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ABSTRACT
Modern search engines provide contextual information sur-
rounding query entities beyond ten blue links in the form of
information cards. Among the various attributes displayed
about entities there has been recent interest in providing fun
facts. Obtaining such trivia at a large scale is, however, non-
trivial: hiring professional content creators is expensive and
extracting statements from theWeb is prone to uninteresting,
out-of-context and/or unreliable facts.
In this paper we show how fun facts can be mined from

superlative tables in Wikipedia, whose rows are ranked ac-
cording to some statistics, to provide a large volume of reli-
able and interesting content. We employ a template-based
approach to semi-automatically generate natural language
statements as fun facts. We show how to bootstrap and
streamline the process for faster and cheaper task completion.
However, the content contained in these tables is dynamic.
Therefore, we address the problem of automatically main-
taining the pairing of templates to tables as the tables are
updated over time. Fun facts produced by our work is now
part of Google’s production search results.
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1 INTRODUCTION
Displaying interesting trivia, or fun facts, is a strategy in-
creasingly employed by search apps to increase user engage-
ment. One way to surface these in search results is through
information cards such as Google Knowledge Panels, Bing
Satori, or Yahoo! Knowledge, for entity-seeking queries; see
Figure 1 for an example.
Efforts to mine fun facts from the Web, rather than hir-

ing professionals to curate material, are motivated not only
by cost and scalability—the throughput reported in [17]
was 50 trivia statements per day—but also reliability (facts
must be sourced from accurate material, self-contained and
phrased precisely) and freshness (facts can easily become
stale). Hence, there have been attempts to automate this
process. An early attempt was based on selecting (unstruc-
tured) text in IMDb pages using domain-specific training
data [17]. Unfortunately, text extraction is prone to pulling
statements out of context, as demonstrated in [23], due to
challenging issues like multi-sentential co-reference resolu-
tion. Wikipedia has thus served as a rich source for gener-
ating fun facts due to its associated structured data, such
as triples extracted from entity pages [8, 18, 19] and cate-
gory lists at the bottom of pages [23]. As (non-comparative)
examples, the former could generate a statement like, The
movie Frozen was produced by Peter Del Vecho from the triple
(Frozen,produced_by, Peter_Del_Vecho) whereas the latter
could generate Frozen is in the category of “feminist films”.

Until now, and complementary to these existing approaches,
relational tables [3] on Wikipedia pages have been an un-
tapped resource. Yet, unlike these previous approaches, tables
are able to capture the uniqueness and importance of an en-
tity in relation to other entities. An example, again for the
movie entity Frozen, is the statement Frozen is the highest-
grossing animated film of all time. Generating fun facts from
relational tables leads to an abundance of interesting trivia
statements without the same pitfalls that these previous ap-
proaches face (extracting sentences out of context, choosing
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Figure 1: Example facticle at the bottom of the Google
Knowledge Panel for the movie Frozen

unexceptional or esoteric facts, etc.) and, as we demonstrate
in Section 6, users prefer them.
In this paper, we present details from our approach for

generating natural language trivia statements from relational
tables in Wikipedia. Given the popularity of ranked lists
(“listicles”) and entity comparisons (e.g., [22]), we focus on
superlative tables as a natural source of interesting facts; we
call the resulting statements facticles (for facts from tables).
Our contributions are as follows:
• We show how to identify from Wikipedia a large number
of relational tables, and attributes within each table, that
are an excellent source for generating fun facts.

• We propose a templated approach that, when instantiated
using table data, automatically generates many fun facts
from a single table. This approach is reusable for any
update to the table data (i.e., non-schematic), such as row
reorderings due to changes in measure values, and can
thus stay up-to-date and avoid making stale statements.

• Wepropose two general classes of templates—rank-ordered
and distributional—that lead to interesting sentenceswhen
instantiated with table data.

• We give a semi-automated method for turning structured
facts from tables into natural language templates. Start-
ing from a small collection of curated templates, each
corresponding to a table, we developed a language model
that accurately, though not perfectly, derives templates
for new and unseen tables. Modifying these templates
into grammatically correct natural language requires only

lightweight work and, therefore, can be done cheaply and
efficiently (e.g., via a crowdsourcing system like AMT).

• We propose a method for dynamically maintaining (table,
template) pairings over time that gracefully handles ta-
ble schema changes like column header renamings and
column reorderings.

• We present experiments demonstrating that the fun facts
generated by our approach are interesting to users and
preferable to those by existing approaches; the manual
effort to inspect and correct our templates is low; and
our ability to correctly pair tables and templates over
time is good, resulting in very few false-positives and
false-negatives.

• All those characteristics of the system enabled facticles to
be launched into the production search results of Google
(as depicted in Figure 1) and serves tens of millions of
users per day.

Figure 2: Pipeline for generating facticles

Figure 2 depicts the pipeline once training data has been
collected (see Section 4.1) and a template generation model
has been trained (see Section 4.2). Given an input table cor-
pus, the model initially generates candidate templates based
on the views described in Section 3, which are then manu-
ally edited upfront. The table-template correspondences are
maintained dynamically over time (see Section 5) and peri-
odically instantiated based on the tables to generate English
sentences. At serving time, the (pre-computed) sentences are
indexed by entity and surfaced on query. Section 6 provides
experimental evidence of the interestingness of facticles, the
accuracy of our templated approach and the effectiveness
of table tracking. Section 2 summarizes related work and
Section 7 gives our conclusions.

