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ABSTRACT: A standard technique from the hashing literature is to use two hash functions h1(x)
and h2(x) to simulate additional hash functions of the form gi(x) = h1(x) + ih2(x). We demonstrate
that this technique can be usefully applied to Bloom filters and related data structures. Specifically,
only two hash functions are necessary to effectively implement a Bloom filter without any loss in
the asymptotic false positive probability. This leads to less computation and potentially less need for
randomness in practice. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 33, 187–218, 2008
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1. INTRODUCTION

A Bloom filter is a simple space-efficient randomized data structure for representing a set
in order to support membership queries. Although Bloom filters allow false positives, the
space savings often outweigh this drawback. The Bloom filter and its many variations have
proven increasingly important for many applications (see, for instance, the survey [4]). As
just a partial listing of examples, counting Bloom filters allow deletions as well as insertions
of items [13], compressed Bloom filters are optimized to minimize space when transmitted
[20], retouched Bloom filters trade off false positives and false negatives [10], Bloomier

Correspondence to: Adam Kirsch
Preliminary versions of this work appeared in [17] and [16].
*Supported in part by an NSF Graduate Research Fellowship, NSF grants CCR-9983832 and CCR-0121154, and
a grant from Cisco Systems.
†Supported in part by NSF grants CCR-9983832 and CCR-0121154, and a grant from Cisco Systems.
© 2008 Wiley Periodicals, Inc.

187



188 KIRSCH AND MITZENMACHER

filters keep function values associated with set elements (thereby offering more than set
membership) [5], Count-Min sketches [6] and multistage filters [12] track counts associated
with items, and approximate concurrent state machines track the dynamically changing state
of a changing set of items [2]. Although recently more complex but asymptotically better
alternatives have been proposed (e.g. [3,23]), the Bloom filter’s simplicity, ease of use, and
excellent performance make it a standard data structure that is and will continue to be of
great use in many applications. For those who are not familiar with the Bloom filter, we
review it below in Section 2. For now, it suffices to know that Bloom filters make use of
multiple hash functions.

In this paper, we show that applying a standard technique from the hashing literature
can simplify the implementation of Bloom filters significantly. The idea is the following:
two hash functions h1(x) and h2(x) can simulate more than two hash functions of the form
gi(x) = h1(x) + ih2(x). (See, for example, Knuth’s discussion of open addressing with
double hashing [18].) In our context i will range from 0 up to some number k − 1 to give
k hash functions, and the hash values are taken modulo the size of the relevant hash table.
We demonstrate that this technique can be usefully applied to Bloom filters and related data
structures. Specifically, only two hash functions are necessary to effectively implement a
Bloom filter without any increase in the asymptotic false positive probability. This leads
to less computation and potentially less need for randomness in practice. Specifically, in
query-intensive applications where computationally nontrivial hash functions are used (such
as in [8, 9]), hashing can be a potential bottleneck in using Bloom filters, and reducing the
number of required hashes can yield an effective speedup. This improvement was found
empirically in the work of Dillinger and Manolios [8, 9], who suggested using the hash
functions

gi(x) = h1(x) + ih2(x) + i2 mod m,

where m is the size of the hash table.
Here we provide a full theoretical analysis that holds for a wide class of variations of

this technique, justifies and gives insight into the previous empirical observations, and is
interesting in its own right. In particular, our methodology generalizes the standard asymp-
totic analysis of a Bloom filter, exposing a new convergence result that provides a common
unifying intuition for the asymptotic false positive probabilities of the standard Bloom filter
and the generalized class of Bloom filter variants that we analyze in this paper. We obtain
this result by a surprisingly simple approach; rather than attempt to directly analyze the
asymptotic false positive probability, we formulate the initialization of the Bloom filter as a
balls-and-bins experiment, prove a convergence result for that experiment, and then obtain
the asymptotic false positive probability as a corollary.

We start by analyzing a specific, somewhat idealized Bloom filter variation that provides
the main insights and intuition for deeper results. We then move to a more general setting
that covers several issues that might arise in practice, such as when the size of the hash table
is a power of two as opposed to a prime. Finally, we demonstrate the utility of this approach
beyond the simple Bloom filter by showing how it can be used to reduce the number of hash
functions required for Count-Min sketches [6], a variation of the Bloom filter idea used for
keeping approximate counts of frequent items in data streams.

Before beginning, we note that Luecker and Molodowitch [19] and Schmidt and Siegel
[25] have shown that in the setting of open addressed hash tables, the double hashing
technique gives the same performance as uniform hashing. These results are similar in
spirit to ours, but the Bloom filter setting is sufficiently different from that of an open
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addressed hash table that we do not see a direct connection. We also note that our use
of hash functions of the form gi(x) = h1(x) + ih2(x) may appear similar to the use of
pairwise independent hash functions, and that one might wonder whether there is any
formal connection between the two techniques in the Bloom filter setting. Unfortunately,
this is not the case; a straightforward modification of the standard Bloom filter analysis
yields that if pairwise independent hash functions are used instead of fully random hash
functions, then the space required to retain the same bound on the false positive probability
increases by a constant factor. In contrast, we show that using the gi’s causes no increase in
the false positive probability, so they can truly be used as a replacement for fully random
hash functions.

2. STANDARD BLOOM FILTERS

We begin by reviewing the fundamentals of Bloom filters, based on the presentation of
the survey [4], which we refer to for further details. A Bloom filter for representing a set
S = {x1, x2, . . . , xn} of n elements from a large universe U consists of an array of m bits,
initially all set to 0. The filter uses k independent hash functions h1, . . . , hk with range
{1, . . . , m}, where it assumed that these hash functions map each element in the universe to
a random number uniformly over the range. Although the randomness of the hash functions
is clearly an optimistic assumption, it appears to be suitable in practice [13, 24]. For each
element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. (A location can be set to 1 multiple
times.) To check if an item y is in S, we check whether all hi(y) are set to 1. If not, then
clearly y is not a member of S. If all hi(y) are set to 1, we assume that y is in S, and hence a
Bloom filter may yield a false positive.

The probability of a false positive for an element not in the set, or the false positive
probability, can be estimated in a straightforward fashion, given our assumption that hash
functions are perfectly random. After all the elements of S are hashed into the Bloom filter,
the probability that a specific bit is still 0 is

p′ = (1 − 1/m)kn ≈ e−kn/m.

In this section, we generally use the approximation p = e−kn/m in place of p′ for convenience.
If ρ is the proportion of 0 bits after all the n elements are inserted in the table, then

conditioned on ρ the probability of a false positive is

(1 − ρ)k ≈ (1 − p′)k ≈ (1 − p)k = (1 − e−kn/m)k .

These approximations follow since E[ρ] = p′, and ρ can be shown to be highly concentrated
around p′ using standard techniques. It is easy to show that the expression (1 − e−kn/m)k is
minimized when k = ln 2 · (m/n), giving a false positive probability f of

f = (1 − e−kn/m)k = (1/2)k ≈ (0.6185)m/n.

In practice, k must be an integer, and a smaller, suboptimal k might be preferred, since this
reduces the number of hash functions that have to be computed.

This analysis provides us (roughly) with the probability that a single item z /∈ S gives
a false positive. We would like to make a broader statement, that in fact this gives a
false positive rate. That is, if we choose a large number of distinct elements not in S,
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the fraction of them that yield false positives is approximately f . This result follows imme-
diately from the fact that ρ is highly concentrated around p′, and for this reason, the false
positive probability is sometimes called the false positive rate. As we will see, in our varia-
tions, it is not always as clear that the false positive probability acts like a false positive rate,
and so we clearly distinguish between the two concepts. (Indeed, we think this clarification
is a contribution of this paper.)

Before moving on, we note that sometimes Bloom filters are described slightly differently,
with each hash function having a disjoint range of m/k consecutive bit locations instead
of having one shared array of m bits. We refer to this variant as a partitioned Bloom filter.
Repeating the analysis above, we find that in this case the probability that a specific bit is 0 is(

1 − k

m

)n

≈ e−kn/m,

and so, asymptotically, the performance is the same as the original scheme. In practice, how-
ever, the partitioned Bloom filter tends to perform slightly worse than the nonpartitioned
Bloom filter. This is explained by the observation that(

1 − 1

m

)kn

≥
(

1 − k

m

)n

,

so partitioned filters tend to have more 1’s than nonpartitioned filters, resulting in larger
false positive probabilities.

3. A SIMPLE CONSTRUCTION USING TWO HASH FUNCTIONS

As an instructive example case, we consider a specific application of the general technique
described in the introduction. We devise a Bloom filter that uses k fully random hash
functions on some universe U of items, each with range {0, 1, 2, . . . , p − 1} for a prime p.
Our hash table consists of m = kp bits; each hash function is assigned a disjoint subarray of p
bits in the filter, that we treat as numbered {0, 1, 2, . . . , p−1}. Our k hash functions will be of
the form gi(x) = h1(x)+ ih2(x) mod p, where h1(x) and h2(x) are two independent, uniform
random hash functions on the universe with range {0, 1, 2, . . . , p − 1}, and throughout we
assume that i ranges from 0 to k − 1.

As with a standard partitioned Bloom filter, we fix some set S ⊆ U and initialize the
filter with S by first setting all of the bits to 0 and then, for each x ∈ S and i, setting the
gi(x)-th bit of the i-th subarray to 1. For any y ∈ U, we answer a query of the form “Is
y ∈ S?” with “Yes” if and only if the gi(y)-th bit of the i-th subarray is 1 for every i. Thus,
an item z �∈ S generates a false positive if and only if each of its hash locations in the array
is also a hash location for some x ∈ S.

