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Highly accurate protein structure prediction 
with AlphaFold
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Proteins are essential to life, and understanding their structure can facilitate a 
mechanistic understanding of their function. Through an enormous experimental 
effort1–4, the structures of around 100,000 unique proteins have been determined5, but 
this represents a small fraction of the billions of known protein sequences6,7. Structural 
coverage is bottlenecked by the months to years of painstaking effort required to 
determine a single protein structure. Accurate computational approaches are needed 
to address this gap and to enable large-scale structural bioinformatics. Predicting the 
three-dimensional structure that a protein will adopt based solely on its amino acid 
sequence—the structure prediction component of the ‘protein folding problem’8—has 
been an important open research problem for more than 50 years9. Despite recent 
progress10–14, existing methods fall far short of atomic accuracy, especially when no 
homologous structure is available. Here we provide the first computational method 
that can regularly predict protein structures with atomic accuracy even in cases in which 
no similar structure is known. We validated an entirely redesigned version of our neural 
network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein 
Structure Prediction (CASP14)15, demonstrating accuracy competitive with 
experimental structures in a majority of cases and greatly outperforming other 
methods. Underpinning the latest version of AlphaFold is a novel machine learning 
approach that incorporates physical and biological knowledge about protein structure, 
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

The development of computational methods to predict 
three-dimensional (3D) protein structures from the protein sequence 
has proceeded along two complementary paths that focus on either the 
physical interactions or the evolutionary history. The physical interac-
tion programme heavily integrates our understanding of molecular 
driving forces into either thermodynamic or kinetic simulation of pro-
tein physics16 or statistical approximations thereof17. Although theoreti-
cally very appealing, this approach has proved highly challenging for 
even moderate-sized proteins due to the computational intractability 
of molecular simulation, the context dependence of protein stability 
and the difficulty of producing sufficiently accurate models of protein 
physics. The evolutionary programme has provided an alternative in 
recent years, in which the constraints on protein structure are derived 
from bioinformatics analysis of the evolutionary history of proteins, 
homology to solved structures18,19 and pairwise evolutionary correla-
tions20–24. This bioinformatics approach has benefited greatly from 

the steady growth of experimental protein structures deposited in 
the Protein Data Bank (PDB)5, the explosion of genomic sequencing 
and the rapid development of deep learning techniques to interpret 
these correlations. Despite these advances, contemporary physical 
and evolutionary-history-based approaches produce predictions that 
are far short of experimental accuracy in the majority of cases in which 
a close homologue has not been solved experimentally and this has 
limited their utility for many biological applications.

In this study, we develop the first, to our knowledge, computational 
approach capable of predicting protein structures to near experimental 
accuracy in a majority of cases. The neural network AlphaFold that we 
developed was entered into the CASP14 assessment (May–July 2020; 
entered under the team name ‘AlphaFold2’ and a completely different 
model from our CASP13 AlphaFold system10). The CASP assessment is 
carried out biennially using recently solved structures that have not 
been deposited in the PDB or publicly disclosed so that it is a blind test 
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for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 
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Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, number of 
residues (Nres in the main text); c, number of channels.
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architecture, use of intermediate losses to achieve iterative refinement 
of predictions, masked MSA loss to jointly train with the structure, 
learning from unlabelled protein sequences using self-distillation and 
self-estimates of accuracy.

The AlphaFold network directly predicts the 3D coordinates of all 
heavy atoms for a given protein using the primary amino acid sequence 
and aligned sequences of homologues as inputs (Fig. 1e; see Methods 
for details of inputs including databases, MSA construction and use of 
templates). A description of the most important ideas and components 
is provided below. The full network architecture and training procedure 
are provided in the Supplementary Methods.

The network comprises two main stages. First, the trunk of the net-
work processes the inputs through repeated layers of a novel neural 
network block that we term Evoformer to produce an Nseq × Nres array 
(Nseq, number of sequences; Nres, number of residues) that represents 
a processed MSA and an Nres × Nres array that represents residue pairs. 
The MSA representation is initialized with the raw MSA (although 
see Supplementary Methods 1.2.7 for details of handling very deep 
MSAs). The Evoformer blocks contain a number of attention-based 
and non-attention-based components. We show evidence in ‘Interpret-
ing the neural network’ that a concrete structural hypothesis arises 
early within the Evoformer blocks and is continuously refined. The key 
innovations in the Evoformer block are new mechanisms to exchange 
information within the MSA and pair representations that enable direct 
reasoning about the spatial and evolutionary relationships.