2 RELATEDWORK
Approaches for mining trivia fall into two general categories:
those that extract sentences from unstructured text corpora
and those that generate sentences from structured data. Be-
low we discuss the corpora employed and methods used for
extracting or generating statements by these approaches.
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Among unstructured approaches, the WTM algorithm
from [17] employs a supervised learning model (Rank SVM),
using crowd-voted IMDB trivia section sentences as training
data, to find the top-k interesting sentences from aWikipedia
movie pages based on linguistic features. A major pitfall of
this approach is that sentences may not be self-contained and
often do not make sense when pulled out of context due to co-
reference, etc. Among structured approaches, [23] exploits
hypernym categories located at the bottom of Wikipedia
pages and selects based on “surprise” (the entity X is an
outlier for the category) and “cohesiveness” (the category Y
contains a limited variety of entities) to generate statements
of the form “X is a member of Y ”.
Natural Language Generation (NLG) is the problem of

transforming structured data, such as RDF triples, into human-
comprehensible text [15], as opposed to Information Extrac-
tion (IE), which extracts structured relations from natural
language (cf., [20]). Within this thread, [18] and [8] employ
recurrent neural networks to transduce a Freebase triple into
natural language questions for which the triple (“fact”) would
provide an answer to its corresponding generated question.
The resulting text, however, are intended to be factoids, not
trivia, sometimeswithmultiple correct answers (e.g., “What’s
the name of a place within Illinois?”) and are not specifically
generated based on interestingness. [11] uses a neural ap-
proach to generate biographical text from name-value pairs
of a single entity’s Wikipedia Infobox. [24] generates de-
scriptions of entity relationships, for a given relationship
instance, using Freebase and a set of relationship instances
combined with their descriptions based on Wikipedia arti-
cles; for example, starsInFilm(Brad Pitt, Troy) could
be used to generate the sentence “Brad Pitt appeared in the
American epic adventure film Troy.” It does this by first cre-
ating sentence templates for a particular relationship and
then generates each textual description by selecting the best
template and filling it with appropriate entities. [19] shows
how to transform questions into multiple-choice form and
how to select distractors (choices besides the correct answer)
based on level of difficulty.
To the best of our knowledge, the only prior work for

generating trivia from tables is [12], which randomly chooses
relational operators for iterative composition, and randomly
chooses attributes and values from the table for instantiation,
ordering candidates based on selectivity as well as domain-
specific heuristics (e.g., Best Picture is a good attribute for a
movie table); the result is a relational expression instead of a
natural sentence. Unfortunately, no details about candidate
scoring or experimental results were reported in [12].

Finally, we mention a few related problems with different
goals. In table answering, a keyword query is posed and the
goal is to extract an answer, from a corpus of tables, returned
as a scalar/tuple or a set/table, depending on how many

Table 1: List of Tallest Buildings in the World
Rank Building Country Height(m) Height(ft) Floors
1 Burj Khalifa UAE 828 2717 163
2 ShanghaiTower China 632 2073 128
3 Abraj Al-Bait Saudi 601 1971 120
4 Ping An China 599 1965 115
5 Lotte World Korea 554.5 1819 123

answers there are to the question and whether auxilliary
attributes should be returned [2, 14, 16]. Data verbalization
and narrative writing have the goal of providing short textual
descriptions or summaries of a dataset, such as reporting
important events of a sports game or providing an overall
outcome using box-scores [1, 25]. Textual explanation aims
to translate the query into a natural language narrative given
a specified structured (SQL) query [9, 10, 21]. Reading com-
prehension question generation has the goal of generating
questions to test the reader’s understanding of a given text
passage such as a sentence [5].

3 DEFINITIONS AND VIEW CLASSES
In this section, we propose two general template view classes
that, when instantiated with a specific entity, can generate
interesting facts about the entity in relation to others. The
rank-ordered view class describes how exceptional an entity
is compared to other entities in a given set, with respect to
some given ordered attribute, and the distributional view
class describes how exclusive an entity is compared to the
other entities with respect to membership of some given
unordered attribute value.
For illustration purposes, Table 1 shows an example su-

perlative table with schema (Rank, Building, Country,
Height(m), Height(ft), Floors).1 Each row of the ta-
ble can be thought of as corresponding to a single entity
(in this case, a building) with the columns containing at-
tribute values for each respective entity. We make use of
several important columns:member column,measure column,
and category column. Member column gives the names of
the per-row entities in the table and can be thought of as
functionally determining most of the other attribute values.
Measure column provides a numeric value that is important
to what the table summarizes. Finally, category column par-
titions the entities into groups. For example, in Table 1, the
member column would be Building, the measure column
could be either Height(m) — height measured in meters —
or Height(ft) — height measured in feet, and a category
column would be Country.

We assume a table has exactly one member column, since
that is the case formost tables of interest, and identify it using
signals like the presence of anchored or inferred entities, the

1 https://en.wikipedia.org/wiki/List_of_tallest_buildings#
Tallest_buildings_in_the_world_(350_m+)
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non-existence of temporal or numeric values, and the column
position within table, as well as techniques from [2, 4].

3.1 Preliminaries
A superlative table contains one column pertaining to amem-
ber attribute and at least one column pertaining to a measure
attribute, and can be rank-ordered according to values in
the measure attribute.2 An entity class name is a word or
phrase describing a set of entities. For example, “skyscrapers”
and “buildings in the world” are both valid class names for
the entities in the member column in Table 1. A superla-
tive measure phrase, or superlative for short, is the adjective
phrase describing the extrema of values in the measure col-
umn. For example, a superlative describing the building with
maximum height in Table 1 is the word “tallest”. A measure-
ment unit is a term used to describe the units along which
the measure attribute values are ranked. For example, the
measurement unit for attribute Height(m) is “meters”. A cat-
egorical attribute is a (typically unordered) column from the
table that is not a member or measure attribute and can be
used to partition the rows by the distinct values into groups.
For example, Country is a categorical attribute in Table 1.

3.2 View Definitions
Definition 1. A rank-ordered view takes a tuple ⟨member ,

measure⟩, optional selectors {⟨selectori ,σi ⟩}, and parameter
k , and applies the query

SELECT member ,measure FROM T

[WHERE selector1 = σ1 AND . . . AND selectorℓ = σℓ]

ORDER BY measure [DESC] LIMIT k

to some tableT , with descendingmarker optionally added based
on the detected order of values for the measure column. □

For example, a simple top-k view from Table 1 is SELECT
Building, Height FROM T ORDER BY Height DESC LIMIT
5, for k = 5, since the member attribute is Building and the
measure attribute is Height. In the following section we
discuss how this view can be used to generate the template
[$entity] is the [$rank] [$superlative] [$entity_class]

where, for this table, the superlative is “tallest” and the entity
class could be “buildings in the world”; hence this template
can then be instantiated using a single row from the table,
producing statements such as “Shanghai Tower is the 2nd
tallest building in the world.” from the second row.

