-
puter vision systems*® by treating the problem of protein structure
prediction as converting an ‘image’ of evolutionary couplings®**toan
‘image’ of the protein distance matrix and thenintegrating the distance
predictionsintoaheuristic system that produces the final 3D coordinate
prediction. Afew recent studies have been developed to predict the 3D
coordinates directly*’~>°, but the accuracy of these approaches does not
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number of non-gap residues for each positionin the MSA (using the N
weighting scheme; see Methods for details) and taking the medianacross
residues. The curves are obtained through Gaussian kernel average smoothing
(windowsizeis 0.2 unitsinlog,(N.y)); the shaded areais the 95% confidence
interval estimated using bootstrap of 10,000 samples. b, Anintertwined
homotrimer (PDB 6SKO0) is correctly predicted without input stoichiometry
and only aweak template (blueis predicted and greenis experimental).

match traditional, hand-crafted structure prediction pipelines. In paral-
lel, the success of attention-based networks for language processing™
and, morerecently, computer vision®** has inspired the exploration of
attention-based methods for interpreting protein sequences> .

Discussion

The methodology that we have taken in designing AlphaFold is a combi-
nation of the bioinformatics and physical approaches: we use a physical
and geometricinductive bias to build components that learn from PDB
data with minimal imposition of handcrafted features (for example,
AlphaFold builds hydrogen bonds effectively without a hydrogen bond
score function). This resultsin anetwork thatlearns far more efficiently
fromthelimited datainthe PDB butis able to cope with the complexity
and variety of structural data.

Inparticular, AlphaFoldis able to handle missing the physical context
and produce accurate models in challenging cases such as intertwined
homomers or proteins that only fold in the presence of an unknown
haemgroup. The ability to handle underspecified structural conditions
is essential to learning from PDB structures as the PDB represents the
full range of conditions in which structures have been solved. In gen-
eral, AlphaFoldis trained to produce the protein structure most likely
to appear as part of a PDB structure. For example, in cases in which a
particular stochiometry, ligand orion is predictable from the sequence
alone, AlphaFold is likely to produce a structure that respects those
constraints implicitly.

AlphaFold has already demonstrated its utility to the experimental
community, both for molecular replacement™ and for interpreting
cryogenic electron microscopy maps>®. Moreover, because AlphaFold
outputs protein coordinates directly, AlphaFold produces predictions
ingraphics processing unit (GPU) minutes to GPU hours depending on
thelength of the protein sequence (for example, around one GPU min-
ute per model for 384 residues; see Methods for details). This opens up
the exciting possibility of predicting structures at the proteome-scale
and beyond—ina companion paper®, we demonstrate the application
of AlphaFold to the entire human proteome®.

Theexplosionin available genomic sequencing techniques and data
has revolutionized bioinformatics but the intrinsic challenge of experi-
mental structure determination has prevented a similar expansion in
our structural knowledge. By developing an accurate protein structure



prediction algorithm, coupled with existing large and well-curated
structure and sequence databases assembled by the experimental
community, we hope to accelerate the advancement of structural
bioinformatics that can keep pace with the genomics revolution. We
hope that AlphaFold—and computational approaches that apply its
techniques for other biophysical problems—will become essential
tools of modern biology.
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Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-021-03819-2.
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Methods

Full algorithm details

Extensive explanations of the components and their motivations are
availablein Supplementary Methods1.1-1.10, in addition, pseudocode
is available in Supplementary Information Algorithms 1-32, network
diagramsin Supplementary Figs.1-8, input features in Supplementary
Tableland additional details are provided in Supplementary Tables 2, 3.
Training and inference details are provided in Supplementary Methods
1.11-1.12 and Supplementary Tables 4, 5.

IPA

The IPA module combines the pair representation, the single repre-
sentation and the geometric representation to update the single rep-
resentation (Supplementary Fig. 8). Each of these representations
contributes affinities to the shared attention weights and then uses
these weights to map its values to the output. The IPA operates in 3D
space.Eachresidue produces query points, key points and value points
initslocal frame. These points are projected into the global frame using
the backbone frame of the residue in which they interact with each
other. Theresulting points are then projected back into the local frame.
The affinity computation in the 3D space uses squared distances and
the coordinate transformations ensure the invariance of this module
withrespect to the global frame (see Supplementary Methods 1.8.2
‘Invariant point attention (IPA)’ for the algorithm, proof of invariance
and a description of the full multi-head version). A related construc-
tion that uses classic geometric invariants to construct pairwise fea-
tures in place of the learned 3D points has been applied to protein
design®.