The advantage of our simplified setting is that for any two elements x, y ∈ U, exactly
one of the following three cases occurs:

• gi(x) �= gi(y) for all i, or
• gi(x) = gi(y) for exactly one i, or
• gi(x) = gi(y) for all i.

That is, because we have partitioned the bit array into disjoint hash tables, each hash function
can be considered separately. Moreover, by working modulo p, we have arranged that if
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gi(x) = gi(y) for at least two values of i, then we must have h1(x) = h1(y) and h2(x) = h2(y),
so all hash values are the same. This codifies the intuition behind our result: the most likely
way for a false positive to occur is when each element in the Bloom filter set S collides
with at most one array bit corresponding to the element generating the false positive; other
events that cause an element to generate a false positive occur with vanishing probability.
It is this intuition that motivates our analysis; in Section 4, we consider more general cases
where other non-trivial collisions can occur.

Proceeding formally, we fix a set S = {x1, x2, . . . , xn} of n elements from U and another
element z /∈ S, and compute the probability that z yields a false positive. A false positive
corresponds to the event F that for each i there is (at least) one j such that gi(z) = gi(xj).
Obviously, one way this can occur is if h1(xj) = h1(z) and h2(xj) = h2(z) for some j. The
probability of this event E is

Pr(E) = 1 − (1 − 1/p2)n = 1 − (1 − k2/m2)n.

Notice that when m/n = c is a constant and k is a constant, as is standard for a Bloom filter,
we have Pr(E) = o(1). Now since

Pr(F) = Pr(F |E) Pr(E) + Pr(F |¬E) Pr(¬E)

= Pr(E) + Pr(F |¬E) Pr(¬E)

= o(1) + Pr(F |¬E)(1 − o(1)),

it suffices to consider Pr(F |¬E) to obtain the (constant) asymptotic false positive
probability.

Conditioned on ¬E and (h1(z), h2(z)), the pair (h1(xj), h2(xj)) is uniformly distributed
over the p2 − 1 values in V = {0, . . . , p − 1}2 − {(h1(z), h2(z))}. Of these, for each i∗ ∈
{0, . . . , k − 1}, the p − 1 pairs in

Vi∗ = {(a, b) ∈ V : a ≡ i∗(h2(z) − b) + h1(z) mod p, b �≡ h2(z) mod p}
are the ones such that if (h1(xj), h2(xj)) ∈ Vi∗ , then i∗ is the unique value of i such that
gi(xj) = gi(z). We can therefore view the conditional probability as a variant of a balls-
and-bins problem. There are n balls (each corresponding to some xj ∈ S), and k bins (each
corresponding to some i∗ ∈ {0, . . . , k −1}). With probability k(p−1)/(p2 −1) = k/(p+1),
a ball lands in a bin, and with the remaining probability it is discarded; when a ball lands
in a bin, the bin it lands in is chosen uniformly at random. What is the probability that all
of the bins have at least one ball?

This question is surprisingly easy to answer. By the Poisson approximation and the fact
that p = m/k = cn/k, the total number of balls that are not discarded has distribution
Bin(n, k/(p + 1)) ≈ Po(k2/c), where Bin(·, ·) and Po(·) denote the binomial and Poisson
distributions, respectively. Since each ball that is not discarded lands in a bin chosen at
random, the joint distribution of the number of balls in the bins is asymptotically the same
as the joint distribution of k independent Po(k/c) random variables, by a standard property
of Poisson random variables. The probability that each bin has a least one ball now clearly
converges to

Pr(Po(k/c) > 0)k = (1 − e−k/c)k = (1 − e−kn/m)k ,

which is the asymptotic false positive probability for a standard Bloom filter.
We make the above argument much more general and rigorous in Section 4, but for now

we emphasize that we have actually characterized much more than just the false positive
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probability of our Bloom filter variant. In fact, we have characterized the asymptotic joint
distribution of the number of items in S hashing to the locations used by some z �∈ S as
being independent Po(k/c) random variables. Furthermore, from a technical perspective,
this approach appears fairly robust. In particular, the above analysis uses only the facts
that the probability that some x ∈ S shares more than one of z’s hash locations is o(1),
and that if some x ∈ S shares exactly one of z’s hash locations, then that hash location is
nearly uniformly distributed over z’s hash locations. These observations suggest that the
techniques used in this section can be generalized to handle a much wider class of Bloom
filter variants, and form the intuitive basis for the arguments in Section 4.

Now, as in Section 2, we must argue that the asymptotic false positive probability also
acts like a false positive rate. Similar to the case for the standard Bloom filter, this fact boils
down to a concentration argument. Once the set S is hashed, there is a set

B = {(b1, b2) : h1(z) = b1 and h2(z) = b2 implies z gives a false positive}.
Conditioned on |B|, the probability of a false positive for any element in U − S is |B|/p2,
and these events are independent. If we show that |B| is concentrated around its expectation,
it follows easily that the fraction of false positives in a set of distinct elements not in S is
concentrated around the false positive probability.

A simple Doob martingale argument suffices (e.g. [21, Section 12.5]). Each hashed
element of S can change the number of pairs in B by at most kp in either direction. This
observation follows immediately from the fact that given any element x, its hash values h1(x)
and h2(x), and some i ∈ {0, . . . , k−1}, there are exactly p solutions (b1, b2) ∈ {0, . . . , p−1}2

to the equation
h1(x) + ih2(x) ≡ b1 + ib2 (mod p).

By [21, Section 12.5], we now have that for any ε > 0,

Pr(|B − E[B]| ≥ εp2) ≤ 2 exp[−2ε2p2/nk2].
It is now easy to derive the desired conclusion. We defer further details until Section 7,
where we consider a similar but much more general argument.

As an aside, we remark that unlike the analysis of the standard Bloom filter in Section 2,
here the fraction ρ of zeros in the Bloom filter array is not important for showing that the
false positive probability acts like a false positive rate. However, it can be easily shown
that ρ has essentially the same asymptotic expectation in this Bloom filter variation as
for a standard Bloom filter, and that ρ is highly concentrated around its mean. (The same
observations hold for the specific schemes in Section 5.)

4. A GENERAL FRAMEWORK

In this section, we introduce a general framework for analyzing Bloom filter variants, such
as the one examined in Section 3. We start with some new notation. For any integer �, we
define the set [�] = {0, 1, . . . , � − 1} (note that this definition is slightly nonstandard). We
denote the support of a random variable X by Supp(X). For a multiset M, we use |M| to
denote the number of distinct elements of M, and ‖M‖ to denote the number of elements
of M with multiplicity. For two multisets M and M ′, we define M ∩ M ′ and M ∪ M ′ to
be, respectively, the intersection and union of M ′ as multisets. Furthermore, in an abuse of
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standard notation, we define the statement i, i ∈ M as meaning that i is an element of M of
multiplicity at least 2.

We are now ready to define the framework. As before, U denotes the universe of items
and S ⊆ U denotes the set of n items for which the Bloom filter will answer membership
queries. We define a scheme to be a method of assigning hash locations to every element
of U. Formally, a scheme is specified by a joint distribution of discrete random variables
{H(u) : u ∈ U} (implicitly parameterized by n), where for u ∈ U, H(u) represents the
multiset of hash-locations assigned to u by the scheme. We do not require a scheme to be
defined for every value of n, but we do insist that it be defined for infinitely many values of
n, so that we may take limits as n → ∞. For example, for the class of schemes discussed in
Section 3, we think of the constants k and c as being fixed to give a particular scheme that is
defined for those values of n such that p � m/k is a prime, where m � cn. Since there are
infinitely many primes, the asymptotic behavior of this scheme as n → ∞ is well-defined
and is the same as in Section 3, where we let m be a free parameter and analyzed the behavior
as n, m → ∞ subject to m/n and k being fixed constants, and m/k being prime.

Having defined the notion of a scheme, we may now formalize some important concepts
with new notation (all of which is implicitly parameterized by n). We define H to be the set
of all hash locations that can be assigned by the scheme (formally, H is the set of elements
that appear in some multiset in the support of H(u), for some u ∈ U). For x ∈ S and
z ∈ U − S, define C(x, z) = H(x) ∩ H(z) to be the multiset of hash collisions of x with z.
We let F(z) denote the false positive event for z ∈ U − S, which occurs when each of z’s
hash locations is also a hash location for some x ∈ S.

In the schemes that we consider, {H(u) : u ∈ U} will always be independent and
identically distributed. In this case, Pr(F(z)) is the same for all z ∈ U − S, as is the joint
distribution of {C(x, z) : x ∈ S}. Thus, to simplify the notation, we may fix an arbitrary
z ∈ U −S and simply use Pr(F) instead of Pr(F(z)) to denote the false positive probability,
and we may use {C(x) : x ∈ S} instead of {C(x, z) : x ∈ S} to denote the joint probability
distribution of the multisets of hash collisions of elements of S with z.

The main technical result of this section is the following key theorem, which is a for-
malization and generalization of the analysis of the asymptotic false positive probability in
Section 3.

Theorem 4.1. Fix a scheme. Suppose that there are constants λ and k and functions
γ1(n) = o(1/n) and γ2(n) = o(1) such that:

1. {H(u) : u ∈ U} are independent and identically distributed.
2. For u ∈ U, ‖H(u)‖ = k.

3. For x ∈ S, Pr(‖C(x)‖ = i) =



1 − λ

n + O(γ1(n)) i = 0
λ

n + O(γ1(n)) i = 1
O(γ1(n)) i > 1

.