As another example, using ⟨Country,China⟩ as a selector
and k = 5, we can generate a selective top-k view as SELECT
Building, Height(m) from T WHERE Country = ‘China’

2 In practice, we may not require a strict monotonic ordering of values
along the measure attribute column but rather that, say, at least the first
k values are monotonic, or that no more than k inversions can occur, to
compensate for data quality issues in the table row ordering.

ORDER BY Height(m) DESC LIMIT 5. This view can be used
to generate the template

[$entity] is the [$rank] [$superlative]

[$entity_class] with Country China

which can then be instantiated using the category value
China as “Shanghai Tower is the tallest building with country
China.”

While the actual value of k is subjective, in production we
use k = 10 given the prevalence of Top-10 lists.

Definition 2. A distributional view takes a tuple ⟨member ,
cateдory⟩, with optional selectors {⟨selectori ,σi ⟩}, and defines
the view V as

SELECT cateдory, COUNT(*) as count FROM T

[WHERE selector1 = σ1 AND . . . AND selectorℓ = σℓ]

GROUP BY cateдory

and then applies the query
SELECT T.category, T.member, V.count

FROM T JOIN V ON T.category=V.category □

For example, using Country as the grouping category at-
tribute, the distributional view on Table 1 would be based on
SELECT Building, COUNT(*) FROM T GROUP BY Country.
In the following section we discuss how this view can be
used to generate the template

[$entity] is one of [$count] [$superlative] [$entity_class]

with [$category_name] [$category_value]3

which could then be instantiated using the category value
China, the [$count] of tuples selected using this group and
the number [$N] of tuples from Table 1, as “2 of the 5 tallest
buildings in the world have CountryChina, including Shang-
hai Tower.”

While choosing a threshold for reporting interesting distri-
butional observations is subjective, we make use of entropy
as follows: for each category attribute from the table T, we
compute its normalized entropy − 1

logN
∑

i (ci/N ) log(ci/N ),
where ci is the count of each category value i , and N =

∑
i ci .

Intuitively, a category attribute with lower entropy (non-
uniform) is preferred. Based on trial-and-error, we chose a
category attribute for the distributional view in production
only when its normalized entropy was < 0.75.

3.3 Extension to View Combinations
If there are multiple measure columns includingmeasure1
andmeasure2 in the same table, such as Height and Floors
in Table 1, then rank-ordered views on ⟨member ,measure1⟩
and ⟨member ,measure2⟩ can be combined using the phrase
3An alternative phrasing that we use is
[$count] of the [$N] [$superlative] [$entity_class] have
[$category_name] [$category_value], including [$entity]
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“as well as”, for example, “Lotte World is the 3rd tallest build-
ing by height as well as the 5th tallest building by number of
floors.” Combining two distributional views we can get “Ping
An is one of the 3 tallest buildings in China as well as one
of the 2 tallest buildings in Shanghai.” Measure columns in
different but compatible tables (over the same set of entities)
can similarly be combined. For example, using the Wikipedia
“List of Tallest Freestanding Structures” table whose schema
includes attributes Name, Pinnacle height, Country and
City, in combination with Table 1, we can obtain “Shanghai
Tower is the 2nd tallest building as well as the 3rd tallest
freestanding structure.” We employ embedding similarity
from corresponding components in the clauses to avoid in-
coherence between clauses, as described in Section 4.2.

4 TEMPLATE GENERATION
In Section 3, we introduced views that can be used to generate
natural language sentences. In this section, we discuss the
intermediate step of how to transform views into templates
which can then be instantiated using data from the table to
generate human-readable sentences, i.e., facticles.

4.1 Table selection
The first step in generating facticles is to find high-quality
and interesting tables on the Web. While the top-k view is
geared towards superlative tables, the distributional view
in principle could apply to any distribution of category val-
ues. Identifying interesting columns for an arbitrary distribu-
tional view, however, is challenging; ones from superlative ta-
bles indicate potential influence or correlation on the superla-
tive measure and hence are likely to be interesting. Creating
superlative views on non-superlative tables is one direction
we considered but eventually discarded for production—it is
confusing for a user to see a facticle generated based on a
table that cannot be found from the original source.
We started from Wikipedia’s “Lists of Superlatives” cat-

egory page8, which organizes pages into a hierarchy, and
selected roughly 350 of the most popular (leaf-level) pages by
PageRank score. We processed all tables from these pages to
identify member and measure columns and generated simple
rule-based templates from them, of the raw form described
in the previous section, by using the title as a stand in for the
superlative and entity class. These templates were examined
by multiple highly-skilled editors that we hired, who used

4https://en.wikipedia.org/wiki/List_of_best-
selling_Christmas_singles_in_the_United_States#Best-
selling_Christmas_singles
5wikipedia.org/wiki/List_of_heaviest_land_mammals#Heaviest_land_mammals
6https://en.wikipedia.org/wiki/Fourteener#Fourteeners
7https://en.wikipedia.org/wiki/List_of_cities_and_towns_in_Iceland#Cities

8 https://en.wikipedia.org/wiki/Category:Lists_of_superlatives

Google Search throughout to understand the tables better
and look up terms and then collaboratively refined them for
readability. Most templates needed some modification and
some needed a significant amount, with the per-template
editing time ranging from about 30 seconds to ten minutes.
In total, the task took roughly 80 person hours. These cu-
rated templates, and the tables corresponding to them, were
then used as training data.