In addition to the IPA, standard dot product attention is computed
ontheabstractsingle representation and aspecial attention on the pair
representation. The pair representation augments both the logits and
the values of the attention process, which is the primary way in which
the pair representation controls the structure generation.

Inputs and datasources

Inputs tothe network are the primary sequence, sequences from evo-
lutionarily related proteins in the form of a MSA created by standard
tools including jackhmmer®® and HHBIits®, and 3D atom coordinates
of asmall number of homologous structures (templates) where avail-
able. For both the MSA and templates, the search processes are tuned
for high recall; spurious matches will probably appear in the raw MSA
but this matches the training condition of the network.

One of the sequence databases used, Big Fantastic Database (BFD),
was custom-made and released publicly (see ‘Data availability’) and
was used by several CASP teams. BFD is one of the largest publicly avail-
able collections of protein families. It consists of 65,983,866 families
represented as MSAs and hidden Markov models (HMMs) covering
2,204,359,010 protein sequences from reference databases, metage-
nomes and metatranscriptomes.

BFD was builtin three steps. First, 2,423,213,294 protein sequences
were collected from UniProt (Swiss-Prot&TrEMBL, 2017-11)¢?, a soil refer-
ence protein catalogue and the marine eukaryotic reference catalogue’,
and clustered to 30% sequence identity, while enforcing a 90% align-
ment coverage of the shorter sequences using MMseqs2/Linclust®.
This resulted in 345,159,030 clusters. For computational efficiency,
we removed all clusters with less than three members, resulting in
61,083,719 clusters. Second, we added 166,510,624 representative pro-
teinsequences from Metaclust NR (2017-05; discarding all sequences
shorter than 150 residues)®® by aligning them against the cluster rep-
resentatives using MMseqs2%. Sequences that fulfilled the sequence
identity and coverage criteria were assigned to the best scoring cluster.
The remaining 25,347,429 sequences that could not be assigned were
clustered separately and added as new clusters, resulting in the final
clustering. Third, for each of the clusters, we computed an MSA using

FAMSA® and computed the HMMs following the Uniclust HH-suite
database protocol®.

The following versions of public datasets were used in this study. Our
models were trained on a copy of the PDB® downloaded on 28 August
2019. For finding template structures at prediction time, we used a copy
of the PDB downloaded on 14 May 2020, and the PDB70% clustering
database downloaded on 13 May 2020. For MSA lookup at both training
and prediction time, we used Uniref90% v.2020_01, BFD, Uniclust30%*
v.2018_08 and MGnify®v.2018_12. For sequence distillation, we used
Uniclust30*¢v.2018_08 to construct a distillation structure dataset.
Full details are provided in Supplementary Methods 1.2.

For MSA search on BFD + Uniclust30, and template search against
PDB70, we used HHBIits* and HHSearch® from hh-suite v.3.0-beta.3
(version14/07/2017). For MSA search on Uniref90 and clustered MGnify,
we used jackhmmer from HMMER3%®, For constrained relaxation of
structures, we used OpenMM v.7.3.1%° with the Amber99sb force field*.
For neural network construction, running and other analyses, we used
TensorFlow’”®, Sonnet”, NumPy’?, Python’ and Colab™.

To quantify the effect of the different sequence data sources, we
re-ran the CASP14 proteins using the same models but varying how the
MSA was constructed. Removing BFD reduced the mean accuracy by
0.4 GDT, removing Mgnify reduced the meanaccuracy by 0.7 GDT, and
removingbothreduced themeanaccuracyby 6.1GDT.Ineach case, we
found that most targets had very small changes in accuracy but a few
outliershad very large (20+GDT) differences. This is consistent with the
resultsinFig. 5ainwhich the depth of the MSA is relatively unimportant
untilitapproaches athreshold value of around 30 sequences when the
MSA size effects become quite large. We observe mostly overlapping
effects between inclusion of BFD and Mgnify, but having at least one
ofthese metagenomics databases is very important for target classes
thatare poorly represented in UniRef, and having both was necessary
to achieve full CASP accuracy.

Training regimen

Totrain, we use structures from the PDB with amaximum release date
of 30 April 2018. Chains are sampled in inverse proportion to cluster
size of a40% sequence identity clustering. We then randomly crop
themto 256 residues and assemble into batches of size 128. We train the
model on Tensor Processing Unit (TPU) v3 with abatchsize of 1per TPU
core, hencethe modeluses 128 TPU v3 cores. The modelis trained until
convergence (around 10 million samples) and further fine-tuned using
longer crops of 384 residues, larger MSA stack and reduced learning
rate (see Supplementary Methods 1.11for the exact configuration). The
initial training stage takes approximately 1 week, and the fine-tuning
stage takes approximately 4 additional days.