4. For x ∈ S, maxi∈H | Pr(i ∈ C(x)|‖C(x)‖ = 1, i ∈ H(z)) − 1
k | = O(γ2(n)).

Then limn→∞ Pr(F) = (1 − e−λ/k)k.

Remark 1. It is not difficult to verify that the scheme analyzed in Section 3 satisfies the
conditions of Theorem 4.1 with λ = k2/c. However, more complicated schemes are not so
amenable to a direct application of Theorem 4.1. Thus, after proving the theorem, we give
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a result that identifies another set of conditions that imply the hypotheses of Theorem 4.1
and are easier to verify.

Proof. For ease of exposition, we assign every element of H(z) a unique number in [k]
(treating multiple instances of the same hash location as distinct elements). More formally,
we define an arbitrary bijection fM from M to [k] for every multi-set M ⊆ H with ‖M‖ = k
(where fM treats multiple instances of the same hash location in M as distinct elements),
and label the elements of H(z) according to fH(z). This convention allows us to identify the
elements of H(z) by numbers i ∈ [k], rather than hash locations i ∈ H.

For i ∈ [k] and x ∈ S, define Xi(x) = 1 if i ∈ C(x) and 0 otherwise, and define
Xi = ∑

x∈S Xi(x). Note that i ∈ C(x) is an abuse of notation; what we really mean is
f −1
H(z)(i) ∈ C(x), although we will continue using the former since it is much less cumbersome.

We show that Xn � (X0, . . . , Xk−1) converges in distribution to a vector P �
(P0, . . . , Pk−1) of k independent Poisson random variables with parameter λ/k, as n → ∞.
To do this, we make use of moment generating functions. For a random variable R, the
moment generating function of R is defined by MR(t) � E[exp(tR)]. We show that for any
t0, . . . , tk ,

lim
n→∞ M∑k−1

i=0 tiXi
(tk) = M∑k−1

i=0 tiPi
(tk),

which is sufficient by [1, Theorem 29.4 and p. 390], since

M∑k−1
i=0 tiPi

(tk) = E
[
etk

∑
i∈[k] tiPi

]
=
∏
i∈[k]

E
[
etk tiPo(λ/k)

]

=
∏
i∈[k]

∞∑
j=0

e−λ/k λj

kjj!etk ti j

=
∏
i∈[k]

e
λ
k (etk ti −1)

= e
λ
k

(∑
i∈[k] etk ti −1

)
< ∞,

where the first step is just the definition of the moment generating function, the second
step follows from independence of the tiPi(λk)’s, the third step is just the definition of the
Poisson distribution, the fourth step follows from the Taylor series for ex, and the fifth step
is obvious.

Proceeding, we write

M∑
i∈[k] tiXi(tk)

= M∑
i∈[k] ti

∑
x∈S Xi(x)(tk)

= M∑
x∈S

∑
i∈[k] tiXi(x)(tk)

= (
M∑

i∈[k] tiXi(x)(tk)
)n

=

Pr(‖C(x)‖ = 0)

+
k∑

j=1

Pr(‖C(x)‖ = j)
∑

T⊆[k]:|T |=j

Pr(C(x) = f −1
H(z)(T)|‖C(x)‖ = j)etk

∑
i∈T ti




n
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=
(

1 − λ

n
+ λ

n

∑
i∈[k]

Pr(i ∈ C(x)|‖C(x)‖ = 1)etk ti + o(1/n)

)n

=
(

1 − λ

n
+ λ

n

∑
i∈[k]

(
1

k
+ o(1)

)
etk ti + o(1/n)

)n

=
(

1 − λ

n
+ λ

∑
i∈[k] etk ti

kn
+ o(1/n)

)n

→ e−λ+ λ
k
∑

i∈[k] etk ti as n → ∞
= e

λ
k

(∑
i∈[k](etk ti −1)

)
= M∑

i∈[k] tiPoi(λk )(tk).

The first two steps are obvious. The third step follows from the fact that the H(x)’s are inde-
pendent and identically distributed (for x ∈ S) conditioned on H(z), so the

∑
i∈[k] tiXi(x)’s

are too, since each is a function of the corresponding H(x). The fourth step follows from
the definition of the moment generating function. The fifth and sixth steps follow from the
assumptions on the distribution of C(x) (in the sixth step, the conditioning on i ∈ H(z) is
implicit in our convention that associates integers in [k] with the elements of H(z)). The
seventh, eighth, and ninth steps are obvious, and the 10th step follows from a previous
computation.

Now fix some bijection g : Z
k
≥0 → Z≥0, and define h : Z≥0 → {0, 1} : h(x) = 1

if and only if every coordinate of g−1(x) is greater than 0. Since {Xn} converges to P in
distribution, {g(Xn)} converges to g(P) in distribution, because g is a bijection and Xn and
P have discrete distributions. Skorohod’s Representation Theorem [1, Theorem 25.6] now
implies that there is some probability space where one may define random variables {Yn}
and P′, where Yn ∼ g(Xn) and P′ ∼ g(P), and {Yn} converges to P′ almost surely. Of course,
since the Yn’s only take integer values, whenever {Yn} converges to P′, there must be some
n0 such that Yn0 = Yn1 = P′ for any n1 > n0, and so {h(Yn)} trivially converges to h(P′).
Therefore, {h(Yn)} converges to h(P′) almost surely, so

Pr(F) = Pr(∀i ∈ [k], Xi > 0)

= E[h(g(Xn))]
= E[h(Yn)]
→ E[h(P′)] as n → ∞
= Pr(Po(λ/k) > 0)k

= (1 − e−λ/k)k ,

where the fourth step is the only nontrivial one, and it follows from [1, Theorem 5.4].

It turns out that the conditions of Theorem 4.1 can be verified very easily in many cases.

Lemma 4.1. Fix a scheme. Suppose that there are constants λ and k and a function
γ (n) = o(1/n) such that:

1. {H(u) : u ∈ U} are independent and identically distributed.
2. For u ∈ U, ‖H(u)‖ = k.
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3. For u ∈ U, maxi∈H | Pr(i ∈ H(u)) − λ

kn | = O(γ (n)).
4. For u ∈ U, maxi1,i2∈H Pr(i1, i2 ∈ H(u)) = O(γ (n)).
5. The set of all possible hash locations H satisfies |H| = O(n).

Then the conditions of Theorem 4.1 hold with γ1(n) = γ (n) and γ2(n) = nγ (n) (and the
same values for λ and k).

Remark 2. Recall that, under our notation, the statement i, i ∈ H(u) is true if and only if
i is an element of H(u) of multiplicity at least 2.

Proof. The proof is essentially just a number of applications of the first two Boole-
Bonferroni inequalities (e.g. [22, Proposition C.2]). We adopt the convention introduced in
the proof of Theorem 4.1 where the elements of H(z) are identified by the integers in [k]. For
i ∈ [k], we continue to abuse notation and write i ∈ H(x) as shorthand for f −1

H(z)(i) ∈ H(x)
where doing so does not cause confusion.

The first two conditions of Theorem 4.1 are trivially satisfied. For the third condition,
observe that for any j ∈ {2, . . . , k} and x ∈ S,

Pr(‖C(x)‖ = j) ≤ Pr(‖C(x)‖ > 1)

= Pr
(∃i1 < i2 ∈ [k] : f −1

H(z)(i1), f −1
H(z)(i2) ∈ H(x)

or ∃i ∈ H : i ∈ H(x), i, i ∈ H(z)
)

≤ Pr
(∃i1 < i2 ∈ [k] : f −1

H(z)(i1), f −1
H(z)(i2) ∈ H(x)

)
+ Pr(∃i ∈ H : i ∈ H(x), i, i ∈ H(z))

= Pr(∃i1 < i2 ∈ [k] : i1, i2 ∈ H(x)) + Pr(∃i ∈ H : i ∈ H(x), i, i ∈ H(z))

≤
∑

i1<i2∈[k]
Pr(i1, i2 ∈ H(x)) +

∑
i∈H

Pr(i ∈ H(x)) Pr(i, i ∈ H(z))

≤
(

k

2

)
O(γ (n)) + |H|

(
λ

kn
+ O(γ (n))

)
O(γ (n))

= O(γ (n)) + O(n)O(γ (n)/n)

= O(γ (n)),

and

Pr(‖C(x)‖ = 1) ≤ Pr(|C(x)| ≥ 1) ≤
∑
i∈[k]

Pr(i ∈ H(x)) ≤ k

(
λ

kn
+ O(γ (n))

)

= λ

n
+ O(γ (n)),

and

Pr(‖C(x)‖ ≥ 1)

= Pr

(⋃
i∈[k]

i ∈ H(x)

)

≥
∑
i∈[k]

Pr(i ∈ H(x)) −
∑

i1<i2∈[k]
Pr(i1 ∈ H(x), i2 ∈ H(x))
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≥
∑
i∈[k]

Pr(i ∈ H(x))

−

 ∑

i1<i2∈[k]
Pr(i1, i2 ∈ H(x)) +

∑
i∈H

Pr(i ∈ H(x)) Pr(i, i ∈ H(z))




≥ k

(
λ

kn
+ O(γ (n))

)
− O(γ (n))

= λ

n
+ O(γ (n)),

so

Pr(‖C(x)‖ = 1) = Pr(‖C(x)‖ ≥ 1) − Pr(‖C(x)‖ > 1)

≥ λ

n
+ O(γ (n)) − O(γ (n))

= λ

n
+ O(γ (n)).