4.2 Natural Language Template Generation
Given a view, we generate templates using a language model
that takes tablemetadata and tries to predict various template
components from the view. For example, in Table 1, the top-k
view

[$entity] is the [$rank] [$superlative] [$entity_class]

translates to the template:

[$entity] is the [$rank] tallest building9

where [$entity] and [$rank] are variables that are bound
to the member value and sequence number of a given row,
respectively. The components we need here include the en-
tity class name “buildings”, which is pertinent to the member
column, and the superlative word “tallest”, which is pertinent
to the measure column and corresponds to the view clause
ORDER BY Height DESC.
In addition, for any selection (or grouping, in the case of

distributional views), we also generate a phrasal verb com-
ponent corresponding to the clause WHERE selectori = σi .
Again using table 1 as an example, the selective top-k view
[$entity] is the [$rank] tallest building with
Country [$Country] translates to the following template
where the selection predicate is replaced with a more natural
version:

[$entity] is the [$rank] tallest building

that is in [$Country]

where the relationship between the entity classes “buildings”
and “countries” is described using the phrasal verb “is in”,
corresponding to the clause WHERE Country = [$Country];
for the selective view, but not for the distributional view,
we further prepend the word “that”. The entity classes are
also used for conjugating the verb, by making use of infor-
mation from the parser about singular vs plural, current
vs past tense, etc., so that, for example, a single building
would use the phrasal verb “is in” whereas multiple build-
ings would use “are in”. Note the selection clause translation
easily extends to distributional views, e.g., the distributional

9In addition, we generate a suffix containing the measurement value along
with its unit of measurement, e.g., ([$measure_value] copies of work
sold).
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Table 2: Examples of superlative phrases that are extracted from the title or inferred from metadata

Title Superlative Phrase Extracted or Inferred
Best-selling Christmas singles in the United States4 best-selling Extracted

Heaviest land mammals5 heaviest Extracted
Fourteeners of the United States6 highest Inferred

Cities and towns in Iceland7 most populous Inferred

view [$count] of the [$N] tallest buildings have
Country [$Country] would translate to:
[$count] of the [$N] tallest buildings are in [$Country]

For each view class, we infer the various components
needed by using features extracted from the table including
titles, column headers, cell contents and surrounding text. In
what follows we describe the process by which we generate
these components.

4.2.1 Superlative Component. Table 2 gives examples of
the correctly identified superlative phrases for each corre-
sponding table. In cases where the superlative can be ex-
tracted directly from the title, it can usually be identified
using the SyntaxNet parser10 with Part-of-Speech tags for
superlative adjectives (JJS) and adverbs (RBS). In cases where
the title does not contain a superlative, we need an inference
model for the superlative phrases. We analyzed a set of 1.1K
tables and found that 53.3% of the tables require inference
for the superlative phrase.

For example, the Wikipedia table “List of cities and towns
in Iceland” is ranked by population and without considering
the measure attribute we would only be able to say that the
entities in the table are cities or towns in Iceland, which
is incomplete and not particularly interesting. Instead, we
make use of table metadata including the title, cell contents
and column header name of the measure attribute whose
values determine the ranking (which in this case is “2016
population”), to derive the superlative phrase “most popu-
lous”.

Inference Model. We use both syntactic features and
semantic features to build the inference model:
• Superlative phrase extracted from the table title. This
feature is the most indicative but is not available for most
of the tables;

• Root word identified from the title using the SyntaxNet
parser, which indicates the main topic described in the
table (e.g., the root word is “fourteeners” for the table title
“Fourteeners of the United States”);

• Bag-of-words vector for the member attribute column
name (e.g., “Mountain Peak” for the fourteeners table);

• Bag-of-words vector for the measure attribute column
name (e.g., “Elevation” for the fourteeners table);

10 https://github.com/tensorflow/models/tree/master/research/syntaxnet

• Bag-of-words vector for the table title;
• Hypernyms corresponding to entities identified in the
member attribute column values after performing en-
tity linking on the text (e.g., the hypernym is /collec-
tion/mountains after performing entity linking on cell
contents from the member attribute column: “Denali”,
“Mount Saint Elias”, etc.);

• Embedding features obtained from table metadata (mem-
ber attribute column name, measure attribute column
name, title, surrounding text, etc.) after using a parser
to segment the text into words and then mapping to
word2vec embeddings trained on the Google News cor-
pus11. Sentence-level featureswere obtained from aweighted
sum over the word embeddings using corpus-based tf-idf
weights. The embedding features provide better connec-
tions between semantically similar topics where the texts
do not overlap, e.g., "fourteeners" and "peaks", "height"
and "elevation".

Note that it is possible that some of the features described
above are non-descriptive or noisy. For example, in some
cases the member column name is simply Name or Title for
many different topics. Hence, it is important to combine all
these features for a better prediction.
We modeled the prediction as a multi-class classification

problem, where the label classes are all the possible superla-
tive phrases in the templates. The model yields a probability
estimate along with the predicted superlative phrase; we
tried simply taking the phrase with highest probability and
that worked reasonably well though reasoning over multiple
candidate superlatives may be beneficial in some cases.
For the extension to view combinations, we employed

techniques from above to avoid incoherence between clauses.
Each clause is mapped to a pretrained word2vec embedding
weighted by corpus-based tf-idf scores and any paired clauses
with cosine similarity below 0.7 were pruned.

4.2.2 Phrasal Verb Component. For the selective and dis-
tributional views, we also need to predict a phrasal verb

11https://code.google.com/archive/p/word2vec/
12https://en.wikipedia.org/wiki/List_of_best-selling_books
13https://en.wikipedia.org/wiki/List_of_best-
selling_Xbox_360_video_games#
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Table 3: Examples of phrasal verb components inferred from tables

Title Phrasal Verb Category Column Name
Best-selling fiction authors are Citizenship
Best-selling fiction authors wrote their works in Original language

Best-selling books12 are written in Original language
Best-selling Xbox 360 video games 13 are published by Publisher
Best-selling Xbox 360 video games are Genre

describing the relationship between the member and cate-
gory columns. Table 3 gives some examples of phrasal verbs
for various tables. Note the sensitivity of the phrasing of the
relationship to the entity classes. For example, for the table
of best-selling books rather than authors, no longer does the
phrase “wrote their works in” make sense for the same cate-
gory attribute Original_language; this would need to be
replaced with “are written in”.

Inference Model. Similar to the superlative prediction
model, for phrasal verb prediction we also utilize features
like column names, hypernyms and text embeddings, except
that the features are extracted from both sides of the phrasal
verb, specifically, the entity classes of the member attribute
column and category attribute column, respectively. We used
a multi-class model with the classes corresponding to phrasal
verbs with the following types of features.

• Text features for themain entity class, or topic, of the table,
including root word (identified from the title using the
SyntaxNet Parser), bag-of-words vector for the member
column name, and hypernyms corresponding to entities
identified in the member column values;

• Text features for the category attribute, including bag-
of-words vector for the category column name, and hy-
pernyms corresponding to the entities identified in the
category column values.