The trunk of the network is followed by the structure module that 
introduces an explicit 3D structure in the form of a rotation and transla-
tion for each residue of the protein (global rigid body frames). These 
representations are initialized in a trivial state with all rotations set to 
the identity and all positions set to the origin, but rapidly develop and 
refine a highly accurate protein structure with precise atomic details. 
Key innovations in this section of the network include breaking the 
chain structure to allow simultaneous local refinement of all parts of 
the structure, a novel equivariant transformer to allow the network to 
implicitly reason about the unrepresented side-chain atoms and a loss 
term that places substantial weight on the orientational correctness 
of the residues. Both within the structure module and throughout 
the whole network, we reinforce the notion of iterative refinement 
by repeatedly applying the final loss to outputs and then feeding the 
outputs recursively into the same modules. The iterative refinement 
using the whole network (which we term ‘recycling’ and is related to 
approaches in computer vision28,29) contributes markedly to accuracy 
with minor extra training time (see Supplementary Methods 1.8 for 
details).

Evoformer
The key principle of the building block of the network—named Evo-
former (Figs. 1e, 3a)—is to view the prediction of protein structures 
as a graph inference problem in 3D space in which the edges of the 
graph are defined by residues in proximity. The elements of the pair 
representation encode information about the relation between the 
residues (Fig. 3b). The columns of the MSA representation encode the  
individual residues of the input sequence while the rows represent  
the sequences in which those residues appear. Within this framework, 
we define a number of update operations that are applied in each block 
in which the different update operations are applied in series.

The MSA representation updates the pair representation through an 
element-wise outer product that is summed over the MSA sequence 
dimension. In contrast to previous work30, this operation is applied 
within every block rather than once in the network, which enables the 
continuous communication from the evolving MSA representation to 
the pair representation.

Within the pair representation, there are two different update pat-
terns. Both are inspired by the necessity of consistency of the pair 
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Fig. 2 | Accuracy of AlphaFold on recent PDB structures. The analysed 
structures are newer than any structure in the training set. Further filtering is 
applied to reduce redundancy (see Methods). a, Histogram of backbone 
r.m.s.d. for full chains (Cα r.m.s.d. at 95% coverage). Error bars are 95% 
confidence intervals (Poisson). This dataset excludes proteins with a template 
(identified by hmmsearch) from the training set with more than 40% sequence 
identity covering more than 1% of the chain (n = 3,144 protein chains). The 
overall median is 1.46 Å (95% confidence interval = 1.40–1.56 Å). Note that this 
measure will be highly sensitive to domain packing and domain accuracy; a 
high r.m.s.d. is expected for some chains with uncertain packing or packing 
errors. b, Correlation between backbone accuracy and side-chain accuracy. 
Filtered to structures with any observed side chains and resolution better than 
2.5 Å (n = 5,317 protein chains); side chains were further filtered to 
B-factor <30 Å2. A rotamer is classified as correct if the predicted torsion angle 
is within 40°. Each point aggregates a range of lDDT-Cα, with a bin size of 2 units 
above 70 lDDT-Cα and 5 units otherwise. Points correspond to the mean 
accuracy; error bars are 95% confidence intervals (Student t-test) of the mean 
on a per-residue basis. c, Confidence score compared to the true accuracy on 
chains. Least-squares linear fit lDDT-Cα = 0.997 × pLDDT − 1.17 (Pearson’s 
r = 0.76). n = 10,795 protein chains. The shaded region of the linear fit 
represents a 95% confidence interval estimated from 10,000 bootstrap 
samples. In the companion paper39, additional quantification of the reliability 
of pLDDT as a confidence measure is provided. d, Correlation between pTM 
and full chain TM-score. Least-squares linear fit TM-score = 0.98 × pTM + 0.07 
(Pearson’s r = 0.85). n = 10,795 protein chains. The shaded region of the linear fit 
represents a 95% confidence interval estimated from 10,000 bootstrap 
samples.
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representation—for a pairwise description of amino acids to be represent-
able as a single 3D structure, many constraints must be satisfied including 
the triangle inequality on distances. On the basis of this intuition, we 
arrange the update operations on the pair representation in terms of 
triangles of edges involving three different nodes (Fig. 3c). In particular, 
we add an extra logit bias to axial attention31 to include the ‘missing edge’ 
of the triangle and we define a non-attention update operation ‘triangle 
multiplicative update’ that uses two edges to update the missing third 
edge (see Supplementary Methods 1.6.5 for details). The triangle multipli-
cative update was developed originally as a more symmetric and cheaper 
replacement for the attention, and networks that use only the attention or 
multiplicative update are both able to produce high-accuracy structures. 
However, the combination of the two updates is more accurate.