Therefore,

Pr(‖C(x)‖ = 1) = λ

n
+ O(γ (n)),

and

Pr(‖C(x)‖ = 0) = 1 −
k∑

j=1

Pr(‖C(x)‖ = j) = 1 − λ

n
+ O(γ (n)).

We have now shown that the third condition of Theorem 4.1 is satisfied.
For the fourth condition, we observe that for any i ∈ [k] and x ∈ S,

Pr(i ∈ C(x), ‖C(x)‖ = 1) ≤ Pr(i ∈ H(x)) = λ

kn
+ O(γ (n)),

and

Pr(i ∈ C(x), ‖C(x)‖ = 1) = Pr(i ∈ H(x)) − Pr(i ∈ H(x), ‖C(x)‖ > 1)

≥ Pr(i ∈ H(x)) − Pr(‖C(x)‖ > 1)

= λ

kn
+ O(γ (n)) − O(γ (n)),

so

Pr(i ∈ C(x), ‖C(x)‖ = 1) = λ

kn
+ O(γ (n)),

implying that

Pr(i ∈ C(x)|‖C(x)‖ = 1) = Pr(i ∈ C(x), ‖C(x)‖ = 1)

Pr(‖C(x)‖ = 1)
=

λ

kn + O(γ (n))
λ

n + O(γ (n))
= 1

k
+O(nγ (n)),

completing the proof (the conditioning on i ∈ H(z) is once again implied by the convention
that associates elements of [k] with the hash locations in H(z)).
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5. SOME SPECIFIC SCHEMES

We are now ready to analyze some specific schemes. In particular, we examine a natural
generalization of the scheme described in Section 3, as well as the double hashing and
enhanced double hashing schemes introduced in [8, 9]. In both of these cases, we consider
a Bloom filter consisting of an array of m = cn bits and k hash functions, where c > 0
and k ≥ 1 are fixed constants. The nature of the hash functions depends on the particular
scheme under consideration.

5.1. Partition Schemes

First, we consider the class of partition schemes, where the Bloom filter is defined by an
array of m bits that is partitioned into k disjoint arrays of m′ = m/k bits (we require that m
be divisible by k), and an item u ∈ U is hashed to location

h1(u) + ih2(u) mod m′

of array i, for i ∈ [k], where h1 and h2 are independent fully random hash functions with
codomain [m′]. Note that the scheme analyzed in Section 3 is a partition scheme where m′

is prime (and so is denoted by p in Section 3).
Unless otherwise stated, henceforth we do all arithmetic involving h1 and h2 modulo m′.

We prove the following theorem concerning partition schemes.

Theorem 5.1. For a partition scheme, limn→∞ Pr(F) = (1 − e−k/c)k.

Proof. We show that the H(u)’s satisfy the conditions of Lemma 4.1 with λ = k2/c and
γ (n) = 1/n2. For i ∈ [k] and u ∈ U, define gi(u) = (i, h1(u) + ih2(u)) and H(u) = (gi(u) :
i ∈ [k]). That is, gi(u) is u’s ith hash location, and H(u) is the multiset of u’s hash locations.
This notation is obviously consistent with the definitions required by Lemma 4.1.

Since h1 and h2 are independent and fully random, the first two conditions are trivial.
The last condition is also trivial, since there are m = cn possible hash locations. For the
remaining two conditions, fix u ∈ U. Observe that for (i, r) ∈ [k] × [m′],

Pr((i, r) ∈ H(u)) = Pr(h1(u) = r − ih2(u)) = 1/m′ = (k2/c)/kn,

and that for distinct (i1, r1), (i2, r2) ∈ [k] × [m′], we have

Pr((i1, r1), (i2, r2) ∈ H(u))

= Pr(i1 ∈ H(u)) Pr(i2 ∈ H(u)|i1 ∈ H(u))

= 1

m′ Pr(h1(u) = r2 − i2h2(u)|h1(u) = r1 − i1h2(u))

= 1

m′ Pr((i1 − i2)h2(u) = r1 − r2)

≤ 1

m′ · gcd(|i2 − i1|, m′)
m′ ≤ k

(m′)2
= O(1/n2),

where the fourth step is the only nontrivial step, and it follows from the standard fact that
for any r, s ∈ [m], there are at most gcd(r, m) values t ∈ [m] such that rt ≡ s mod m
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(see, for example, [15, Proposition 3.3.1]). Finally, since it is clear that from the definition
of the scheme that |H(u)| = k for all u ∈ U, we have that for any (i, r) ∈ [k] × [m′],
Pr((i, r), (i, r) ∈ H(u)) = 0.

5.2. (Enhanced) Double Hashing Schemes

Next, we consider the class of double hashing and enhanced double hashing schemes, which
are analyzed empirically in [8, 9]. In these schemes, an item u ∈ U is hashed to location

h1(u) + ih2(u) + f (i) mod m

of the array of m bits, for i ∈ [k], where h1 and h2 are independent fully random hash
functions with codomain [m], and f : [k] → [m] is an arbitrary function. When f (i) ≡ 0,
the scheme is called a double hashing scheme. Otherwise, it is called an enhanced double
hashing scheme (with f ). We show that the asymptotic false positive probability for an
(enhanced) double hashing scheme is the same as for a standard Bloom filter.

Theorem 5.2. For any (enhanced) double hashing scheme,

lim
n→∞ Pr(F) = (1 − e−k/c)k .

Remark 3. The result holds for any choice of f . In fact, f can even be drawn from an
arbitrary probability distribution over [m][k], as long as it is drawn independently of the two
random hash functions h1 and h2.

Proof. We proceed by showing that this scheme satisfies the conditions of Lemma 4.1
with λ = k2/c and γ (n) = 1/n2. Since h1 and h2 are independent and fully random, the
first two conditions trivially hold. The last condition is also trivial, since there are m = cn
possible hash locations.

Showing that the third and fourth conditions hold requires more effort. First, we need
some notation. For u ∈ U, i ∈ [k], define

gi(u) = h1(u) + ih2(u) + f (i)

H(u) = (gi(u) : i ∈ [k]).

That is, gi(u) is u’s ith hash location, and H(u) is the multi-set of u’s hash locations. This
notation is obviously consistent with the definitions required by Lemma 4.1. Fix u ∈ U.
For r ∈ [m],

Pr(∃j ∈ [k] : gj(u) = r) ≤
∑
j∈[k]

Pr(h1(u) = r − jh2(u) − f (j)) = k

m
.
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Furthermore, for any j1, j2 ∈ [k] and r1, r2 ∈ [m]
Pr(gj1(u) = r1, gj2(u) = r2) = Pr(gj1(u) = r1) Pr(gj2(u) = r2|gj1(u) = r1)

= 1

m
Pr(gj2(u) = r2|gj1(u) = r1)

= 1

m
Pr((j1 − j2)h2(u) = r1 − r2 + f (j2) − f (j1))

≤ 1

m
· gcd(|j1 − j2|, m)

m

≤ 1

m
· k

m

= k

m2

= O(1/n2),

where the fourth step is the only nontrivial step, and it follows from the standard fact that
for any r, s ∈ [m], there are at most gcd(r, m) values t ∈ [m] such that rt ≡ s mod m (see,
for example, [15, Proposition 3.3.1]). Therefore, for r ∈ [m],

Pr(∃j ∈ [k] : gj(u) = r) ≥
∑
j∈[k]

Pr(gj(u) = r) −
∑

j1<j2∈[k]
Pr(gj1(u) = r, gj2(u) = r)

≥ k

m
− k2O(1/n2)

= k2/c

n
+ O(1/n2),

implying that

Pr(r ∈ H(u)) = Pr(∃j ∈ [k] : gj(u) = r) = k2/c

n
+ O(1/n2),

so the third condition of Lemma 4.1 holds. For the fourth condition, fix any r1, r2 ∈ [m].
Then

Pr(r1, r2 ∈ H(u)) ≤
∑

j1,j2∈[k]
Pr(gj1(u) = r1, gj2(u) = r2) ≤ k2O(1/n2) = O(1/n2),

completing the proof.

6. RATE OF CONVERGENCE

In the previous sections, we identified a broad class of nonstandard Bloom filter hashing
schemes that have the same asymptotic false positive probability as a standard Bloom
filter. For many applications, we would also like to know that these asymptotics kick in
fairly quickly, for reasonable values of n. With these applications in mind, we provide an
analysis of the rate of convergence in Theorem 4.1, and then apply that analysis to the
specific hashing schemes discussed in Section 5. Our results indicate that those hashing
schemes yield performance almost identical to that of a standard Bloom filter for a wide
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range of practical settings. Furthermore, in Section 8, we show the results of some simple
experiments as further evidence of this fact.

The rate of convergence analysis proceeds along the following lines, where the underlying
intuition is drawn from the analysis of the asymptotic false positive probability in Section
3, and we assume the hypotheses of Lemma 4.1. First, for each x ∈ S, we couple ‖C(x)‖
with a Bern(λ/n) random variable Bx (where Bern(·) denotes the Bernoulli distribution).
(We specify exactly how to do the coupling later.) We then define a Bin(n, λ/n) random
variable B = ∑

x∈S Bx. In the terminology of Section 3, each x ∈ S represents a ball
which is discarded if and only if Bx = 0, so B is the total number of balls that are not
discarded. Next, conditioned on T = {x : Bx = 1}, for each x ∈ T , we couple the smallest
element Cx of fH(z)(C(x)) with a random variable Tx selected uniformly from [k] (recall
from the proof of Theorem 4.1 that fH(z) defines a correspondence between H(z) and [k]).
(In the asymptotically insignificant case where ‖C(x)‖ = 0, we simply define Cx = −1.)
In the terminology of Section 3, T is the set of balls that are thrown into the bins, and for
each x ∈ T , the random variable Tx represents the bin where it lands.