We include the text embeddings as well for the member
column name and category column name to alleviate the
data sparsity problem from bag-of-words representations.

5 DYNAMIC MAINTENANCE
Pairing templates with tables is necessary for being able
to instantiate them into facticles. Moreover, pairing with
the most recent version of each table is crucial for keeping
facticles up to date. For many Wikipedia tables with open
edit access, especially those that are superlative tables, the
table data is likely to exhibit changes over time: measure
values get updated, rows are inserted or deleted. As a result
of this, (possibly many) rows get reordered. There are also
occasionally table schema changes: columns get renamed,
reordered, inserted and deleted. Rarely, there are even more
complicated changes, like columns being split or merged,
multiple tables being merged into one or a large table being

split into multiple small ones. Such changes are important to
detect not only for table tracking; in some cases, they require
the template to be revised.
Our approach is to re-instantiate templates for any up-

dated tables. Unfortunately, tables in Wikipedia do not have
unique identifiers that would enable tracking them across
time in the presence of updates. Note that while tables rarely
move across pages (excepting for canonical URL renames),
there is still a significant challenge in tracking tables from
the same page since pages often contain multiple tables;
therefore, page URL is not a viable identifier. We considered
trying to make use of Wikipedia revision history logs for
this but changes between two Wikipedia page snapshots
must be inferred using a differencing algorithm14 and no
fine-grained provenance is kept. Table sequence number is
not of much help either: the nth table on a page at one epoch
frequently does not correspond to the nth table on the same
page at a different epoch, as tables get inserted, deleted and
moved around within the page. The table schema is also
unreliable for maintaining correspondence between tables
across epochs since multiple tables on the same page may
have the same schema and a minor schema change could
make two versions of the same table look distinct.
All these make tracking tables very challenging. Fortu-

nately, it is rare that changes between two consecutive epochs
of the same table (e.g., within a few days of each other) com-
prise a large fraction of the table. In our experiments, while
on average 10% of the tables have at least one cell value
changed from one epoch to another, only 0.23% of those
changes exhibited a similarity below 0.5 based on the func-
tion we define below. Thus, in practice this does not require
solving the notoriously difficult schema mapping problem.

5.1 Table Tracking
Our goal is to find the freshest version of each given table
over time. As a proxy, we do this by dynamically maintain-
ing each table’s semantic counterpart and employ approxi-
mate matching techniques. Specifically, we propose a simple
schema-agnostic similarity function between two tables that
is invariant to row and column ordering but assumes that

14https://en.wikipedia.org/wiki/User:Cacycle/wikEdDiff
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most of the cell values remain the same between two con-
secutive epochs. To allow for row and column reorderings,
we define similarity sim(S,T ), between source and target
tables S andT , using multiset intersection of their respective
cell values. However, naively “flattening” all data cells of a
table into a multiset allows cells from arbitrary rows and
columns of tables to be equated, thus conflating semantic
types. Therefore, we place limits on which cell values can be
compared using two mechanisms that we describe as follows.
First, we restrict all cell values along any one column of

the source table to be compared against only cell values from
a single column in the target table. Then we find a mapping
between columns in the source and target tables that max-
imizes overlap. Source and target columns are modeled as
nodes in a complete bipartite graph, with edge weights cor-
responding to multiset intersection cardinalities; an optimal
assignment can be solved efficiently using the Hungarian
algorithm [7, 13].
Second, we anchor each non-member cell value c to the

associated member column valuem from the same row and
form a multiset over the ordered pairs (m, c). In cases where
we are able to detect rank columns, we keep them as single-
tons and do not form such pairs. By disallowing arbitrary cell
permutations in the column matching, we avoid spurious
matches, which are prone to occur with columns over widely
used domains (e.g., dates and locations) and numerical val-
ues with unspecified units (ranks, ages, etc.). For example,
two tables giving infant mortality percentages by country,
one using CIA estimates and the other using World Bank
estimates, would have a lower similarity from this because
any coincidentally equal percentages would not find a match
unless they happened to co-occur with the same country.
The similarity is computed as follows. Let i (for “inter-

section”) denote the total number of pairs matched in this
process. Then we take sim(S,T ) := i

max{ |S |, |T | }
where |S | and

|T | denote the number of cells in S and T , respectively. An
alternative is to take sim(S,T ) := i

|S |+ |T |−i , so as to divide the
intersection size by the union size; both gave similar results
in our experiments.

Example: Figure 3 illustrates a source table S on the left and
a target table T on the right. The member columns, S1 of S
andT 2 ofT , are indicated using boldface. Value pairs formed
from cell values in S2 anchored with associated values from

S

S1 S2 S3
C 1 2
A x y
B y z

T

T1 T2 T3
2 B y
3 C z

Figure 3: Table similarity example: source and target
tables with sim(S,T ) = 3/9

the member column are {(C, 1), (A,x), (B,y)}, and for S3 are
{(C, 2), (A,y), (B, z)}. Similarly, for columns T1 and T3 of
T they are {(B, 2), (C, 3)} and {(B,y), (C, z)}, respectively. A
maximumweight matching has edges (S1,T 2), for the match-
ing of member columns, with weight 2; (S2,T 3) with weight
1; and (S3,T1) with weight 0. We remove the edge (S3,T1)
since it is zero-weight. The total sum of weights is 3 and,
therefore, the similarity score is 3/9 since the larger table, S ,
has |S | = 9 total cell values. □

For a fixed table at the previous epoch in time, we measure
the similarity to all tables from the same page at the current
epoch to determine which one, if any, is its counterpart.15 For
caseswheremultiple tables have the same (highest) similarity
score, we break ties by considering table schema. However, if
none of the tying tables has the same schema, or if more than
one of them does, ties are then further broken by considering
the section name hierarchy from the page’s table of contents,
for pages containing one, and choosing the table having
longest subpath match with regards to the section hierarchy.
This is especially useful on pages where the same set of
entities is ranked according to different criteria in different
tables such as Mountain Peaks in Hawaii16 which includes
tables ranked by Elevation, Prominence and Isolation,
all having a similarity of 1 with one other.
Naturally, there is still some potential for the similarity

score to choose the wrong table, and we shall evaluate the
performance in Section 6. We have some heuristics that can
be used to detect when this happens, including the approach
based on text surrounding the table on both sides modulo
section breaks.While such text is too brittle for table tracking,
it can be useful for alarming suspicious behavior when the
surrounding text of paired tables disagrees while some other
table from the same page uniquely has the same surrounding
text. Finally, we note that a more recent version of a table can
be inserted without the now stable table being removed. For
example, assume we are tracking Richest Companies (2017
Statistics) and Richest Companies (2018 Statistics) is added to
the page. Ideally, the algorithm should ignore the former and
start using the latter. Our current algorithm does not handle
such (rare) cases and we employ additional techniques that
are beyond the scope of this paper.