The network is supervised by the FAPE loss and a number of auxil-
iary losses. First, the final pair representationis linearly projected to
abinned distance distribution (distogram) prediction, scored with
a cross-entropy loss. Second, we use random masking on the input
MSAs and require the network to reconstruct the masked regions
from the output MSA representation using a BERT-like loss*. Third,
the outputsingle representations of the structure module are used to
predictbinned per-residue IDDT-Ca values. Finally, we use an auxiliary
side-chainloss during training, and anauxiliary structure violation loss
during fine-tuning. Detailed descriptions and weighting are provided
inthe Supplementary Information.

Aninitial model trained with the above objectives was used to make
structure predictions for a Uniclust dataset of 355,993 sequences with
the full MSAs. These predictions were then used to train a final model
withidentical hyperparameters, except for sampling examples 75% of
the time from the Uniclust prediction set, with sub-sampled MSAs, and
25% of the time from the clustered PDB set.

We train five different models using different random seeds, some
withtemplates and some without, to encourage diversity in the predic-
tions (see Supplementary Table 5 and Supplementary Methods 1.12.1



for details). We also fine-tuned these models after CASP14 toadd a
pTM prediction objective (Supplementary Methods1.9.7) and use the
obtained models for Fig. 2d.

Inferenceregimen
We inference the five trained models and use the predicted confidence
scoreto select the best model per target.

Using our CASP14 configuration for AlphaFold, the trunk of the net-
work is run multiple times with different random choices for the MSA
cluster centres (see Supplementary Methods 1.11.2 for details of the
ensembling procedure). The full time to make a structure prediction
varies considerably depending on the length of the protein. Repre-
sentative timings for the neural network using a single model on V100
GPU are 4.8 min with 256 residues, 9.2 min with 384 residues and 18 h
at2,500residues. These timings are measured using our open-source
code, and the open-source code is notably faster than the version we
ranin CASP14 as we now use the XLA compiler”.

Since CASP14, we have found that the accuracy of the network with-
outensemblingis very close or equal to the accuracy with ensembling
and we turn off ensembling for most inference. Without ensembling,
the network is 8x faster and the representative timings for a single
model are 0.6 min with 256 residues, 1.1 min with 384 residues and
2.1hwith 2,500 residues.

Inferencing large proteins can easily exceed the memory of asingle
GPU. For a V100 with 16 GB of memory, we can predict the structure
of proteins up to around 1,300 residues without ensembling and the
256-and 384-residue inference times are using the memory of asingle
GPU. The memory usage is approximately quadratic in the number of
residues, soa2,500-residue proteininvolves using unified memory so
that we can greatly exceed the memory of a single V100. In our cloud
setup, asingle V100 is used for computationona2,500-residue protein
but we requested four GPUs to have sufficient memory.

Searching genetic sequence databases to prepare inputs and final
relaxation of the structures take additional central processing unit
(CPU) time but do not require a GPU or TPU.

Metrics

The predicted structure is compared to the true structure from the
PDBinterms of IDDT metric**, as this metric reports the domain accu-
racy without requiring a domain segmentation of chain structures.
The distances are either computed between all heavy atoms (IDDT)
or only the Ca atoms to measure the backbone accuracy (IDDT-Ca).
AsIDDT-Ca only focuses onthe Ca atoms, it does notinclude the pen-
alty for structural violations and clashes. Domain accuracies in CASP
are reported as GDT* and the TM-score? is used as a full chain global
superposition metric.

Wealsoreportaccuracies usingther.m.s.d.,s (Car.m.s.d.at 95% cov-
erage). We perform five iterations of (1) aleast-squares alignment of the
predicted structure and the PDB structure on the currently chosen Ca
atoms (using all Cacatoms in the first iteration); (2) selecting the 95%
of Caatoms with the lowest alignment error. Ther.m.s.d. of the atoms
chosen for the finaliterationsis the r.m.s.d.os. This metricis more robust
to apparenterrors that can originate from crystal structure artefacts,
althoughinsome cases the removed 5% of residues will contain genuine
modelling errors.