We can now bound the difference between the false positive probability (for a particular
value of n) and the probability that every bin in [k] is hit by at least one ball by the probability
that at least one of the random variables just defined is different than the random variable
to which it is coupled. Thus, we relate the true false positive probability to the same simple
balls and bins experiment as in Section 3. Finally, as in Section 3, the asymptotics of the balls
and bins experiment are easy to analyze; we just couple B with a Po(λ) random variable Y
and bound Pr(B �= Y). (This is because, for both the experiment where B balls are thrown
(that is, not discarded) and the experiment where Po(λ) balls are thrown, each ball is placed
in a bin that is chosen randomly from the k bins, so for each ball that is thrown in both
experiments, the random variables indicating the bins where it lands in the two experiments
can be trivially coupled.)

We now formalize the above argument. In particular, we obtain rate of convergence
results that subsume many of the results in Sections 4 and 5. However, we have chosen to
keep our earlier results because they demonstrate that the underlying Poisson convergence
of interest can be cleanly derived using a standard moment generating function approach.

Before proceeding, we define the total variation distance between two discrete
distributions (or random variables) X1 and X2 to be

dist(X1, X2) =
∑

x∈Supp(X1)∪Supp(X2)

| Pr(X1 = x) − Pr(X2 = x)|.

Also, if X1 and X2 are jointly distributed random variables, then we use the notation X1 | X2

to refer to the conditional distribution of X1 given X2.

Theorem 6.1. Consider a hashing scheme that satisfies the hypotheses of Lemma 4.1.
Then

| Pr(F) − (1 − e−λ/k)k| = O(nγ (n) + 1/n).

Proof. With the above outline in mind, define the events

E1 = {∀x ∈ S ‖C(x)‖ = Bx}
E2 = {∀x ∈ T Cx = Tx}.
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Let F ′ denote the event that in the experiment where Y balls are thrown randomly into
k bins, each bin receives at least one ball. Since Y ∼ Po(λ), a standard fact of Poisson
random variables tells us that the joint distribution of number of balls in each bin is the
same as the joint distribution of k independent Po(λ/k) random variables. Thus, Pr(F ′) =
(1 − exp[−λ/k])k . Letting 1(·) denote the indicator function, we write

| Pr(F) − (1 − exp[−λ/k])k| = | Pr(F) − Pr(F ′)|
= | E[1(F) − 1(F ′)]|
≤ E[| 1(F) − 1(F ′)|]
= Pr(1(F) �= 1(F ′))
≤ Pr(¬E1 ∪ ¬E2 ∪ (B �= Y))

≤ Pr(¬E1 ∪ ¬E2) + Pr(B �= Y)

= E [Pr(¬E1 ∪ ¬E2 | H(z))] + Pr(B �= Y)

= E [Pr(¬E1 | H(z)) + Pr(E1 | H(z)) Pr(¬E2 | E1, H(z))]

+ Pr(B �= Y)

where we have used the fact that if 1(F) �= 1(F ′), then some random variable in the
coupling established above is not equal to the random variable to which it is coupled.

Before continuing, we must address the issue of actually constructing the couplings
described above. Of course, our goal is to find a coupling so that random variables with
similar distributions are likely to be equal in the probability space where they are coupled. To
construct the coupling, we fix some ordering x1, . . . , xn of the elements in S. We first sample
H(z) and then sample independent Uniform[0, 1] random variables U1, . . . , U2n+1. For i =
1, . . . , n, we use Ui to perform a coupling between Bxi and the conditional distribution of
‖C(xi)‖ given H(z) (we specify exactly how we do this later). If Bxi = 1, then we use Ui+n

to perform a coupling between Txi and the conditional distribution of Cxi given ‖C(xi)‖ and
H(z). Note that here we are using the fact that all of the C(x)’s are conditionally independent
given H(z), so these pairwise couplings are consistent with the appropriate joint distribution
of the random variables. Finally, we use U2n+1 and the already sampled value of B to sample
Y ; this gives the coupling between B and Y . As for how we construct the pairwise couplings,
it follows from standard facts (see, for example, [14, Exercise 4.12.5]) that we can construct
a coupling of any pair of distributions X1 and X2 so that Pr(X1 �= X2) = 1

2 dist(X1, X2) by
representing X2 as function of X1 and a Uniform(0, 1) random variable that is independent
of X1. We perform all of our pairwise couplings in this way.

Now we define

Z1 = Pr(‖C(x)‖ �= Bx | H(z))

Z2 = Pr(Cx �= Tx | x ∈ T , E1, H(z))

for some x ∈ S; note that the choice of x does not matter. A union bound now gives
Pr(¬E1 | H(z)) ≤ nZ1, and another union bound gives

Pr(∃x ∈ T : Cx �= Tx | |T |, E1, H(z)) ≤ |T |Z2.
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Therefore,

Pr(¬E2 | E1, H(z)) = E
[
Pr(∃x ∈ T : fH(z)(Cx) �= Tx | |T |, E1, H(z)) | E1, H(z)

]
≤ E[|T | | E1, H(z)]Z2

≤ E[|T | | H(z)]Z2

Pr(E1 | H(z))
.

Combining these results gives

E[Pr(¬E1 | H(z)) + Pr(E1 | H(z)) Pr(¬E2 | E1, H(z))]
≤ n E[Z1] + E[|T |Z2]
= n E[Z1] + E[|T |] E[Z2]
= n E[Z1] + λ E[Z2],

where we have used the fact that T and H(z) are independent in our coupling, which implies
that T and Z2 are independent (since Z2 is a function of H(z)).

As for the coupling between the Bin(n, λ/n) random variable B and the Po(λ) random
variable Y , we have Pr(B �= Y) = 1

2 dist(X , Y). A standard result (e.g. [14, Section 4.12])
tells us dist(X , Y) ≤ 2λ2/n. Therefore,

∣∣∣Pr(F) − (
1 − e−λ/k

)k
∣∣∣ = O(n E[Z1] + E[Z2] + 1/n).

It remains to show that E[Z1] = O(γ (n)) and E[Z2] = O(nγ (n)). The proof technique
is essentially the same as in Lemma 4.1. First, we write

E[Z1] = 1

2
E[dist(Bern(λ/n), ‖C(x)‖ | H(z))]

= 1

2

(
E[| Pr(‖C(x)‖ = 0 | H(z)) − 1 + λ/n|] + E[| Pr(‖C(x)‖ = 1 | H(z)) − λ/n|]

+ Pr(‖C(x)‖ ≥ 2)
)

By Lemma 4.1, we have Pr(‖C(x)‖ ≥ 2) = O(γ (n)). For the other two terms, we write

Pr(‖C(x)‖ ≥ 1 | H(z)) = Pr

(⋃
i∈[k]

i ∈ H(x)
∣∣∣ H(z)

)

≤
∑
i∈[k]

Pr(i ∈ H(x) | H(z))

= λ

n
+ O(γ (n))

Random Structures and Algorithms DOI 10.1002/rsa



204 KIRSCH AND MITZENMACHER

and

Pr(‖C(x)‖ ≥ 1 | H(z))

= Pr

(⋃
i∈[k]

i ∈ H(x)
∣∣∣ H(z)

)

≥
∑
i∈[k]

Pr(i ∈ H(x) | H(z)) −
∑

i1<i2∈[k]
Pr(i1 ∈ H(x), i2 ∈ H(x))

≥
∑
i∈[k]

Pr(i ∈ H(x) | H(z))

−

 ∑

i1<i2∈[k]
Pr(i1, i2 ∈ H(x)) + 1(‖H(z)‖ < k)

∑
i∈H(z)

Pr(i ∈ H(x))




≥ λ

n
+ O(γ (n)) − 1(‖H(z)‖ < k)

λ

n
.

Therefore,

Pr(‖C(x)‖ = 1 | H(z)) − λ

n

≤ Pr(‖C(x)‖ ≥ 1 | H(z)) − λ

n
≤ O(γ (n))

and

Pr(‖C(x)‖ = 1 | H(z)) − λ

n

= Pr(‖C(x)‖ ≥ 1 | H(z)) − Pr(‖C(x)‖ ≥ 2 | H(z)) − λ

n

≥ Pr(‖C(x)‖ ≥ 1 | H(z)) + O(γ (n)) − λ

n

≥ O(γ (n)) − 1(‖H(z)‖ < k)
λ

n
.

Thus,

E[| Pr(‖C(x)‖ = 1 | H(z)) − λ/n|] ≤ O(γ (n)) + λ

n
Pr(|H(z)| < k)

≤ O(γ (n)) + λ

n

∑
i∈H

Pr(i, i ∈ H(z))

= O(γ (n)).

Also,

E[| Pr(‖C(x)‖ = 0 | H(z)) − 1 + λ/n|] = E[|λ/n − Pr(‖C(x)‖ ≥ 1 | H(z))|]
≤ E[O(γ (n)) + 1(|H(z)| < k)λ/n]
= O(γ (n)) + λ

n
Pr(|H(z)| < k)
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≤ O(γ (n)) + λ

n

∑
i∈H

Pr(i, i ∈ H(z))

= O(γ (n)).

We have now shown that E[Z1] = O(γ (n)).
To complete the proof, we show that E[Z2] = O(nγ (n)). Now,

E[Z2] = 1

2
E[dist(Uniform([k]), Cx | ‖C(x)‖ = 1, H(z))]

= 1

2

∑
i∈[k]

E[| Pr(Cx = i | ‖C(x)‖ = 1, H(z)) − 1/k|]

= 1

2

∑
i∈[k]

E[| Pr(i ∈ H(x) | ‖C(x)‖ = 1, H(z)) − 1/k|].