5.2 Alarm Policy
We do not expect that dynamic maintenance of templates
can be fully automated and instead provide a solution that
tries to minimize the burden of manual inspection and re-
vision. Table tracking is thus applied using a three-tiered

15 We test for rare cases where the page URL changes between epochs by
looking up the canonical URL for each page.
16 https://en.wikipedia.org/wiki/List_of_mountain_peaks_of_Hawaii
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Table 4: Interestingness (“Very”, “Somewhat”, “Not”)
percentages, and percentage with no majority (“No-
Maj”), for various fun fact generation methods
Method Very Somewhat Not NoMaj W/L
simple top-k 53.7 37.4 0 8.9 (*)
selective top-k 48 41 3 8
distributional 27 64 13 14
top-k combo 54 35 1 10
distrib combo 45 38 2 14
trivia-quiz [19] 13.5 60.4 15.6 10.4 N/A
er-desc [24] 9.4 43.5 38.8 8.2 3.75:1
factoid-subj [18] 1.1 25.3 68.4 5.3 79:1
factoid-obj [18] 4.2 34.7 56.8 8.8 41:1
categories [23] 4 39 50 7 42:1

policy based on the similarity score of a table across two
consecutive epochs: those above some safe threshold are suc-
cessfully mapped; those below some unsafe threshold are not
mapped (and, hence, are temporarily suppressed from trig-
gering facticles) along with a (non-urgent) alert; and those
falling in between, which come with an message indicating
that further examination is needed. These thresholds should
be set based on application-specific risk levels of display-
ing incorrect content vs coverage loss, but also based on
analysis of the trade-offs with respect to false-positives and
false-negatives. This question is investigated further in Sec-
tion 6; in practice, we used 0.1 and 0.5 for the unsafe and
safe thresholds, respectively.

5.3 Spam Protection
While we are restricted from providing exact details, we men-
tion a few concepts that are useful for preventing malicious
users from vandalizing Wikipedia content to affect facticles.
First, there are blacklists in place (per-row and per-table) to
quickly take down questionable content. Second, any new
table content, such as new entities or attribute values asso-
ciated with an existing entity, is sufficiently delayed from
being used for a facticle, to give Wikipedia editors and spam
bots a chance to detect and correct improper content. Fac-
ticles have now been in production for almost a year and
there has been no issue with spam.

6 EXPERIMENTS
Below we demonstrate that facticles are liked by users, show
the efficacy of automatically generating templates, and inves-
tigate the ability to successfullymaintain pairing of templates
with their corresponding tables over time.

6.1 Interestingness of Fun Facts
Using an (internal) production crowd evaluation platform,
workers were presented with a query entity name, some

background about the entity, and a statement about the
entity. For example, the entity Frozen was presented with
the background sentence, “Frozen is a 2013 American 3D
computer-animated musical fantasy film produced by Walt
Disney Animation Studios” and the facticle, “Frozen is the
highest-grossing animated film of all time.” Workers were
asked, “How interesting is this statement to a user who is
querying for the entity?” and given a rating scale (“Not Inter-
esting”, “Somewhat Interesting”, “Very Interesting”). For each
item, workers were selected from a large rater pool (many
thousands) such that each rater was restricted to evaluating
at most 6 items in total; hence, different items were rated by
a different sets of workers. Table 4 summarizes the results for
facticles based on different views in this section, as well as
for various baselines which are discussed in Section 6.2. The
numbers reported in the table are the percentage of items
for each majority rating level (“Very”, “Somewhat”, “Not”)
as well as the percentage of items for which there was no
majority among raters (“NoMaj”). The “W/L” column only
pertains to Section 6.2 and is explained there.
For each of the 1000 entities that were sampled based on

query stream frequency and on having an associated facticle,
5 workers rated interestingness. Very few of the facticles
were considered not interesting (none for simple top-k , 3%
for selective top-k and 13% for the distributional view). We
believe the lower interestingness ratings observed for the
distributional view was due to the facticle pivoting towards
the category entity, and thus not being directly relevant to
the query entity, rather than inherent interestingness. For
example, the facticle “2 of the 5 tallest buildings in the world
are in China, including Shanghai Tower” is arguably more
about China than Shanghai Tower. We tried 100 examples
that were rephrased to put more emphasis on the query
entity, e.g., “Shanghai Tower is among the 2 of the 5 tallest
buildings in the world that are in China”, but the results were
similar.

We also examined the interestingness of template combi-
nations stitched together using an “as well as” clause for the
same entity, as described in Section 3.3, using 100 entities.
The results for simple top-k view combinations were very
similar to their single-clause counterparts but for distribu-
tional view combinations the interestingness increased; see
Table 4. We further ran a side-by-side to understand the mar-
ginal value added by combinations (i.e., single-clause facticle
vs combo facticle based on the same entity), and gave work-
ers the option to choose from “Left is better”, “Right is better”
and “About the same”). Workers preferred the combination
views by a ratio of 4:1 for the simple top-k view and 2:1 for
the distributional view.
Finally, we evaluated the interestingness of facticles in

comparison to attribute-value facts shown inGoogle’s Knowl-
edge Panels. For example, facts for Frozen include Release date
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and Directors. A randomly chosen fact from among these
was highlighted and workers were asked whether it would be
better for a facticle instead of the highlighted fact to appear
in the Knowledge Panel, presented as a side-by-side using
200 entities and 3 workers (out of the pool of hundreds) per
entity. The ratio of cases in which a facticle was preferred
was 2.72:1.