Test set of recent PDB sequences

For evaluation on recent PDB sequences (Figs. 2a-d, 4a, 5a), we used
acopy of the PDB downloaded 15 February 2021. Structures were fil-
tered tothose with arelease date after 30 April 2018 (the date limit for
inclusioninthetraining set for AlphaFold). Chains were further filtered
to remove sequences that consisted of a single amino acid as well as
sequences with an ambiguous chemical component at any residue
position. Exact duplicates were removed, with the chain with the most
resolved Ca atoms used as the representative sequence. Subsequently,

structures with less than 16 resolved residues, with unknown residues
or solved by NMR methods were removed. As the PDB contains many
near-duplicate sequences, the chain with the highest resolution was
selected from each cluster in the PDB 40% sequence clustering of the
data. Furthermore, we removed all sequences for which fewer than
80 aminoacids had the alpha carbon resolved and removed chains with
more than 1,400 residues. The final dataset contained 10,795 protein
sequences.

The procedure for filtering the recent PDB dataset based on prior
template identity was as follows. Hmmsearch was run with default
parameters against a copy of the PDB SEQRES fasta downloaded
15February2021. Template hits were accepted ifthe associated struc-
turehad arelease date earlier than 30 April 2018. Each residue position
inaquery sequence was assigned the maximum identity of any template
hit covering that position. Filtering then proceeded as described in
the individual figure legends, based on a combination of maximum
identity and sequence coverage.

The MSA depth analysis was based on computing the normalized
number of effective sequences (N,) for each position of a query
sequence. Per-residue N, values were obtained by counting the num-
ber of non-gap residuesin the MSA for this position and weighting the
sequences using the N, scheme’ with a threshold of 80% sequence
identity measured on the region that is non-gap in either sequence.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Allinput data are freely available from public sources.

Structures from the PDB were used for training and as templates
(https:// www.wwpdb.org/ftp/pdb-ftp-sites; for the associated
sequence dataand 40% sequence clustering see also https://ftp.wwpdb.
org/pub/pdb/derived_data/ and https://cdn.rcsb.org/resources/
sequence/clusters/bc-40.out). Training used a version of the PDB
downloaded 28 August 2019, while the CASP14 template search used
aversiondownloaded 14 May 2020. The template search also used the
PDB70 database, downloaded 13 May 2020 (https://wwwuser.gwdg.
de/~compbiol/data/hhsuite/databases/hhsuite_dbs/).

We show experimental structures from the PDB with accession num-
bers 6Y4F”7,6YJ178, 6VR47°, 6SK0%, 6FES®', 6W6W??, 6T1Z%* and 7)TLS*.

For MSA lookup at both the training and prediction time, we used
UniRef90 v.2020_01 (https://ftp.ebi.ac.uk/pub/databases/uniprot/
previous_releases/release-2020_01/uniref/), BFD (https://bfd.mmseqgs.
com), Uniclust30 v.2018_08 (https://wwwuser.gwdg.de/~compbiol/
uniclust/2018_08/) and MGnify clusters v.2018_12 (https://ftp.ebi.ac.uk/
pub/databases/metagenomics/peptide_database/2018_12/). Uniclust30
v.2018_08 was also used as input for constructing a distillation structure
dataset.

Code availability

Source code for the AlphaFold model, trained weights and inference
script are available under an open-source license at https://github.
com/deepmind/alphafold.

Neural networks were developed with TensorFlow v.1 (https://github.
com/tensorflow/tensorflow), Sonnet v.1 (https://github.com/deep-
mind/sonnet),JAXv.0.1.69 (https://github.com/google/jax/) and Haiku
v.0.0.4 (https://github.com/deepmind/dm-haiku). The XLA compileris
bundled withJAX and does not have a separate version number.

For MSA search on BFD+Uniclust30, and for template search against
PDB70, we used HHBIits and HHSearch from hh-suite v.3.0-beta.3
release14/07/2017 (https://github.com/soedinglab/hh-suite). For MSA
search on UniRef90 and clustered MGnify, we used jackhmmer from
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HMMERv.3.3 (http://eddylab.org/software/hmmer/). For constrained
relaxation of structures, we used OpenMM v.7.3.1 (https://github.com/
openmm/openmm) with the Amber99sb force field.

Construction of BFD used MMseqs2 v.925AF (https://github.
com/soedinglab/MMseqs2) and FAMSA v.1.2.5 (https://github.com/
refresh-bio/FAMSA).

