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ABSTRACT

Modern data processing systems are designed to be general
purpose, in that they can handle a wide variety of different
schemas, data types, and data distributions, and aim to pro-
vide efficient access to that data via the use of optimizers
and cost models. This general purpose nature results in sys-
tems that do not take advantage of the characteristics of the
particular application and data of the user. With SageDB
we present a vision towards a new type of a data process-
ing system, one which highly specializes to an application
through code synthesis and machine learning. By model-
ing the data distribution, workload, and hardware, SageDB
learns the structure of the data and optimal access methods
and query plans. These learned models are deeply embed-
ded, through code synthesis, in essentially every component
of the database. As such, SageDB presents radical depar-
ture from the way database systems are currently developed,
raising a host of new problems in databases, machine learn-
ing and programming systems.

1. INTRODUCTION

Database systems have a long history of automatically se-
lecting efficient algorithms, e.g., a merge vs hash-join, based
on data statistics. Yet, existing databases remain general
purpose systems and are not engineered on a case-by-case
basis for the specific workload and data characteristics of a
user, because doing so manually would be hugely time con-
suming. Yet, specialized solutions can be much more effi-
cient. For example, if the goal is to build a highly-tuned
system to store and query ranges of fixed-length records
with continuous integer keys (e.g., the keys 1 to 100M),
one should not use a conventional index. Using B+Trees
for such range queries would make not much sense, since
the key itself can be used as an offset, making it a constant
O(1) operation to look-up the first key of a range.! Indeed,
a simple C program that loads 100M integers into an ar-
ray and performs a summation over a range runs in about
300ms on a modern desktop, but doing the same operations
in a modern database (Postgres 9.6) takes about 150 sec-
onds. This represents a 500x overhead for a general purpose
design that isn’t aware of the specific data distribution.

Similar benefits extend to operations like sorting or joins.
For sorting, if we know keys come from a dense integer do-
main, we can simplify the sorting of incoming records based

Note, that we use the big O-notation here over the par-
ticular instance of a database, similar to the notation of
instance-optimality[10], except that our class of databases
is exactly one.
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on the primary key, as the key can be again used as an off-
set to put the data directly into a sorted array, reducing the
complexity of sorting from O(N log N) to O(N) for this par-
ticular instance of the data. Joins over dense integer keys
also simplify to lookups, requiring only a direct lookup us-
ing the key as an offset. Inserts and concurrency control
might also become easier as we do not need to keep index
structures in sync.

Perhaps surprisingly, the same optimizations are also pos-
sible for other data patterns. For example, if the data con-
tains only even numbers or follows any other deterministic
distribution we can apply similar optimizations. In short, we
can optimize almost any algorithm or data structure used by
the database with knowledge of the exact data distribution.
These optimizations can sometimes even change the com-
plexity class of well-known data processing algorithms. Of
course, in most real-world use cases the data does not per-
fectly follow a known pattern, and it is usually not worth-
while to engineer a specialized system for every use case.
However, if it were be possible to learn the data pattern,
correlations, etc. of the data, we argue that we can auto-
matically synthesize index structures, sorting and join algo-
rithms, and even entire query optimizers that leverage these
patterns for performance gains. Ideally, even with imperfect
knowledge of the patterns it will be possible to change the
complexity class of algorithms, as in the above example.

In this paper we present our vision of SageDB, a new
class of data management system that specializes itself to
exploit the distributions of the data it stores and the queries
it serves. Prior work has explored the use of learning to tune
knobs [37, 34, 7, 9, 35|, choosing indexes [12, 4, 36] parti-
tioning schemes [6, 2, 27, 28], or materialized views (see [5]
for a general overview) but our goal is different. We ar-
gue that learned components can fully replace core
components of a database system such as index struc-
tures, sorting algorithms, or even the query executor. This
may seem counter-intuitive because machine learning can-
not provide the semantic guarantees we traditionally asso-
ciate with these components, and because machine learning
models are traditionally thought of as being very expensive
to evaluate. This vision paper argues that neither of these
apparent obstacles are as problematic as they might seem.