We show that for i ∈ [k], we have

E[| Pr(i ∈ H(x) | ‖C(x)‖ = 1, H(z)) − 1/k|] = O(nγ (n)).

Indeed,

Pr(i ∈ H(x), ‖C(x)‖ = 1 | H(z)) ≤ Pr(i ∈ H(x) | H(z))

≤ λ

kn
+ O(γ (n))

and

Pr(i ∈ H(x), ‖C(x)‖ = 1 | H(z))

≥ Pr(i ∈ H(x) | H(z)) − Pr(‖C(x)‖ ≥ 2 | H(z))

≥ λ

kn
+ O(γ (n)).

Furthermore, previous calculations give

| Pr(‖C(x)‖ = 1 | H(z), |H(z)| = k) − λ/n| = O(γ (n)),

and so

E[| Pr(i ∈ H(x) | ‖C(x)‖ = 1, H(z)) − 1/k| | |H(z)| = k]
= E

[∣∣∣∣Pr(i ∈ H(x), ‖C(x)‖ = 1 | H(z))

Pr(‖C(x)‖ = 1 | H(z))
− 1

k

∣∣∣∣ ∣∣∣ |H(z)| = k

]

= E

[∣∣∣∣∣
λ

kn + O(γ (n))
λ

n + O(γ (n))
− 1

k

∣∣∣∣∣
∣∣∣∣ |H(z)| = k

]

= O(nγ (n)).
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Thus,

E[| Pr(i ∈ H(x) | ‖C(x)‖ = 1, H(z)) − 1/k|]
≤ Pr(|H(z)| < k) + E[| Pr(i ∈ H(x) | ‖C(x)‖ = 1, H(z)) − 1/k| | |H(z)| = k]
≤ Pr(|H(z)| < k) + O(nγ (n))

= O(nγ (n)) +
∑
j∈H

Pr(j, j ∈ H(z))

= O(nγ (n)),

completing the proof.

We now use Theorem 6.1 to bound the rate of convergence in Theorems 5.1 and 5.2.

Theorem 6.2. For any partition or (enhanced) double hashing scheme,

∣∣∣Pr(F) − (
1 − e−λ/k

)k
∣∣∣ = O(1/n).

Proof. In the proofs of Theorems 5.1 and 5.2, we show that all of these hashing schemes
satisfy the conditions of Lemma 4.1 with γ (n) = 1/n2. Theorem 6.1 now gives the desired
result.

7. MULTIPLE QUERIES

In the previous sections, we analyzed the behavior of Pr(F(z)) for some fixed z and mod-
erately sized n. Unfortunately, this quantity is not directly of interest in most applications.
Instead, one is usually concerned with certain characteristics of the distribution of the num-
ber of, say, z1, . . . , z� ∈ U − S for which F(z) occurs. In other words, rather than being
interested in the probability that a particular false positive occurs, we are concerned with,
for example, the fraction of distinct queries on elements of U − S posed to the filter for
which it returns false positives. Since {F(z) : z ∈ U − S} are not independent, the behav-
ior of Pr(F) alone does not directly imply results of this form. This section is devoted to
overcoming this difficulty.

Now, it is easy to see that in the schemes that we analyze here, once the hash locations for
every x ∈ S have been determined, the events {F(z) : z ∈ U−S} are independent and occur
with equal probability. More formally, {1(F(z)) : z ∈ U−S} are conditionally independent
and identically distributed given {H(x) : x ∈ S}. Thus, conditioned on {H(x) : x ∈ S}, an
enormous number of classical convergence results (e.g. the law of large numbers and the
central limit theorem) can be applied to {1(F(z)) : z ∈ U − S}.

These observations motivate a general technique for deriving the sort of convergence
results for {1(F(z)) : z ∈ U −S} that one might desire in practice. First, we show that with
high probability over the set of hash locations used by elements of S (that is, {H(x) : x ∈ S}),
the random variables {1(F(z)) : z ∈ U − S} are essentially independent Bern(p) random
variables, for p � limn→∞ Pr(F). From a technical standpoint, this result is the most
important in this section. Next, we show how to use that result to prove counterparts to the
classical convergence theorems mentioned above that hold in our setting.
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Proceeding formally, we begin with a critical definition.

Definition 7.1. Consider any scheme where {H(u) : u ∈ U} are independent and
identically distributed. Write S = {x1, . . . , xn}. The false positive rate is defined to be the
random variable

R = Pr(F |H(x1), . . . , H(xn)).

The false positive rate gets its name from the fact that, conditioned on R, the random
variables {1(F(z)) : z ∈ U − S} are independent Bern(R) random variables. Thus, the
fraction of a large number of queries on elements of U − S posed to the filter for which
it returns false positives is very likely to be close to R. In this sense, R, while a random
variable, acts like a rate for {1(F(z)) : z ∈ U − S}.

It is important to note that in much of literature concerning standard Bloom filters, the
false positive rate is not defined as above. Instead the term is often used as a synonym for
the false positive probability. Indeed, for a standard Bloom filter, the distinction between
the two concepts as we have defined them is unimportant in practice, since, as mentioned
in Section 2, one can easily show that R is very close to Pr(F) with extremely high proba-
bility (see, for example, [20]). It turns out that this result generalizes very naturally to the
framework presented in this paper, and so the practical difference between the two concepts
is largely unimportant even in our very general setting. However, the proof is more compli-
cated than in the case of a standard Bloom filter, and so we will be very careful to use the
terms as we have defined them.

Theorem 7.1. Consider a scheme where the conditions of Lemma 4.1 hold. Furthermore,
assume that there is some function g and independent identically distributed random vari-
ables {Vu : u ∈ U}, each of which is uniformly distributed over some finite set V, such that
for u ∈ U we have H(u) = g(Vu). Define

p = (1 − e−λ/k)k

� = max
i∈H

Pr(i ∈ H(u)) − λ

nk
(= o(1/n))

ξ = nk�(2λ + k�) (= o(1))

Then for any ε = ε(n) > 0 with ε = ω(| Pr(F) − p|), for n sufficiently large so that
ε > | Pr(F) − p|,

Pr(|R − p| > ε) ≤ 2 exp

[−2n(ε − | Pr(F) − p|)2

λ2 + ξ

]
.

Furthermore, for any function h(n) = o(min(1/| Pr(F)−p|, √n)), we have that (R−p)h(n)

converges to 0 in probability as n → ∞.

Remark 4. Since | Pr(F) − p| = o(1) by Lemma 4.1, we may take h(n) = 1 in Theorem
7.1 to conclude that R converges to p in probability as n → ∞.

Remark 5. From the proofs of Theorems 5.1 and 5.2, it is easy to see that for both the
partition and (enhanced) double hashing schemes, � = 0, so ξ = 0 for both schemes as
well.
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Remark 6. We have added a new condition on the distribution of H(u), but it trivially holds
in all of the schemes that we discuss in this paper (since, for independent fully random hash
functions h1 and h2, the random variables {(h1(u), h2(u)) : u ∈ U} are independent and
identically distributed, and (h1(u), h2(u)) is uniformly distributed over its support, which is
finite).

Proof. The proof is essentially a standard application of Azuma’s inequality to an appro-
priately defined Doob martingale. Specifically, we employ the technique discussed in
[21, Section 12.5].

For convenience, write S = {x1, . . . , xn}. For h1, . . . , hn ∈ Supp(H(u)), define

f (h1, . . . , hn) = Pr(F |H(x1) = h1, . . . , H(xn) = hn),

and note that R = f (H(x1), . . . , H(xn)). Now consider some d such that for any h1, . . . , hj,
h′

j, hj+1, . . . , hn ∈ Supp(H(u)),

∣∣f (h1, . . . , hn) − f
(
h1, . . . , hj−1, h′

j, hj+1, . . . , hn

)∣∣ ≤ d.

Since the H(xi)’s are independent, we may apply the result of [21, Section 12.5] to obtain

Pr(|R − E[R]| ≥ δ) ≤ 2e−2δ2/nd2
,

for any δ > 0.
To find an appropriate and small choice for d, we write

∣∣f (h1, . . . , hn) − f
(
h1, . . . , hj−1, h′

j, hj+1, . . . , hn

)∣∣
= | Pr(F |H(x1) = h1, . . . , H(xn) = hn)

− Pr(F |H(x1) = h1, . . . , H(xj−1) = hj−1, H(xj) = h′
j, H(xj+1) = hj+1, . . . H(xn) = hn)|

=

∣∣∣∣∣∣{v ∈ V : g(v) ⊆ ⋃n
i=1 hi

}∣∣− ∣∣∣∣
{

v ∈ V : g(v) ⊆ ⋃n
i=1

{
h′

j i = j
hi i �= j

}∣∣∣∣
∣∣∣∣

|V |
≤ maxv′∈V |{v ∈ V : |g(v) ∩ g(v′)| ≥ 1}|

|V |
= max

M′∈Supp(H(u))
Pr(|H(u) ∩ M ′| ≥ 1),

where the first step is just the definition of f , the second step follows from the definitions
of Vu and g, the third step holds since changing one of the hi’s to some M ′ ∈ Supp(H(u))

cannot change ∣∣∣∣∣
{

v ∈ V : g(v) ⊆
n⋃

i=1

hi

}∣∣∣∣∣
by more than

|{v ∈ V : |g(v) ∩ M ′| ≥ 1}|,
and the fourth step follows from the definitions of Vu and g.
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Now consider any fixed M ′ ∈ Supp(H(u)), and let y1, . . . , y|M′| be the distinct elements
of M ′. Recall that ‖M ′‖ = k, so |M ′| ≤ k. Applying a union bound, we have that

Pr(|H(u) ∩ M ′| ≥ 1) = Pr


|M′|⋃

i=1

yi ∈ H(u)




≤
|M′|∑
i=1

Pr(yi ∈ H(u))

≤
|M′|∑
i=1

λ

kn
+ �

≤ λ

n
+ k�.