We also use a variant of axial attention within the MSA representation. 
During the per-sequence attention in the MSA, we project additional 
logits from the pair stack to bias the MSA attention. This closes the loop 
by providing information flow from the pair representation back into 
the MSA representation, ensuring that the overall Evoformer block is 
able to fully mix information between the pair and MSA representations 
and prepare for structure generation within the structure module.

 
End-to-end structure prediction
The structure module (Fig. 3d) operates on a concrete 3D backbone 
structure using the pair representation and the original sequence row 
(single representation) of the MSA representation from the trunk. The 
3D backbone structure is represented as Nres independent rotations 
and translations, each with respect to the global frame (residue gas) 
(Fig. 3e). These rotations and translations—representing the geometry 
of the N-Cα-C atoms—prioritize the orientation of the protein back-
bone so that the location of the side chain of each residue is highly 
constrained within that frame. Conversely, the peptide bond geometry 
is completely unconstrained and the network is observed to frequently 
violate the chain constraint during the application of the structure mod-
ule as breaking this constraint enables the local refinement of all parts 
of the chain without solving complex loop closure problems. Satisfac-
tion of the peptide bond geometry is encouraged during fine-tuning 
by a violation loss term. Exact enforcement of peptide bond geometry 
is only achieved in the post-prediction relaxation of the structure by 
gradient descent in the Amber32 force field. Empirically, this final relaxa-
tion does not improve the accuracy of the model as measured by the 
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global distance test (GDT)33 or lDDT-Cα34 but does remove distracting 
stereochemical violations without the loss of accuracy.

The residue gas representation is updated iteratively in two stages 
(Fig. 3d). First, a geometry-aware attention operation that we term 
‘invariant point attention’ (IPA) is used to update an Nres set of neural 
activations (single representation) without changing the 3D positions, 
then an equivariant update operation is performed on the residue gas 
using the updated activations. The IPA augments each of the usual 
attention queries, keys and values with 3D points that are produced 
in the local frame of each residue such that the final value is invariant 
to global rotations and translations (see Methods ‘IPA’ for details). The 
3D queries and keys also impose a strong spatial/locality bias on the 
attention, which is well-suited to the iterative refinement of the protein 
structure. After each attention operation and element-wise transition 
block, the module computes an update to the rotation and translation 
of each backbone frame. The application of these updates within the 
local frame of each residue makes the overall attention and update 
block an equivariant operation on the residue gas.

Predictions of side-chain χ angles as well as the final, per-residue 
accuracy of the structure (pLDDT) are computed with small per-residue 
networks on the final activations at the end of the network. The estimate 
of the TM-score (pTM) is obtained from a pairwise error prediction that 
is computed as a linear projection from the final pair representation. The 
final loss (which we term the frame-aligned point error (FAPE) (Fig. 3f)) 
compares the predicted atom positions to the true positions under 
many different alignments. For each alignment, defined by aligning 
the predicted frame (Rk, tk) to the corresponding true frame, we com-
pute the distance of all predicted atom positions xi from the true atom 
positions. The resulting Nframes × Natoms distances are penalized with a 
clamped L1 loss. This creates a strong bias for atoms to be correct relative 
to the local frame of each residue and hence correct with respect to its 
side-chain interactions, as well as providing the main source of chirality 
for AlphaFold (Supplementary Methods 1.9.3 and Supplementary Fig. 9).

Training with labelled and unlabelled data
The AlphaFold architecture is able to train to high accuracy using only 
supervised learning on PDB data, but we are able to enhance accuracy 
(Fig. 4a) using an approach similar to noisy student self-distillation35. 
In this procedure, we use a trained network to predict the structure of 
around 350,000 diverse sequences from Uniclust3036 and make a new 
dataset of predicted structures filtered to a high-confidence subset. We 
then train the same architecture again from scratch using a mixture of 
PDB data and this new dataset of predicted structures as the training 
data, in which the various training data augmentations such as crop-
ping and MSA subsampling make it challenging for the network to 
recapitulate the previously predicted structures. This self-distillation 
procedure makes effective use of the unlabelled sequence data and 
considerably improves the accuracy of the resulting network.

Additionally, we randomly mask out or mutate individual residues 
within the MSA and have a Bidirectional Encoder Representations from 
Transformers (BERT)-style37 objective to predict the masked elements of 
the MSA sequences. This objective encourages the network to learn to 
interpret phylogenetic and covariation relationships without hardcoding 
a particular correlation statistic into the features. The BERT objective is 
trained jointly with the normal PDB structure loss on the same training 
examples and is not pre-trained, in contrast to recent independent work38.