In terms of performance, we observe that more and more
devices are equipped with specialized hardware for machine
learning. For example, the iPhone has the “Neural Engine”,
Google’s phone have a “Visual Core,” Google’s Cloud has
Cloud TPUs, and Microsoft developed BrainWave. As it
is easier to scale the simple (math) operations required for



machine learning, these devices already deliver a stunning
performance. For instance, Nvidia’s TESLA V100 product
is capable of performing 120 TeraFlops of neural net opera-
tions. It was also stated that GPUs will increase 1000x in
performance by 2025, whereas Moore’s law for CPUs essen-
tially is dead [1]. By replacing branch-heavy algorithms with
neural networks, the DBMS can profit from these hardware
trends.

Similarly, it is often surprisingly easy to provide the the
same semantic guarantees. For example, a B-Tree can be
seen as a model that points to a page containing records
with a particular key, requiring a scan of the page to return
all records that actually satisfy a query. In this sense, a B-
Tree already trades off execution performance for accuracy
[19]. Learning-based models will simply have more flexibility
to explore that trade-off.

Finally, aggressive use of synthesis and code generation
will allow us to automatically create efficient data struc-
tures, which combine models with more traditional algo-
rithms. Here our goal is to (1) generate code tailored to the
user’s data distribution, and (2) synthesize database compo-
nents with embedded machine learning models, which bal-
ance the trade-off between memory, latency, and compute
for a given use case while providing the same semantic guar-
antees as the traditional components.

Building SageDB requires a radical departure from the
way database systems are currently developed and involves
challenges from databases, machine learning and program-
ming systems. SageDB is currently being developed as part
of MIT’s new Data Systems for AI Lab (DSAIL), which con-
sists of an interdisciplinary team with expertise in all of these
areas. Our focus is on building a new analytical (OLAP) en-
gine but we believe the approach also has significant advan-
tages for OLTP or hybrid workloads. The remainder of the
paper outlines the overall architecture of SageDB, individual
challenges and presents some promising initial results.

2. MODEL-DRIVEN APPROACH

The core idea behind SageDB is to build one or more
models about the data and workload distribution and based
on them automatically build the best data structures and
algorithms for for all components of the database system.
This approach, which we call “database synthesis” will allow
us to achieve unprecedented performance by specializing the
implementation of every database component to the specific
database, query workload, and execution environment.

2.1 Types of Customization

The proposed customization goes far beyond the current
use of statistics and models about the data, hardware or
performance of algorithms, which can be roughly classified
in the following levels:

Customization through Configuration: The most
basic form of customization is configuring the systems, aka
knob tuning. Most systems and heuristics have a huge num-
ber of settings (e.g., page-size, buffer-pool size, etc.). Tradi-
tionally, database administrators tune those knobs to con-
figure the general purpose database to a particular use case.
In that sense the creation of indexes, finding the right par-
titioning scheme, or the creation of materialized views for
performance can also be considered as finding the best con-
figuration of the systems. It comes also at no surprise, that
there has been a lot of work on automatically tuning those

configurations [37, 34, 7, 9, 35] based on the workload and
data characteristics.

Customization through Algorithm Picking: While
configuring the system is largely static, databases have a
long history of using query optimizers to dynamically “cus-
tomize” the execution strategy for a particular query based
on statistics about the data and the configuration (e.g.,
available indexes) of the system. That is, the query opti-
mizer decides on the best execution order (e.g., predicate
push-downs, join-ordering, etc.) and picks the best imple-
mentation from a set of available algorithms (e.g., nested-
loop join vs hash-join). This declarative approach, which
allows the user to specify on a high-level the query, while
the system figures out how to best achieve it, is one of the
most significant contributions of the database community.

Customization through Self-Design: Self-designed sys-
tems rely on the notion of mapping the possible space of crit-
ical design decisions in a system and automatically generat-
ing a design that best fits the workload and hardware [15].
Here the space of possible designs is defined by all combina-
tions and tunings of first principle components, such as fence
pointers, links, temporal partitioning, etc., which together
form a “periodic table of data structures” [14]. This goes far
beyond algorithm picking or configuring a system because
new combinations of these primitives might yield previously
unknown algorithms/data structures and can lead to signif-
icant performance gains [15].