Therefore, we may set d = λ

n + k� to obtain

Pr(|R − E[R]| > δ) ≤ 2 exp

[−2nδ2

λ2 + ξ

]
,

for any δ > 0. Since E[R] = Pr(F), we write (for sufficiently large n so that ε > | Pr(F)−
p|)

Pr(|R − p| > ε) ≤ Pr(|R − Pr(F)| > ε − | Pr(F) − p|)
≤ 2 exp

[−2n(ε − | Pr(F) − p|)2

λ2 + ξ

]
.

To complete the proof, we see that for any constant δ > 0,

Pr(|R − p|h(n) > δ) = Pr(|R − p| > δ/h(n)) → 0 as n → ∞,

where the second step follows from the fact that | Pr(F)−p| = o(1/h(n)), so for sufficiently
large n,

Pr(|R − p| > δ/h(n)) ≤ 2 exp

[−2n(δ/h(n) − | Pr(F) − p|)2

λ2 + ξ

]

≤ 2 exp

[
− δ2

λ2 + ξ
· n

h(n)2

]
→ 0 as n → ∞,

and the last step follows from the fact that h(n) = o(
√

n).

Since, conditioned on R, the events {F(z) : z ∈ U − S} are independent and each
occur with probability R, Theorem 7.1 suggests that {1(F(z)) : z ∈ U − S} are essentially
independent Bern(p) random variables. We formalize this idea in the next result, where we
use Theorem 7.1 to prove versions of the strong law of large numbers, the weak law of large
numbers, Hoeffding’s inequality, and the central limit theorem.
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Theorem 7.2. Consider a scheme that satisfies the conditions of Theorem 7.1. Let Z ⊆
U − S be countably infinite, and write Z = {z1, z2, . . .}. Then we have:

1.

Pr

(
lim
�→∞

1

�

�∑
i=1

1(Fn(zi)) = Rn

)
= 1.

2. For any ε > 0, for n sufficiently large so that ε > | Pr(F) − p|,

Pr

(∣∣∣∣∣ lim
�→∞

1

�

�∑
i=1

1(Fn(zi)) − p

∣∣∣∣∣ > ε

)
≤ 2 exp

[−2n(ε − | Pr(F) − p|)2

λ2 + ξ

]
.

In particular, lim�→∞ 1
�

∑�

i=1 1(Fn(zi)) converges to p in probability as n → ∞.
3. For any function Q(n), ε > 0, and n sufficiently large so that ε/2 > | Pr(F) − p|,

Pr

(∣∣∣∣∣ 1

Q(n)

Q(n)∑
i=1

1(Fn(zi)) − p

∣∣∣∣∣ > ε

)
≤ 2e−Q(n)ε2/2

+ 2 exp

[−2n(ε/2 − | Pr(F) − p|)2

λ2 + ξ

]
.

4. For any function Q(n) with limn→∞ Q(n) = ∞ and Q(n) = o(min(1/| Pr(F) −
p|2, n)),

Q(n)∑
i=1

1(Fn(zi)) − p√
Q(n)p(1 − p)

→ N(0, 1) in distribution as n → ∞.

Remark 7. By Theorem 6.2, | Pr(F) − p| = O(1/n) for both the partition and double
hashing schemes introduced in Section 5. Thus, for each of the schemes, the condition
Q(n) = o(min(1/| Pr(F)−p|2, n)) in the fourth part of Theorem 7.2 becomes Q(n) = o(n).

Proof. Since, given Rn, the random variables {1(Fn(z)) : z ∈ Z} are conditionally inde-
pendent Bern(Rn) random variables, a direct application of the strong law of large numbers
yields the first item.

For the second item, we note that the first item implies that

lim
�→∞

1

�

�∑
i=1

1(Fn(zi)) ∼ Rn.

A direct application of Theorem 7.1 then gives the result.
For the third item, we write

Pr

(∣∣∣∣∣ 1

Q(n)

Q(n)∑
i=1

1(Fn(zi)) − p

∣∣∣∣∣ > ε

)

≤ Pr

(∣∣∣∣∣ 1

Q(n)

Q(n)∑
i=1

1(Fn(zi)) − Rn

∣∣∣∣∣ > ε/2||Rn − p| ≤ ε/2

)
+ Pr(|Rn − p| > ε/2)

≤ 2e−Q(n)ε2/2 + 2 exp

[−2n(ε/2 − | Pr(F) − p|)2

λ2 + ξ

]
,
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where the last step follows from Hoeffding’s inequality and Theorem 7.1.
For the fourth item, we write

Q(n)∑
i=1

1(Fn(zi)) − p√
Q(n)p(1 − p)

=
√

Rn(1 − Rn)

p(1 − p)

(
Q(n)∑
i=1

1(Fn(zi)) − Rn√
Q(n)Rn(1 − Rn)

+ (Rn − p)

√
Q(n)

Rn(1 − Rn)

)
.

By Slutsky’s theorem, it suffices to show the following three items:

1. Rn → p in probability as n → ∞,
2. (Rn − p)

√
Q(n) → 0 in probability as n → ∞, and

3.
Q(n)∑
i=1

1(Fn(zi)) − Rn√
Q(n)Rn(1 − Rn)

→ N(0, 1) in distribution as n → ∞.

The first item holds by Remark 4, and the second item holds by Theorem 7.1, since
√

Q(n) =
o(min(1/| Pr(F) − p|, √n)). The third item requires a little more work. First, we need a
version of the central limit theorem that allows us to bound its rate of convergence.

Lemma 7.1. [7, Theorem 24] Let X1, X2, . . . be independent random variables with some
common distribution X, where E[X] = 0 and Var[X] = 1. For n ≥ 1, let Yn = ∑n

i=1 Xi/
√

n.
Then there is some constant a such that for any n ≥ 1 and x ∈ R,

| Pr(Yn ≤ x) − Pr(N(0, 1) ≤ x)| ≤ a E[|X|3]/√n.

Fix some constant ε > 0 so that I � [p − ε, p + ε] ⊆ (0, 1), and let b =
minx∈I

√
x(1 − x) > 0. With Lemma 7.1 in mind, define

Xi(n) = 1(Fn(zi)) − Rn√
Rn(1 − Rn)

.

Since, given Rn, the random variables are independent Bern(Rn) random variables, Lemma
7.1 tells us that for any x ∈ R,

∣∣∣∣∣Pr

(
Q(n)∑
i=1

Xi(n)/
√

Q(n)

)
− Pr(N(0, 1) ≤ x)

∣∣∣∣∣
≤ Pr(|Rn − p| > ε) +

∣∣∣∣∣Pr

(
Q(n)∑
i=1

Xi(n)√
Q(n)

≤ x

∣∣∣∣∣ |Rn − p| ≤ ε

)
− Pr(N(0, 1) ≤ x)

∣∣∣∣∣
≤ Pr(|Rn − p| > ε) + a(1/b)3

√
Q(n)

→ 0 as n → ∞,

where the last step follows from Remark 4.
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Fig. 1. Estimates of the false positive probability for various schemes and parameters.

8. EXPERIMENTS

In this section, we evaluate the theoretical results of the previous sections empirically for
small values of n. We are interested in the following specific schemes: the standard Bloom
filter scheme, the partition scheme, the double hashing scheme, and the enhanced double
hashing schemes where f (i) = i2 and f (i) = i3.

For c ∈ {4, 8, 12, 16}, we do the following. First, compute the value of k ∈
{�c ln 2�, �c ln 2�} that minimizes p = (1 − exp[−k/c])k . Next, for each of the schemes
under consideration, repeat the following procedure 10, 000 times: instantiate the filter with
the specified values of n, c, and k, populate the filter with a set S of n items, and then query
�10/p� elements not in S, recording the number Q of those queries for which the filter
returns a false positive. We then approximate the false positive probability of the scheme
by averaging the results over all 10, 000 trials. Furthermore, we bin the results of the trials
by their values for Q in order to examine the other characteristics of Q’s distribution.

The results are shown in Figures 1 and 2. In Figure 1, we see that for small values of c,
the different schemes are essentially indistinguishable from each other, and simultaneously
have a false positive probability/rate close to p. This result is particularly significant since
the filters that we are experimenting with are fairly small, supporting our claim that these
schemes are useful even in settings with very limited space. However, we also see that for
the slightly larger values of c ∈ {12, 16}, the partition scheme is no longer particularly
useful for small values of n, while the other schemes are. This result is not particularly
surprising; for large values of c and small values of n, the probability of a false positive can
be substantially affected by the asymptotically vanishing probability that one element in the
set can yield multiple collisions with an element not in the set, and this is somewhat larger
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Fig. 2. Estimate of distribution of Q (for n = 5000 and c = 8), compared with f .

in the partition scheme. Nevertheless, the difference is sufficiently small that the partition
scheme might still be worthwhile in practice if parallelism is desired.