Interpreting the neural network
To understand how AlphaFold predicts protein structure, we trained 
a separate structure module for each of the 48 Evoformer blocks in 
the network while keeping all parameters of the main network fro-
zen (Supplementary Methods 1.14). Including our recycling stages, 
this provides a trajectory of 192 intermediate structures—one per full 

Evoformer block—in which each intermediate represents the belief of 
the network of the most likely structure at that block. The resulting 
trajectories are surprisingly smooth after the first few blocks, show-
ing that AlphaFold makes constant incremental improvements to the 
structure until it can no longer improve (see Fig. 4b for a trajectory of 
accuracy). These trajectories also illustrate the role of network depth. 
For very challenging proteins such as ORF8 of SARS-CoV-2 (T1064), 
the network searches and rearranges secondary structure elements 
for many layers before settling on a good structure. For other proteins 
such as LmrP (T1024), the network finds the final structure within the 
first few layers. Structure trajectories of CASP14 targets T1024, T1044, 
T1064 and T1091 that demonstrate a clear iterative building process 
for a range of protein sizes and difficulties are shown in Supplementary 
Videos 1–4. In Supplementary Methods 1.16 and Supplementary Figs. 12, 
13, we interpret the attention maps produced by AlphaFold layers.

Figure 4a contains detailed ablations of the components of AlphaFold 
that demonstrate that a variety of different mechanisms contribute 
to AlphaFold accuracy. Detailed descriptions of each ablation model, 
their training details, extended discussion of ablation results and the 
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correct structure early in the network, whereas the structure of T1064 changes 
multiple times and requires nearly the full depth of the network to reach the 
final structure. Note, 48 Evoformer blocks comprise one recycling iteration.
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effect of MSA depth on each ablation are provided in Supplementary 
Methods 1.13 and Supplementary Fig. 10.

MSA depth and cross-chain contacts
Although AlphaFold has a high accuracy across the vast majority of 
deposited PDB structures, we note that there are still factors that affect 
accuracy or limit the applicability of the model. The model uses MSAs 
and the accuracy decreases substantially when the median alignment 
depth is less than around 30 sequences (see Fig. 5a for details). We 
observe a threshold effect where improvements in MSA depth over 
around 100 sequences lead to small gains. We hypothesize that the MSA 
information is needed to coarsely find the correct structure within the 
early stages of the network, but refinement of that prediction into a 
high-accuracy model does not depend crucially on the MSA information. 
The other substantial limitation that we have observed is that AlphaFold 
is much weaker for proteins that have few intra-chain or homotypic con-
tacts compared to the number of heterotypic contacts (further details 
are provided in a companion paper39). This typically occurs for bridging 
domains within larger complexes in which the shape of the protein is 
created almost entirely by interactions with other chains in the complex. 
Conversely, AlphaFold is often able to give high-accuracy predictions for 
homomers, even when the chains are substantially intertwined (Fig. 5b). 
We expect that the ideas of AlphaFold are readily applicable to predicting 
full hetero-complexes in a future system and that this will remove the dif-
ficulty with protein chains that have a large number of hetero-contacts.

Related work
The prediction of protein structures has had a long and varied develop-
ment, which is extensively covered in a number of reviews14,40–43. Despite 
the long history of applying neural networks to structure prediction14,42,43, 
they have only recently come to improve structure prediction10,11,44,45. 
These approaches effectively leverage the rapid improvement in com-
puter vision systems46 by treating the problem of protein structure 
prediction as converting an ‘image’ of evolutionary couplings22–24 to an 
‘image’ of the protein distance matrix and then integrating the distance 
predictions into a heuristic system that produces the final 3D coordinate 
prediction. A few recent studies have been developed to predict the 3D 
coordinates directly47–50, but the accuracy of these approaches does not 

match traditional, hand-crafted structure prediction pipelines51. In paral-
lel, the success of attention-based networks for language processing52 
and, more recently, computer vision31,53 has inspired the exploration of 
attention-based methods for interpreting protein sequences54–56.

Discussion
The methodology that we have taken in designing AlphaFold is a combi-
nation of the bioinformatics and physical approaches: we use a physical 
and geometric inductive bias to build components that learn from PDB 
data with minimal imposition of handcrafted features (for example, 
AlphaFold builds hydrogen bonds effectively without a hydrogen bond 
score function). This results in a network that learns far more efficiently 
from the limited data in the PDB but is able to cope with the complexity 
and variety of structural data.