Customization through Learning: In contrast to self-
design, learned systems replace core data systems compo-
nents through learned models. For example, in [19] we show
how indexes can be replaced by models, whereas [21] shows
how to learn workload-specific scheduling strategies. Mod-
els make it possible to capture data and workload properties
traditional data structures and algorithms have a hard time
supporting well. As a result, under certain conditions these
data structures can provide the best-case complexity, e.g.,
O(N) instead of O(Nlog N), and yield even higher perfor-
mance gains than customization through self-design. Fur-
thermore, they change the type of computation from tradi-
tional control-flow heavy computation to data-dependency-
focused computation, which often can be more efficiently
execute on CPUs and the upcoming ML accelerators.

These different types of customization can be composed.
Especially, customization through self-design and customiza-
tion through learning go hand in hand as the learned models
often have to be combined with more traditional algorithms
and data structures in order to provide the same semantic
guarantees. More interestingly, models can potentially be
shared among different components of a database system.
In that sense, we argue in this paper that customization
through learning is the most powerful form of customization
and outline how SageDB deeply embeds models into all al-
gorithms and data structures, making the models the brain
of the database (see Figure 2).

2.2 The Power of Distributions

To illustrate the power of learning and synthesizing algo-
rithms and data structures with models, consider the follow-
ing thought experiment: Suppose we have a perfect model
for the empirical cumulative distribution function (CDF)
over a table R; with attributes X1, ..., X, (i.e., there is no
prediction error):

Mcpr = Fxy,..x, (1, . Zm) = P(X1 < 21,000y, Xon < )



For simplicity, we use CDF to refer to the empirical CDF
of the data actually stored in the database (i.e., the instance
of the data), not the theoretical CDF underlying the gener-
ative function for that data. For analytics, we mainly care
about the empirical CDF, however, for update/insert-heavy
workloads the underlying CDF plays a more important role.
Even though this paper mainly focuses on analytics, we will
touch upon the topic at the end.

Optimizer: First, and most obviously, such a model
significantly simplifies query optimization as cardinality es-
timation will be essentially free (i.e., cardinality estimation
is nothing more than probability mass estimation). This
makes decisions about the best join ordering much easier,
although, as the long history of literature on query opti-
mization has shown, computing and maintaining compact
and accurate multi-dimensional distributions is a key chal-
lenge, which we address in more detail later.

Indexes: As we showed in [19], such a model can also
be used to implement point or range-indexes. Suppose we
have an index-organized table on the primary key X, which
stores the data sorted by X; in a continuous region on disk
and fixed-size records of length [. In this case, we can calcu-
late the offset of every record by calculating the probability
mass less than a given primary key k and multiplying it with
the total number of records N and the size of each record:

Fx,,..x.,(key,00g...,00m) * N *[

In this case, we also say that Mcpr predicts the posi-
tion of key k. Note, that this index supports range requests
as it returns the first key equal or larger than the lookup
key. Assuming we can perform a lookup in the CDF in con-
stant time (an assumption we address below), this makes
the lookup of any key an O(1) operation while traditional
tree structures require O(log N) operations.

Interestingly, the CDF can also be used for secondary in-
dexes or multi-dimensional indexes. However, in those cases
we need not only to build a CDF model for the index but
also optimize the storage layout (see Section 3 for a more
detailed discussion).

Compression: Additionally, the CDF can also be used
to compress the data. For simplicity, lets assume we have
a sorted column, i.e., <attr,r-id>-pairs, and a CDF model
only over the column attr. If we can reverse the CDF —
i.e., compute, for a position in the column, the value at
the column — then this inverse CDF model effectively allows
us to avoid storing the values of attr at all. This scheme
can be best regarded as a higher-level entropy compression.
However, the beauty in the context of a DBMS is, that the
same model for indexing, query optimization, etc. could
potentially be reused for compression.

Execution: Similarly, the CDF model can help with
partial or full-table joins or sorts. For example for sorting,
Bayes theorem can be used to “rewrite” M¢pr for any given
subset of a table to achieve a new model Mc pr which can be
used to predict the position of every record within the sorted
array, turning sorting into an O(N) operation. For joins, we
need an M¢pr model for every table, and afterwards can use
the model to “predict” the position of any join-key, similar
to the indexing case. Furthermore, certain aggregations like
counting also become free as the system can use the model
directly to answer them without even going to the data.