6.2 Comparison to Existing Methods
For direct comparisons, we presented a side-by-side, with
sides randomly swapped, to 3 workers and asked them to
select from “Left is better”, “Right is better’ and “About the
same”; win-loss gives the ratio of items for which a majority
preferred simple top-k facticles over the baseline. We were
limited by overlap size in comparing with baselines using
the same set of entities. Therefore, Table 4 reports direct
comparisons (in the “W/L” column) when possible as well
as (one-sided) interestingness levels to allow for indirect
comparisons. Facticles, for all its view types, had a higher
interestingness level than all five baselines discussed below.

We directly compared against the category-based fun facts
(categories) from [23]. Using a list of 400 most popular
Wikipedia entities borrowed from [23], we selected 200 enti-
ties for which both the category-based approach and ours
yielded a statement. For 84% of the entities, a majority of
raters preferred the facticles, whereas for 2%, a majority pre-
ferred the category-based fun facts, a win-loss ratio of 42:1.
(There was no preference for 8% and no majority for the
remaining 6%.) We also compared against entity-relationship
descriptions (er-desc) generated via templates for Freebase
triples in [24] using 100 common entities. For 45% of the
entities, a majority preferred the facticles, whereas for 12%
a majority preferred entity-relationship descriptions, a win-
loss ratio of 3.75:1. (There was no preference for 33% and no
majority for the remaining 10%.)
In addition, we compared facticles against approaches

that generate natural language questions from knowledge
graph triples using a neural language model. The approach
in [18] chooses triples randomly, such as (Texas_Speedway,
contained_by,Denton_County) to generate the question,
“Where is TexasMotor Speedway?”; we employed techniques
from [6] to transform these questions into answers based on
substituting the wh- phrase (“who”, “which musician”, etc.)
with the object entity. Because the directionality of predi-
cates in triples varies (e.g., some triples use contained_by
whereas others use contains), we performed two separate
evaluations using the subject and object for the query entity,
presented in Table 4 as factoid-subj and factoid-obj, re-
spectively. We also performed a side-by-side against facticles
for a random subset of triples where both the subject and
object have an associated facticle. We compared the same

Table 5: Superlative phrase prediction accuracy

Method Test accuracy
Majority class (“tallest”) 13.9%

Using Title Only 43.2%
Proposed Model 80.5%

Proposed Model w/ Substitution 86.3%

factoid statement using subject and object as the query en-
tity with two respective facticle statements and took the
best of the two ratings for the factoid. Even with this ad-
vantage, workers preferred facticles for 75% of the cases.
Finally, we compared against the approach to generate quiz
questions in [19], where the emphasis is on selecting triples
that yield more difficult, hence more interesting, questions.
Unfortunately, the code is proprietary and the released data
only contains 3,411 questions based on a total of 76 entities,
only 5 of which overlap with facticles. So we were unable to
perform a side-by-side evaluation. However, we present in-
terestingness ratings using a random sample of 100 questions
transformed into statements in Table 4 as trivia-quiz.

6.3 Template Generation and Refinement
We used a random forest classifier with hyper-parameters
(number of trees, etc.) set based on 10-fold random train/test
split cross-validation.

Superlative phrase prediction. Table 5 summarizes the
test set accuracy based on 1117 raw top-k templates that
were edited by native English speakers and annotated with
the superlative phrase component. Overall, we found that
our language model predicted the exact superlative phrase
with 80.5% accuracy. In some cases where the prediction did
not exactly match the training example, the predicted su-
perlative phrase was interchangeable. For example, “largest
by population” was in the template but the model predicted
“most populous”, which can reasonably be substituted. Simi-
lar cases include “tallest” vs. “highest” and “wealthiest” vs.
“richest”. By accounting for these, the accuracy further im-
proves to 86.3%. The remaining errors were mostly due to un-
seen, typically long-tail, descriptions like “nearest terrestrial
exoplanet candidates” and “most recent supercontinents".

Phrasal verb prediction.Table 6 summarizes the test set ac-
curacy based on 167 raw selective templates that were edited
by native English speakers and annotated with the phrasal
verb component. We can see that the inference model gave
roughly 71% accuracy. Again in some cases the mis-predicted
phrases were interchangeable (e.g., “are in the state of” vs.
“are in”, “are in the canton of” vs. “are in”); and with these the
accuracy improves to 73.8%. Similar to superlative prediction,
the errors were mostly due to unseen, long-tail patterns such
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Table 6: Phrasal verb prediction accuracy

Method Test accuracy
Majority Class (“are in”) 40.7%

Proposed Model 71.3%
Proposed Model w/ Substitution 73.8%

as [Program] “are broadcast during” [Broadcast_time],
and [Manga] “are marketed to” [Demographic].

Both of these two components are needed for distribu-
tional view templates. The combined prediction accuracy of
these components was 60.9%, which means that there’s a
strong correlation between individual component accuracies.
This is beneficial from the standpoint of post-hoc manual
editing time because the marginal work to correct multiple
components compared to a single one is relatively small. To
ascertain correctness, unfortunately all the templates must
be inspected since the model cannot predict with certainty;
but sorting the templates by prediction probability score is a
useful way to triage the workload.
To evaluate the user satisfaction resulting from gener-

ated natural language, we used the predicted superlative and
phrasal verb components to generate distributional facticles
and compared this against the same facticles using a baseline
templatewith have [$category_name] [$category_value]
in place of the phrasal verb clause. Raters were presented
with these alternatives in a side-by-side and asked to select
which side is better, or “About the same”. There were 113
such alternatives compared and each was evaluated by three
raters. The phrasal verb facticle was preferred over the base-
line 33.6% of the time and the baseline was preferred only
0.9% of the time. The remaining cases were “About the same”
(61.9%) and “No majority” (3.5%).