As an aside, Dillinger and Manolios [8, 9] observe that as c grows very large, various
enhanced double hashing schemes (including triple hashing, where the gi’s use a third hash
function with a coefficient that is quadratic in the index i) tend to perform slightly better
than the regular double hashing scheme. Their results suggest that the difference is most
likely due to differences in the constants in the rates of convergence of the various schemes.
For the most part, this effect is not noticeable for the Bloom filter configurations that we
consider, which are chosen to capture the typical Bloom filter setting where the false positive
probability is small enough to be tolerable, but still non-negligible.

In Figure 2, we give histograms of the results from our experiments with n = 5000 and
c = 8 for the partition and enhanced double hashing schemes. For this value of c, optimizing
for k yields k = 6, so we have p ≈ 0.021577 and �10/p� = 464. In each plot, we compare
the results to f � 10, 000φ464p,464p(1−p), where

φµ,σ2(x) � e−(x−µ)2/2σ2

σ
√

2π

denotes the density function of N(µ, σ 2). As one would expect, given the central limit
theorem result in the fourth part of Theorem 7.2, f provides a reasonable approximation to
each of the histograms.
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9. A MODIFIED COUNT-MIN SKETCH

We now present a modification to the Count-Min sketch introduced in [6] that uses fewer
hash functions in a manner similar to our improvement for Bloom filters, at the cost of a
small space increase. We begin by reviewing the original data structure.

9.1. Count-Min Sketch Review

The following is an abbreviated review of the description given in [6]. A Count-Min sketch
takes as input a stream of updates (it , ct), starting from t = 1, where each item it is a member
of a universe U = {1, . . . , n}, and each count ct is a positive number. (Extensions to negative
counts are possible; we do not consider them here for convenience.) The state of the system
at time T is given by a vector �a(T) = (a1(T), . . . , an(T)), where aj(T) is the sum of all ct

for which t ≤ T and it = j. We generally drop the T when the meaning is clear.
The Count-Min sketch consists of an array Count of width w � �e/ε� and depth d �

�ln 1/δ� : Count[1, 1], . . . , Count[d, w]. Every entry of the array is initialized to 0. In
addition, the Count-Min sketch uses d hash functions chosen independently from a pairwise
independent family H : {1, . . . , n} → {1, . . . , w}.

The mechanics of the Count-Min sketch are extremely simple. Whenever an update (i, c)
arrives, we increment Count[j, hj(i)] by c, for j = 1, . . . , d. Whenever we want an estimate
of ai (called a point query), we compute

âi �
d

min
j=1

Count[j, hj(i)].

The fundamental result of Count-Min sketches is that for every i,

âi ≥ ai and Pr(âi ≤ ai + ε‖�a‖) ≥ 1 − δ,

where the norm is the L1 norm. Surprisingly, this very simple bound allows for a number
of sophisticated estimation procedures to be efficiently and effectively implemented on
Count-Min sketches. The reader is once again referred to [6] for details.

9.2. Using Fewer Hash Functions

We now show how the improvements to Bloom filters discussed previously in this paper can
be usefully applied to Count-Min sketches. Our modification maintains all of the essential
features of Count-Min sketches, but reduces the required number of pairwise independent
hash functions to 2�(ln 1/δ)/(ln 1/ε)�. We expect that, in many settings, ε and δ will be
related, so that only a constant number of hash functions will be required; in fact, in many
such situations only two hash functions are required.

We describe a variation of the Count-Min sketch that uses just two pairwise independent
hash functions and guarantees that

âi ≥ ai and Pr(âi ≤ ai + ε‖�a‖) ≥ 1 − ε.

Given such a result, it is straightforward to obtain a variation that uses 2�(ln 1/δ)/(ln 1/ε)�
pairwise independent hash functions and achieves the desired failure probability δ: simply
build 2�(ln 1/δ)/(ln 1/ε)� independent copies of this data structure, and always answer a
point query with the minimum estimate given by one of those copies.
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Our variation will use d tables numbered {0, 1, . . . , d − 1}, each with exactly w counters
numbered {0, 1, . . . , w − 1}, where d and w will be specified later. We insist that w be
prime. Just as in the original Count-Min sketch, we let Count[j, k] denote the value of the
kth counter in the jth table. We choose hash functions h1 and h2 independently from a
pairwise independent family H : {0, . . . , n − 1} → {0, 1, . . . , w − 1}, and define gj(x) =
h1(x) + jh2(x) mod w for j = 0, . . . , d − 1.

The mechanics of our data structure are the same as for the original Count-Min sketch.
Whenever an update (i, c) occurs in the stream, we increment Count[j, gj(i)] by c, for
j = 0, . . . , d − 1. Whenever we want an estimate of ai, we compute

âi �
d−1
min
j=0

Count[j, gj(i)].

We prove the following result:

Theorem 9.1. For the Count-Min sketch variation described above,

âi ≥ ai and Pr(âi > ai + ε‖�a‖) ≤ 2

εw2
+
(

2

εw

)d

.

In particular, for w ≥ 2e/ε and δ ≥ ln 1/ε(1 − 1/2e2),

âi ≥ ai and Pr(âi > ai + ε‖�a‖) ≤ ε.

Proof. Fix some item i. Let Ai be the total count for all items z (besides i) with h1(z) = h1(i)
and h2(z) = h2(i). Let Bj,i be the total count for all items z with gj(i) = gj(z), excluding i
and items z counted in Ai. It follows that

âi = d−1
min
j=0

Count[j, gj(i)] = ai + Ai + d−1
min
j=0

Bj,i.

The lower bound now follows immediately from the fact that all items have nonnegative
counts, since all updates are positive. Thus, we concentrate on the upper bound, which we
approach by noticing that

Pr(âi ≥ ai + ε‖�a‖) ≤ Pr(Ai ≥ ε‖�a‖/2) + Pr
(

d−1
min
j=0

Bj,i ≥ ε‖�a‖/2

)
.

We first bound Ai. Letting 1(·) denote the indicator function, we have

E[Ai] =
∑
z �=i

az E[1(h1(z) = h1(i) ∧ h2(z) = h2(i))] ≤
∑
z �=i

az/w2 ≤ ‖�a‖/w2,

where the first step follows from linearity of expectation and the second step follows from
the definition of the hash functions. Markov’s inequality now implies that

Pr(Ai ≥ ε‖�a‖/2) ≤ 2/εw2.

To bound mind−1
j=0 Bj,i, we note that for any j ∈ {0, . . . , d − 1} and z �= i,

Pr((h1(z) �= h1(i) ∨ h2(z) �= h2(i)) ∧ gj(z) = gj(i)) ≤ Pr(gj(z) = gj(i))

= Pr(h1(z) = h1(i) + j(h2(i) − h2(z)))

= 1/w,
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so

E[Bj,i] =
∑
z �=i

az E[1((h1(z) �= h1(i) ∨ h2(z) �= h2(i)) ∧ gj(z) = gj(i))] ≤ ‖�a‖/w,

and so Markov’s inequality implies that

Pr(Bj,i ≥ ε‖�a‖/2) ≤ 2/εw.

For arbitrary w, this result is not strong enough to bound mind−1
j=0 Bj,i. However, since w is

prime, each item z can only contribute to one Bk,i (since if gj(z) = gj(i) for two values of j,
we must have h1(z) = h1(i) and h2(z) = h2(i), and in this case z’s count is not included in
any Bj,i). In this sense, the Bj,i’s are negatively dependent (specifically, they are negatively
right orthant dependent) [11]. It follows that for any value v,

Pr
(

d−1
min
j=0

Bj,i ≥ v

)
≤

d−1∏
j=0

Pr(Bj,i ≥ v).

In particular, we have that

Pr
(

d−1
min
j=0

Bj,i ≥ ε‖�a‖/2

)
≤ (2/εw)d ,

so

Pr(âi ≥ ai + ε‖�a‖) ≤ Pr(Ai ≥ ε‖�a‖/2) + Pr
(

d−1
min
j=0

Bj, i ≥ ε‖�a‖/2

)

≤ 2

εw2
+
(

2

εw

)d

.

And for w ≥ 2e/ε and δ ≥ ln 1/ε(1 − 1/2e2), we have

2

εw2
+
(

2

εw

)d

≤ ε/2e2 + ε(1 − 1/2e2) = ε,

completing the proof.

10. CONCLUSION

Bloom filters are simple randomized data structures that are extremely useful in practice.
In fact, they are so useful that any significant reduction in the time required to perform a
Bloom filter operation immediately translates to a substantial speedup for many practical
applications. Unfortunately, Bloom filters are so simple that they do not leave much room
for optimization.

This paper focuses on modifying Bloom filters to use less of the only resource that they
traditionally use liberally: (pseudo)randomness. Since the only nontrivial computations
performed by a Bloom filter are the constructions and evaluations of pseudorandom hash
functions, any reduction in the required number of pseudorandom hash functions yields
a nearly equivalent reduction in the time required to perform a Bloom filter operation
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(assuming, of course, that the Bloom filter is stored entirely in memory, so that random
accesses can be performed very quickly).

We have shown that a Bloom filter can be implemented with only two random hash
functions without any increase in the asymptotic false positive probability. We have also
shown that the asymptotic false positive probability acts, for all practical purposes and
reasonable settings of a Bloom filter’s parameters, like a false positive rate. This result has
enormous practical significance, since the analogous result for standard Bloom filters is
essentially the theoretical justification for their extensive use.

More generally, we have given a framework for analyzing modified Bloom filters, which
we expect will be used in the future to refine the specific schemes that we analyzed in this
paper. We also expect that the techniques used in this paper will be usefully applied to other
data structures, as demonstrated by our modification to the Count-Min sketch.
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