In particular, AlphaFold is able to handle missing the physical context 
and produce accurate models in challenging cases such as intertwined 
homomers or proteins that only fold in the presence of an unknown 
haem group. The ability to handle underspecified structural conditions 
is essential to learning from PDB structures as the PDB represents the 
full range of conditions in which structures have been solved. In gen-
eral, AlphaFold is trained to produce the protein structure most likely 
to appear as part of a PDB structure. For example, in cases in which a 
particular stochiometry, ligand or ion is predictable from the sequence 
alone, AlphaFold is likely to produce a structure that respects those 
constraints implicitly.

AlphaFold has already demonstrated its utility to the experimental 
community, both for molecular replacement57 and for interpreting 
cryogenic electron microscopy maps58. Moreover, because AlphaFold 
outputs protein coordinates directly, AlphaFold produces predictions 
in graphics processing unit (GPU) minutes to GPU hours depending on 
the length of the protein sequence (for example, around one GPU min-
ute per model for 384 residues; see Methods for details). This opens up 
the exciting possibility of predicting structures at the proteome-scale 
and beyond—in a companion paper39, we demonstrate the application 
of AlphaFold to the entire human proteome39.

The explosion in available genomic sequencing techniques and data 
has revolutionized bioinformatics but the intrinsic challenge of experi-
mental structure determination has prevented a similar expansion in 
our structural knowledge. By developing an accurate protein structure 
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Fig. 5 | Effect of MSA depth and cross-chain contacts. a, Backbone accuracy 
(lDDT-Cα) for the redundancy-reduced set of the PDB after our training data 
cut-off, restricting to proteins in which at most 25% of the long-range contacts 
are between different heteromer chains. We further consider two groups of 
proteins based on template coverage at 30% sequence identity: covering more 
than 60% of the chain (n = 6,743 protein chains) and covering less than 30% of 
the chain (n = 1,596 protein chains). MSA depth is computed by counting the 

number of non-gap residues for each position in the MSA (using the Neff 
weighting scheme; see Methods for details) and taking the median across 
residues. The curves are obtained through Gaussian kernel average smoothing 
(window size is 0.2 units in log10(Neff)); the shaded area is the 95% confidence 
interval estimated using bootstrap of 10,000 samples. b, An intertwined 
homotrimer (PDB 6SK0) is correctly predicted without input stoichiometry 
and only a weak template (blue is predicted and green is experimental).
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prediction algorithm, coupled with existing large and well-curated 
structure and sequence databases assembled by the experimental 
community, we hope to accelerate the advancement of structural 
bioinformatics that can keep pace with the genomics revolution. We 
hope that AlphaFold—and computational approaches that apply its 
techniques for other biophysical problems—will become essential 
tools of modern biology.
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Methods

Full algorithm details
Extensive explanations of the components and their motivations are 
available in Supplementary Methods 1.1–1.10, in addition, pseudocode 
is available in Supplementary Information Algorithms 1–32, network 
diagrams in Supplementary Figs. 1–8, input features in Supplementary 
Table 1 and additional details are provided in Supplementary Tables 2, 3. 
Training and inference details are provided in Supplementary Methods 
1.11–1.12 and Supplementary Tables 4, 5.

IPA
The IPA module combines the pair representation, the single repre-
sentation and the geometric representation to update the single rep-
resentation (Supplementary Fig. 8). Each of these representations 
contributes affinities to the shared attention weights and then uses 
these weights to map its values to the output. The IPA operates in 3D 
space. Each residue produces query points, key points and value points 
in its local frame. These points are projected into the global frame using 
the backbone frame of the residue in which they interact with each 
other. The resulting points are then projected back into the local frame. 
The affinity computation in the 3D space uses squared distances and 
the coordinate transformations ensure the invariance of this module 
with respect to the global frame (see Supplementary Methods 1.8.2 
‘Invariant point attention (IPA)’ for the algorithm, proof of invariance 
and a description of the full multi-head version). A related construc-
tion that uses classic geometric invariants to construct pairwise fea-
tures in place of the learned 3D points has been applied to protein  
design59.

In addition to the IPA, standard dot product attention is computed 
on the abstract single representation and a special attention on the pair 
representation. The pair representation augments both the logits and 
the values of the attention process, which is the primary way in which 
the pair representation controls the structure generation.

Inputs and data sources
Inputs to the network are the primary sequence, sequences from evo-
lutionarily related proteins in the form of a MSA created by standard 
tools including jackhmmer60 and HHBlits61, and 3D atom coordinates 
of a small number of homologous structures (templates) where avail-
able. For both the MSA and templates, the search processes are tuned 
for high recall; spurious matches will probably appear in the raw MSA 
but this matches the training condition of the network.