6.4 Dynamic Maintenance
We tracked approximately 1500 superlative tables across 74
consecutive epochs with a gap in time such that there were
two epochs per week, hence, 37 total weeks. Ground truth
data for the semantic counterparts of tables across epochs
does not exist. Since examining all the tables at all consecu-
tive epochs to judge this is very time-intensive, we employed
the following heuristic. For each table, we consider only the
first and last epochs of the tracking period, based on the
assumption that if a table goes “off the rails” at some epoch
due to a spurious match with the wrong table, then it is un-
likely to “come back” at a later epoch. That is, if a table at
the first epoch tracks to some table at the last epoch that
is indeed its counterpart, then we should expect tracking
to have been successful at the intermediate epochs. The
process for examining two tables to determine if they are
semantic counterparts is as follows. First, verbal descriptions

are formed from the respective tables based on the entity
class and superlative, plus any spatio-temporal scope (e.g.,
“tallest buildings in New York City”) or domain-specific fil-
tering predicates (e.g., “tallest buildings that are considered
towers”) indicated by the containing section name, table cap-
tion or surrounding text on the page. These descriptions
should be synonymous but precise.17
No other table from the respective pages should have a

closer matching such description than the two candidate
tables that are being considered as counterparts.

92% of the tables tracked “survived” to the last epoch, with
similarity scores above the “unsafe” threshold of 0.1 across
all epochs. There are 8 false-positives in those survived (3
of which have scores above the safe threshold of 0.5) and 17
false-negatives in those did not.
For similarity scores between the safe and unsafe thresh-

olds, our system files alerts. Luckily, these alerts were in-
frequent, occurring in only 0.15% of the table-epochs for
an average of 3 total alerts per week. The 3 false-positives
above the safe threshold were due to a particularly tricky
case where a long table was split into multiple ones. Figure 4
gives an example of one of these, which ranks the longest-
running Indian TV Series by number of episodes. The table
was broken out into one small table listing the top few row
(with over 2, 000 episodes) and one large table listing the re-
maining ones. The similarity was higher for the larger table
due to more overlap. Fortunately such cases are rare.
A representative example of the 17 false-negatives (i.e.,

the source table from the first epoch had a counterpart table
from the same page in the last epoch that the similarity score
was too low to be tracked) is shown in Figure 5. Both tables
rank the largest protected areas in the world by size in square
kilometers and are, in fact, the only table on their respective
pages. There was a single intermediate epoch at which the
table was truncated from having 157 rows to maintaining
only the top-20 and many of the member column cell values
were significantly changed. As a result, these tables were
temporarily dropped from production and an alert was issued.
Note that the schema of these two tables also changed quite a
bit, with a new column added and several columns renamed
and/or broadened, so a schema matching based approach
would have lost track due to the changes.

To compare against using the table sequence number to
track tables, we examined the sequence numbers of the true-
positives at the begin and end epochs and observed that
approximately 14.5% (199) changed, meaning that theywould
have been false-negatives. We also compared against using
table schema to track tables and found that there were 18

17E.g., we distinguish between “tallest” and “highest” mountains.
18Links to epochs: before; after.
19Links to epochs: before; after.
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S : Longest-running Indian TV series (Over 1,000 episodes); 59 rows
Title Network Language Episode Count

Yeh Rishta Kya Kehlata Hai Star Plus Hindi 2,429
Balika Vadhu Colors TV Hindi 2,248

... ... ... ...
Cinemala Asianet Malaylam 1,000+

Ek Mahal Ho Sapno Ka Sony Hindi 1,000+

T1: Longest-running ... (Over 2,000 episodes); 4 rows
Title ... ... Episode Count

Yeh Rishta Kya Kehlata Hai ... ... 2,434
Taarak Mehta Ka Ooltah Chashmah ... ... 2,250

Balika Vadhu ... ... 2,248
Saath Nibhaana Saathiya ... ... 2,182

T2: Longest-running ... (1,000-1,999 episodes); 55 rows
Title ... ... Episode Count

Sasural Simar Ka ... ... 1,925+
Kyunki Saas Bhi Kabhi Bahu Thi ... ... 1,833

... ... ... ...
Cinemala ... ... 1,000+

Ek Mahal Ho Sapno Ka ... ... 1,000+

Figure 4: Table tracking false-positive example: S got mapped to T2 but actually was split into T1 and T218

S : 157 rows
Name Country Size (square kilometers) Date established

Ross Sea Marine Reserve Antarctica 1,550,000 December 2017 ...
PapahÄĄnaumokuÄĄkea Marine National Monument ... United States ... 1,510,000, 2006

... ... ... ...
NouabalÃľ-Ndoki National Park Republic of Congo 4,000 1993

ROSCI0227 ... Romania 3,600 2008

T : 20 rows
Rank Name Country or area Size (sq. km) Year designated
1 Marae Moana Cook Islands 1,976,000 2017
2 Ross Sea Region Marine Protected Area Antarctica 1,555,851 2017
... ... ... ... ...
19 Offshore Trap/Pot Waters Area Western Atlantic Ocean, United States 336,101 1997
20 Nazca-Desventuradas Marine Park Desventuradas Islands, Chile 300,035 2016

Figure 5: Table tracking false-negative example: S went through a major clean-up and condensing between two
epochs to become T ; sim(S,T ) was only 0.0319

false-positives and 305 false-negatives. Both are significantly
worse than our tracking algorithms.

7 CONCLUSIONS
In this paper, we presented an approach to generate natural
language trivia statements, or fun facts, from superlative
tables on Wikipedia pages. Our approach is templated and
relies on automatic instantiation with (template, table) pairs;
this is crucial for keeping the fun facts up to date. We de-
signed ML models to automatically generate various critical
template components, including the superlative phrase and
phrasal verb, for the two view classes we propose. We in-
troduced a table tracking method to dynamically maintain
the (template, table) pairing across time. Our experiments
showed that (1) fun facts generated using our proposed
classes are interesting to users and are liked much more

than existing generative approaches; (2) our models for tem-
plate generation is accurate compared to manually curated
content and the natural language that it generates increases
user satisfaction; and (3) table tracking reduces the manual
maintenance burden as it is resistant to false-positives and
results in a small enough number of false-negatives that
lightweight manual post-processing can correct for tables
that are improperly dropped.
Future work could include the extension to other (non-

Wikipedia) tables on the Web and CSV files, for which rich
metadata that is currently relied upon may not exist; and the
design of additional template classes (e.g., to capture outliers)
that could also apply to tables other than superlative tables.
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