Advanced Analytics: A CDF can also be used for
many data cube operations and for approximate query an-
swers. For example, most OLAP queries are concerned with
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Figure 1: RMI Model

summing and counting. As a result in many cases we can
use CDF model to directly (approximately) answer those
queries. Furthermore, such a model could be directly used
as part of machine learning models or help to build predic-
tive models faster; in the end most machine learning models
are about distribution. However, there is one caveat: ma-
chine learning is usually about generalizability, and not the
empirical CDF.

Discussion: This thought experiment using a CDF model
shows how deep such a model could be embedded into a
database system and what benefits it could provide. But it
is not just about the CDF. For example, a query optimizer
would also need a cost model to estimate the execution time
for a given plan, which can either be a traditional hand-
tuned model or a learned model. Moreover, in some cases
it makes sense to learn the entire algorithm. For example,
even with perfect information about the input designing a
near-optimal scheduling algorithms with low-complexity is
extremely hard. In such cases, learning data/query-specific
algorithms might provide an interesting alternative.

2.3 What Models Should be Used

A key challenge is choosing the right model for SageDB’s
brain. The answer is surprisingly simple: whatever works.
In some cases, histograms may be sufficient; in others neural
nets may be the right approach. However, what we found
so far is that histograms are often too coarse grain or too
big to be useful. On the other hand, at least for CPUs,
deep and wide neural nets are often too costly to be prac-
tical, although this will likely change in the future with the
advances of TPUs and other neural processors.

As of today, we found that we often need to generate spe-
cial models to see significant benefits. As an example of
a generated model, consider the RMI structure presented
in [19] (see Figure 1). For the one-dimensional case, the
core idea of RMI is very simple: (1) fit a simple model
(linear regression, simple neural net, etc.) over the data;
(2) use the prediction of the model to pick another model,
an expert, which more accurately models the subset of the
data; (3) repeat the process until the last model makes a
final prediction. Since the RMI uses a hierarchy of mod-
els to divide the problem space into sub-areas, each with
its own expert model, the RMI resembles the hierarchical
mixture of experts [16]; however, the RMI is not a tree,
but rather a directed acyclic graph. In [19] we showed that
the RMI model can significantly outperform state-of-the-art
index structures and is surprisingly easy to train. At the
same time, this type of model will probably not be used as
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Figure 2: SageDB Overview

part of predictive modeling as it has a tendency to overfit; it
creates a very good representation of P(X < t) for the em-
pirical distribution but not necessarily the underlying data
distribution.

However, RMI is just a starting point. For example, it
is possible to make the top model or bottom model more
complex, replace parts of the models at a particular level
stage with other types of models, use quantization, vary
the feature representation, combine models with other data
structures, and so on. We therefore believe we will see an
explosion of new ideas on how to most efficiently generate
models for database components to achieve the right bal-
ance between precision, low latency, space, and execution
time for a given workload (see Sections 4-5).

2.4 Architecture Overview

Figure 2 shows the overall architecture of SageDB. As de-
scribed above, our key idea to build or select (“synthesize”)
the best implementation of each component of the data pro-
cessing engine for a particular application.

This synthesis is done by first learning one or more data
distributions, workload, and hardware models. While in the-
ory a single, “master” model might be sufficient, in practice
we expect to create several models to balance the execution
time vs. accuracy. As with RMI, we expect that many of
the model architectures are very different from the large,
deep networks currently popular in the machine learning
literature for tasks like perception. This set of synthesized
components form then the “brain” of SageDB.

Currently our components (e.g., index structure) “only”
use these models. However, our grand vision is that the
system synthesizes individual components specialized to the
data, workload, and hardware, and that the specific choice of
components and their interactions will also be environment-
dependent. For example, in an update-intensive setting, dif-
ferent models and components may be chosen than in a more
analytics focused environment, or in a distributed setting
models more appropriate for batched and distributed up-
dates may be selected.