One of the sequence databases used, Big Fantastic Database (BFD), 
was custom-made and released publicly (see ‘Data availability’) and 
was used by several CASP teams. BFD is one of the largest publicly avail-
able collections of protein families. It consists of 65,983,866 families 
represented as MSAs and hidden Markov models (HMMs) covering 
2,204,359,010 protein sequences from reference databases, metage-
nomes and metatranscriptomes.

BFD was built in three steps. First, 2,423,213,294 protein sequences 
were collected from UniProt (Swiss-Prot&TrEMBL, 2017-11)62, a soil refer-
ence protein catalogue and the marine eukaryotic reference catalogue7, 
and clustered to 30% sequence identity, while enforcing a 90% align-
ment coverage of the shorter sequences using MMseqs2/Linclust63. 
This resulted in 345,159,030 clusters. For computational efficiency, 
we removed all clusters with less than three members, resulting in 
61,083,719 clusters. Second, we added 166,510,624 representative pro-
tein sequences from Metaclust NR (2017-05; discarding all sequences 
shorter than 150 residues)63 by aligning them against the cluster rep-
resentatives using MMseqs264. Sequences that fulfilled the sequence 
identity and coverage criteria were assigned to the best scoring cluster. 
The remaining 25,347,429 sequences that could not be assigned were 
clustered separately and added as new clusters, resulting in the final 
clustering. Third, for each of the clusters, we computed an MSA using 

FAMSA65 and computed the HMMs following the Uniclust HH-suite 
database protocol36.

The following versions of public datasets were used in this study. Our 
models were trained on a copy of the PDB5 downloaded on 28 August 
2019. For finding template structures at prediction time, we used a copy 
of the PDB downloaded on 14 May 2020, and the PDB7066 clustering 
database downloaded on 13 May 2020. For MSA lookup at both training 
and prediction time, we used Uniref9067 v.2020_01, BFD, Uniclust3036 
v.2018_08 and MGnify6 v.2018_12. For sequence distillation, we used 
Uniclust3036 v.2018_08 to construct a distillation structure dataset. 
Full details are provided in Supplementary Methods 1.2.

For MSA search on BFD + Uniclust30, and template search against 
PDB70, we used HHBlits61 and HHSearch66 from hh-suite v.3.0-beta.3 
(version 14/07/2017). For MSA search on Uniref90 and clustered MGnify, 
we used jackhmmer from HMMER368. For constrained relaxation of 
structures, we used OpenMM v.7.3.169 with the Amber99sb force field32. 
For neural network construction, running and other analyses, we used 
TensorFlow70, Sonnet71, NumPy72, Python73 and Colab74.

To quantify the effect of the different sequence data sources, we 
re-ran the CASP14 proteins using the same models but varying how the 
MSA was constructed. Removing BFD reduced the mean accuracy by 
0.4 GDT, removing Mgnify reduced the mean accuracy by 0.7 GDT, and 
removing both reduced the mean accuracy by 6.1 GDT. In each case, we 
found that most targets had very small changes in accuracy but a few 
outliers had very large (20+ GDT) differences. This is consistent with the 
results in Fig. 5a in which the depth of the MSA is relatively unimportant 
until it approaches a threshold value of around 30 sequences when the 
MSA size effects become quite large. We observe mostly overlapping 
effects between inclusion of BFD and Mgnify, but having at least one 
of these metagenomics databases is very important for target classes 
that are poorly represented in UniRef, and having both was necessary 
to achieve full CASP accuracy.

Training regimen
To train, we use structures from the PDB with a maximum release date 
of 30 April 2018. Chains are sampled in inverse proportion to cluster 
size of a 40% sequence identity clustering. We then randomly crop 
them to 256 residues and assemble into batches of size 128. We train the 
model on Tensor Processing Unit (TPU) v3 with a batch size of 1 per TPU 
core, hence the model uses 128 TPU v3 cores. The model is trained until 
convergence (around 10 million samples) and further fine-tuned using 
longer crops of 384 residues, larger MSA stack and reduced learning 
rate (see Supplementary Methods 1.11 for the exact configuration). The 
initial training stage takes approximately 1 week, and the fine-tuning 
stage takes approximately 4 additional days.

The network is supervised by the FAPE loss and a number of auxil-
iary losses. First, the final pair representation is linearly projected to 
a binned distance distribution (distogram) prediction, scored with 
a cross-entropy loss. Second, we use random masking on the input 
MSAs and require the network to reconstruct the masked regions 
from the output MSA representation using a BERT-like loss37. Third, 
the output single representations of the structure module are used to 
predict binned per-residue lDDT-Cα values. Finally, we use an auxiliary 
side-chain loss during training, and an auxiliary structure violation loss 
during fine-tuning. Detailed descriptions and weighting are provided 
in the Supplementary Information.