Dataanalysis used Python v.3.6 (https://www.python.org/), NumPy
v.1.16.4 (https://github.com/numpy/numpy), SciPy v.1.2.1 (https:/www.
scipy.org/), seabornv.0.11.1 (https://github.com/mwaskom/seaborn),
Matplotlibv.3.3.4 (https://github.com/matplotlib/matplotlib), bokeh
v.1.4.0 (https://github.com/bokeh/bokeh), pandas v.1.1.5 (https://
github.com/pandas-dev/pandas), plotnine v.0.8.0 (https://github.
com/has2kl/plotnine), statsmodels v.0.12.2 (https://github.com/
statsmodels/statsmodels) and Colab (https://research.google.com/
colaboratory). TM-align v.20190822 (https://zhanglab.dcmb.med.
umich.edu/TM-align/) was used for computing TM-scores. Structure
visualizations were created in Pymol v.2.3.0 (https://github.com/schro-
dinger/pymol-open-source).
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Data collection  Source code for the AlphaFold model, trained weights, and inference script will be made available under an open-source license at https://
github.com/deepmind/ upon publication.

Neural networks were developed with TensorFlow v1 (https://github.com/tensorflow/tensorflow), Sonnet v1 (https://github.com/deepmind/
sonnet), JAX v0.1.69 (https://github.com/google/jax/), and Haiku v0.0.4 (https://github.com/deepmind/dm-haiku). The XLA compiler is
bundled with JAX and does not have a separate version number.

For MSA search on BFD+Uniclust30, and for template search against PDB70, we used HHBIits and HHSearch from hh-suite v3.0-beta.3
14/07/2017 (https://github.com/soedinglab/hh-suite). For MSA search on UniRef90 and clustered MGnify, we used jackhmmer from HMMER
v3.3 (http://eddylab.org/software/hmmer/). For constrained relaxation of structures, we used OpenMM v7.3.1 (https://github.com/openmm/
openmm) with the Amber99sb force field.

Construction of BFD used MMseqs2 version 925AF (https://github.com/soedinglab/MMseqs2) and FAMSA v1.2.5 (https://github.com/refresh-
bio/FAMSA).

Data analysis Data analysis used Python v3.6 (https://www.python.org/), NumPy v1.16.4 (https://github.com/numpy/numpy), SciPy v1.2.1 (https://
www.scipy.org/), seaborn v0.11.1 (https://github.com/mwaskom/seaborn), Matplotlib v3.3.4 (https://github.com/matplotlib/matplotlib),
bokeh v1.4.0 (https://github.com/bokeh/bokeh), pandas v1.1.5 (https://github.com/pandas-dev/pandas), plotnine v0.8.0 (https://github.com/
has2k1/plotnine), statsmodels v0.12.2 (https://github.com/statsmodels/statsmodels) and Colab (https://research.google.com/colaboratory).
TM-align v20190822 (https://zhanglab.dcmb.med.umich.edu/TM-align/) was used for computing TM-scores. Structure visualizations were
created in Pymol v2.3.0 (https://github.com/schrodinger/pymol-open-source).
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All input data are freely available from public sources.

Structures from the PDB were used for training and as templates (https://www.wwpdb.org/ftp/pdb-ftp-sites; for the associated sequence data and 40% sequence
clustering see also https://ftp.wwpdb.org/pub/pdb/derived_data/ and https://cdn.rcsb.org/resources/sequence/clusters/bc-40.0ut). Training used a version of the
PDB downloaded 28/08/2019, while CASP14 template search used a version downloaded 14/05/2020. Template search also used the PDB70 database, downloaded
13/05/2020 (https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/).

We show experimental structures from the PDB with accessions 6Y4F77, 6YJ178, 6VR479, 6SK080, 6FES81, 6W6W82, 6T1Z83, and 7JTL84.
For MSA lookup at both training and prediction time, we used UniRef90 v2020_01 (https://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/
release-2020_01/uniref/), BFD (https://bfd.mmsegs.com), Uniclust30 v2018_08 (https://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/), and MGnify clusters

v2018_12 (https://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2018_12/).
Uniclust30 v2018_08 was further used as input for constructing a distillation structure dataset.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size was chosen; the method was evaluated on the full CASP14 benchmark set, and all PDB chains not in the training set (subject to
the exclusions noted below).

Data exclusions  The recent PDB set was filtered (see Methods for full details). Briefly this excludes chains with too few resolved residues, longer than 1400
residues, solved by NMR or with unknown/ambiguous residues. This set was also redundancy reduced (by taking representatives from a
sequence clustering), and for some figures a sequence similarity-based filter was applied to remove entries too similar to the training set (see

Methods and figure legends for details).

Replication Not applicable, no experimental work is described in this study. The results are the output of a computational method which will be made
available.

Randomization  Not applicable, we are not making a comparison between two groups

Blinding Not applicable, we are not making a comparison between two groups
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