Individual components can often share the previously learned

models (e.g., the optimizer and indexes can both use the
same distributions). In some cases the components them-
selves may be entirely learned (e.g., see Section 4.3 as an
example) or form a hybrid between a model and some gen-
erated code. Therefore, while in Figure 2 there is a clear
separation of model and algorithm, we expect a more fluid
transition in practice. For example, reinforcement learning
techniques are likely to be crucial in many domains (e.g.,
query optimization), creating a more iterative process be-
tween modeling and synthesis.

In the following, we outline some initial results on how
to use learned approaches and models for various database
components in more detail.

3. DATA ACCESS

The storage layout and index structures are the most im-
portant factors to guarantee efficient data access, and both
are amenable to be enhanced by data and workload models
as this section will show.

3.1 Single Dimensional Indexes

Index structures are already models, because they “pre-
dict” the location of a value given a key. As an example,
consider an in-memory store in which all data is stored in
one continuous array sorted by timestamp. In this setup,
a cache-efficient B-Tree often provides better performance
than simple search because of caching-effects and can be
seen as a mapping from lookup key to a position inside the
sorted array of records. Thus, the B-Tree is a model, in ML
terminology a regression tree: it maps a key to a position and
consequently, we can replace the index with any other type
of model. While one might be wondering, how other models
can guarantee that they also find all the relevant data, it
is surprisingly simple: the data has to be sorted to support
efficient range requests, so any error is easily corrected by a
local search around the prediction.

Initial results: In [19] we showed that by using the pre-
viously mentioned RMI index, models can outperform state-
of-the-art B-Tree implementations by a factor of two while
being orders of magnitude smaller (note, that the updated
arXiv version contains new results). Since then we extended
the idea to also support data stored on disk, compression,
inserts, as well as multi-dimensional data (see next section).

3.2 Multi-Dim. Indexes and Storage Layout

The analog to a B-Tree for multi-dimensional data is an
R-Tree, which stores a tree of bounding boxes over the data;
each node in the tree is a bounding box whose children are
the smaller bounding boxes contained within it. As such
an R-Tree is an approximate model that predicts the pages
whose points lie within the query boundaries using this tree
structure. In particular, when data is stored contiguously
on disk or memory, an R-Tree is a model that maps a query
rectangle to a list of index ranges [s;, t;], such that the index
of every point lying in the rectangle is contained in the union
of these ranges. Similar to the B-Tree, it is an approximate
model as these ranges must later be exhaustively scanned to
find only those points that satisfy the query.

Interestingly and as before, other models can be used as a
drop-in replacement for an R-Tree. However, as with the
one-dimensional case we need to ensure that we can ef-
ficiently “correct” any imprecision of the model, which is
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much harder in the multi-dimensional case because no obvi-
ous storage order exists (recall, in the one-dimensional case,
we assume the data is sorted by key and that any impreci-
sion can be easily corrected by a localized search). Thus, the
success of a learned index depends not only on the choice
of model, but also on how the data is arranged in memo-
ry/disk, i.e., its layout; a poor layout might result in lower
accuracy of the model and/or to many ranges every query
needs to look up.

Choosing a layout: The layout can be described by a
projection function £ : R* — R, mapping each data record
of dimension d to a sort key that determines its relative
location in the ordering (see Figure 3). The most natural
choice for such a layout is a multi-dimensional CDF, i.e.,
L(r) = P(X1 < 7r1,...,X4 < rq). Unfortunately, this suf-
fers from a major drawback: two points that have the same
sort key may be far from each other in R?. Even a small
query rectangle around one of those points results in a sort
key range that includes a large number of extraneous points.

While many possible projection strategies exist, we found
that successively sorting and partitioning points along a se-
quence of dimensions into equally-sized cells produces a lay-
out that is efficient to compute, learnable (e.g., in contrast
to z-order, which is very hard to learn), and tight (i.e., al-
most all points in the union of the index ranges satisfy the
query). The idea of partitioning is not new: existing data-
base systems allow administrators to manually select multi-
ple columns on which to partition [13, 23]. Our contribution
is (1) to allow projections which are not axis-aligned and
more complex than static hierarchy partitions, (2) use mod-
els to actually do the projection and find the data on storage,
and (3) use the data and query distribution to automatically
learn both the partition dimensions and the granularity of
each partition without requiring imprecise, manual tuning.
At a coarse level, our partitioning also bears some similarity
to locality sensitive hashing (LSH) [11], which has primarily
been used for similarity search. As in LSH, projecting by
sorting and partitioning along a sequence of dimensions cre-
ates multi-dimensional “cells” that partition the data space.
In our learned index, points are ordered by the index of the
cell that they occupy.