An initial model trained with the above objectives was used to make 
structure predictions for a Uniclust dataset of 355,993 sequences with 
the full MSAs. These predictions were then used to train a final model 
with identical hyperparameters, except for sampling examples 75% of 
the time from the Uniclust prediction set, with sub-sampled MSAs, and 
25% of the time from the clustered PDB set.

We train five different models using different random seeds, some 
with templates and some without, to encourage diversity in the predic-
tions (see Supplementary Table 5 and Supplementary Methods 1.12.1 



for details). We also fine-tuned these models after CASP14 to add a 
pTM prediction objective (Supplementary Methods 1.9.7) and use the 
obtained models for Fig. 2d.

Inference regimen
We inference the five trained models and use the predicted confidence 
score to select the best model per target.

Using our CASP14 configuration for AlphaFold, the trunk of the net-
work is run multiple times with different random choices for the MSA 
cluster centres (see Supplementary Methods 1.11.2 for details of the 
ensembling procedure). The full time to make a structure prediction 
varies considerably depending on the length of the protein. Repre-
sentative timings for the neural network using a single model on V100 
GPU are 4.8 min with 256 residues, 9.2 min with 384 residues and 18 h 
at 2,500 residues. These timings are measured using our open-source 
code, and the open-source code is notably faster than the version we 
ran in CASP14 as we now use the XLA compiler75.

Since CASP14, we have found that the accuracy of the network with-
out ensembling is very close or equal to the accuracy with ensembling 
and we turn off ensembling for most inference. Without ensembling, 
the network is 8× faster and the representative timings for a single 
model are 0.6 min with 256 residues, 1.1 min with 384 residues and 
2.1 h with 2,500 residues.

Inferencing large proteins can easily exceed the memory of a single 
GPU. For a V100 with 16 GB of memory, we can predict the structure 
of proteins up to around 1,300 residues without ensembling and the 
256- and 384-residue inference times are using the memory of a single 
GPU. The memory usage is approximately quadratic in the number of 
residues, so a 2,500-residue protein involves using unified memory so 
that we can greatly exceed the memory of a single V100. In our cloud 
setup, a single V100 is used for computation on a 2,500-residue protein 
but we requested four GPUs to have sufficient memory.

Searching genetic sequence databases to prepare inputs and final 
relaxation of the structures take additional central processing unit 
(CPU) time but do not require a GPU or TPU.

Metrics
The predicted structure is compared to the true structure from the 
PDB in terms of lDDT metric34, as this metric reports the domain accu-
racy without requiring a domain segmentation of chain structures. 
The distances are either computed between all heavy atoms (lDDT) 
or only the Cα atoms to measure the backbone accuracy (lDDT-Cα). 
As lDDT-Cα only focuses on the Cα atoms, it does not include the pen-
alty for structural violations and clashes. Domain accuracies in CASP 
are reported as GDT33 and the TM-score27 is used as a full chain global 
superposition metric.

We also report accuracies using the r.m.s.d.95 (Cα r.m.s.d. at 95% cov-
erage). We perform five iterations of (1) a least-squares alignment of the 
predicted structure and the PDB structure on the currently chosen Cα 
atoms (using all Cα atoms in the first iteration); (2) selecting the 95% 
of Cα atoms with the lowest alignment error. The r.m.s.d. of the atoms 
chosen for the final iterations is the r.m.s.d.95. This metric is more robust 
to apparent errors that can originate from crystal structure artefacts, 
although in some cases the removed 5% of residues will contain genuine 
modelling errors.

Test set of recent PDB sequences
For evaluation on recent PDB sequences (Figs. 2a–d, 4a, 5a), we used 
a copy of the PDB downloaded 15 February 2021. Structures were fil-
tered to those with a release date after 30 April 2018 (the date limit for 
inclusion in the training set for AlphaFold). Chains were further filtered 
to remove sequences that consisted of a single amino acid as well as 
sequences with an ambiguous chemical component at any residue 
position. Exact duplicates were removed, with the chain with the most 
resolved Cα atoms used as the representative sequence. Subsequently, 

structures with less than 16 resolved residues, with unknown residues 
or solved by NMR methods were removed. As the PDB contains many 
near-duplicate sequences, the chain with the highest resolution was 
selected from each cluster in the PDB 40% sequence clustering of the 
data. Furthermore, we removed all sequences for which fewer than  
80 amino acids had the alpha carbon resolved and removed chains with 
more than 1,400 residues. The final dataset contained 10,795 protein 
sequences.

The procedure for filtering the recent PDB dataset based on prior 
template identity was as follows. Hmmsearch was run with default 
parameters against a copy of the PDB SEQRES fasta downloaded  
15 February 2021. Template hits were accepted if the associated struc-
ture had a release date earlier than 30 April 2018. Each residue position 
in a query sequence was assigned the maximum identity of any template 
hit covering that position. Filtering then proceeded as described in 
the individual figure legends, based on a combination of maximum 
identity and sequence coverage.

The MSA depth analysis was based on computing the normalized 
number of effective sequences (Neff) for each position of a query 
sequence. Per-residue Neff values were obtained by counting the num-
ber of non-gap residues in the MSA for this position and weighting the 
sequences using the Neff scheme76 with a threshold of 80% sequence 
identity measured on the region that is non-gap in either sequence.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All input data are freely available from public sources.

Structures from the PDB were used for training and as templates 
(https://www.wwpdb.org/ftp/pdb-ftp-sites; for the associated 
sequence data and 40% sequence clustering see also https://ftp.wwpdb.
org/pub/pdb/derived_data/ and https://cdn.rcsb.org/resources/
sequence/clusters/bc-40.out). Training used a version of the PDB 
downloaded 28 August 2019, while the CASP14 template search used 
a version downloaded 14 May 2020. The template search also used the 
PDB70 database, downloaded 13 May 2020 (https://wwwuser.gwdg.
de/~compbiol/data/hhsuite/databases/hhsuite_dbs/).

We show experimental structures from the PDB with accession num-
bers 6Y4F77, 6YJ178, 6VR479, 6SK080, 6FES81, 6W6W82, 6T1Z83 and 7JTL84.

For MSA lookup at both the training and prediction time, we used 
UniRef90 v.2020_01 (https://ftp.ebi.ac.uk/pub/databases/uniprot/
previous_releases/release-2020_01/uniref/), BFD (https://bfd.mmseqs.
com), Uniclust30 v.2018_08 (https://wwwuser.gwdg.de/~compbiol/
uniclust/2018_08/) and MGnify clusters v.2018_12 (https://ftp.ebi.ac.uk/
pub/databases/metagenomics/peptide_database/2018_12/). Uniclust30 
v.2018_08 was also used as input for constructing a distillation structure 
dataset.

Code availability
Source code for the AlphaFold model, trained weights and inference 
script are available under an open-source license at https://github.
com/deepmind/alphafold.

Neural networks were developed with TensorFlow v.1 (https://github.
com/tensorflow/tensorflow), Sonnet v.1 (https://github.com/deep-
mind/sonnet), JAX v.0.1.69 (https://github.com/google/jax/) and Haiku 
v.0.0.4 (https://github.com/deepmind/dm-haiku). The XLA compiler is 
bundled with JAX and does not have a separate version number.

For MSA search on BFD+Uniclust30, and for template search against 
PDB70, we used HHBlits and HHSearch from hh-suite v.3.0-beta.3 
release 14/07/2017 (https://github.com/soedinglab/hh-suite). For MSA 
search on UniRef90 and clustered MGnify, we used jackhmmer from 
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HMMER v.3.3 (http://eddylab.org/software/hmmer/). For constrained 
relaxation of structures, we used OpenMM v.7.3.1 (https://github.com/
openmm/openmm) with the Amber99sb force field.

Construction of BFD used MMseqs2 v.925AF (https://github.
com/soedinglab/MMseqs2) and FAMSA v.1.2.5 (https://github.com/
refresh-bio/FAMSA).

Data analysis used Python v.3.6 (https://www.python.org/), NumPy 
v.1.16.4 (https://github.com/numpy/numpy), SciPy v.1.2.1 (https://www.
scipy.org/), seaborn v.0.11.1 (https://github.com/mwaskom/seaborn), 
Matplotlib v.3.3.4 (https://github.com/matplotlib/matplotlib), bokeh 
v.1.4.0 (https://github.com/bokeh/bokeh), pandas v.1.1.5 (https://
github.com/pandas-dev/pandas), plotnine v.0.8.0 (https://github.
com/has2k1/plotnine), statsmodels v.0.12.2 (https://github.com/
statsmodels/statsmodels) and Colab (https://research.google.com/
colaboratory). TM-align v.20190822 (https://zhanglab.dcmb.med.
umich.edu/TM-align/) was used for computing TM-scores. Structure 
visualizations were created in Pymol v.2.3.0 (https://github.com/schro-
dinger/pymol-open-source).
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We show experimental structures from the PDB with accessions 6Y4F77, 6YJ178, 6VR479, 6SK080, 6FES81, 6W6W82, 6T1Z83, and 7JTL84. 
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