Initial results: We implement the learned index over an
in-memory column store [33] with compression, and compare
our results to the following three baselines implemented over
the same column store (Fig 4):
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Figure 4: Learned multi-dimensional index performance on
TPC-H data using a column store. Note the log-scale.

e Column Scan: a full scan of all in the query involved
columns.

e Clustered: a clustered index that sorts the data by the
column which provides the best overall performance
(e.g., if all columns are queried equally often, this
would be the most selective dimension). At query time,
if the involved column is used as part of a predicate,
it first performs a binary search over the sort column
to narrow down the range of points that are scanned.

e An R-Tree index over the dimensions present in the
query workload.

All benchmarks are single-threaded and use data from the
lineitem table of the TPC-H benchmark, with 60 million
records. All data is pre-loaded into memory (there is no disk
access). The query workload consists of randomly-generated
range queries over up to three dimensions, and the same
three dimensions are used for all queries. Each query has
a selectivity of around 0.25%. After performing the range
filter, each query also performs a SUM aggregation on a fourth
dimension. Figure 4 shows that the Learned Index boosts
range query speed by an average of 34x compared to the
clustered index, with only a small space overhead. Note that
the R-Tree performs worse than a full column scan since it
must access every column in its index, even if they do not
appear in the query.

Performance Analysis: A clustered index performs best
when the clustered dimension is present in the query filter. If
the clustered dimension is absent, the clustered index reverts
to a full column scan. On the other hand, a learned index is
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sorted on multiple dimensions. If we assume that the clus-
tered dimension is also present in the learned index’s sorted
dimensions, the learned index should outperform a clustered
index in two scenarios:

1. The query filters on the clustered column and at least
one other dimension used in the learned index. The
learned index uses the fact that the data is partially
sorted by the second dimension to limit the number of
extraneous scanned points.

2. The query’s filter contains a dimension in the learned
index, but not the clustered dimension. As opposed to
a clustered index, which performs a full column scan,
the learned index is able to limit the region of points
that are scanned by considering only the relevant cells.

To quantify the performance gains of the learned index, we
break down the previous results (Figure 4) by the query type,
which denotes the dimension filtered in each query. The
learned index sorts on three dimensions, so for brevity, each
query type is denoted by a three digit binary number: the
ith most significant digit is 1 if the query filters on the ith
dimension in the sequence of dimensions used by the learned
index. For example, the query type ‘110’ indicates queries
that filter on the first and second dimension used in the
learned index, but not the third. The baseline, a clustered
index, is sorted on the learned index’s first dimension, which
is the most selective dimension in our query workload.

Figure 5 confirms that the learned index outperforms the
clustered index on almost every type of query. The only
query type where the learned index does not improve over
the clustered index is when the clustered dimension is the
only dimension in the query. In this case, a clustered index is
able to optimize its scan over exactly the points that match
the query, while the learned index must incur the overhead
of scanning the extraneous points located in the same cells
as the matching points.

All queries for each query type have the same selectivity
of around 0.25%, to control for the impact of result size on
query time. As a result, the range of the filter on a single
dimension depends on how many other dimensions are part
of the query: a query with type ‘110’ must query a larger
range on the first dimension compared with a query of type
‘100’ in order to achieve the same selectivity. This effect

Algorithm 1 Learned sorting algorithm

Input a - the array to be sorted

Input F - the CDF model for the distribution of a
Input m - the over-allocation parameter

Output o - the sorted version of array a

1: procedure LEARNED-SORT(a, F,m)
2: 0  [00] * (a.length x m)

3: s« {}

4: // STEP 1: Approzimate ordering
5: for i in @ do

6: pos < F(i) * a.length x m

7 if o[pos] = oo then

8: o[pos] « @

9: else
10: s+ sU{i}
11: // STEP 2: Touch-up
12: INSERTION-SORT(0)
13: QUICKSORT(s)
14: // STEP 8: Merging
15: return MERGE-AND-REMOVE-EMPTY (o, s)

explains why the clustered index queries with type ‘111’ are
noticeably slower than ‘110" and ‘101°, which are in turn
slower than ‘100’. On the other hand, the learned index
avoids this slowdown since its query time scales with the
range of the entire query, instead of just the range of the
first dimension.

4. QUERY EXECUTION

The previous section outlined how learning the data dis-
tribution, a model of the CDF, can replace traditional in-
dex structures with potentially tremendous advantages for
TPUs/GPUs. Maybe surprisingly, a very similar idea can
be used to speed-up sorting, joins, and even group-bys.

4.1 Sorting

The basic idea to speed up sorting is to use an (existing)
CDF model F to put the records roughly in sorted order and
then correct the nearly perfectly sorted data as shown in
Algorithm 1. Depending on the execution cost of the model
and its precision, this sorting technique can have significant
performance advantages over alternative sorting techniques.

For example, assume the following query: SELECT * FROM
customer ¢ ORDER BY c.name with a table size of N and
a secondary learned index on c.name whereas the data is
stored in order of the customer id not name. To quickly sort
the data by name we put every record based on its key k
into a roughly sorted order by scaling the output of the CDF
model over the name to the number of elements in the array
(pos = F(k) * N). At this point we map each record into a
position in the output array and, if there is a collision, we
store it some overflow array (Lines 5-10 in Algorithm 1). In
order to decrease the number of collisions, we can instead
allocate an output array that is m-times larger than N(e.g.,
m = 1.37) and then remove any empty positions at the
end of this mapping. Note that for this case, the predicted
position will be calculated as pos = F(k) xm x N (Line 6 in
Algorithm 1). In addition, we can sort into buckets rather
than into positions bucket = F'(k) * N/bs, where bs is the
bucket size to further reduce the number of conflicts. The
assumption here is, that if we make the buckets a multiple
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of a cache-line, that we can quickly sort within a bucket,
while reducing the chance of conflicts (e.g., that we map
more items to a bucket than their are slots). A similar idea
is used as part of cuckoo hashing [25]. In either case, if our
model is non-monotonic, we have to use an efficient local-
sort algorithm (i.e. insertion sort, which works very fast with
almost-sort arrays) to correct any sorting mistakes (Line 12
in Algorithm 1). Finally, we sort the overflow array (Line
13) and merge the sorted array with the overflow array while
removing empty elements (Line 15).

Conceptually, the model-based sorting is very similar to
Radix sort. Radix sort has a complexity of O((n) *log, (k)),
with k being the maximum possible value and b being the
base for the prefix sorting. That is, if we would Radix sort
arbitrary 32-bit integers based on 1 Byte at a time (i.e., a
base of 2%), the complexity would be O(4 * N). The idea of
our learned-based sorting is to have the base b close to k,
which would allow to sort in O(N). Obviously, this disre-
gards the model complexity, which is likely to increase with
k and n in many real-world scenarios. At the same time, it is
easy to come up with scenario for which a model-based sort-
ing approach would vastly outperform a Radix-based sort.
For example, if we have keys from a very large domain (i.e,
k is really big), but most keys are concentrated in a small
area of the domain space. In that case a model could learn
a very compact representation for the CDF and thus, po-
tentially sort close to O(NN), whereas traditional Radix sort
algorithm would suffer from the large domain size. The sen-
sitivity to the domain size, is also one of the reasons most
algorithm libraries don’t implement Radix sort, but rather

2 s Merging P
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15 mm Approximate ordering P s
— —Radix Sort <
1
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0

10M 20M 30M 40M 50M

Figure 7: The performance of each algorithmic step for
Learned Sort as compared to Radix sort.

use variants of Quicksort.

Figure 6 shows early results of a learned approach to sort-
ing for increasingly large data sizes consisting of 64-bit dou-
bles randomly sampled from a normal distribution running
single threaded. We use both the bucketing and m-times
larger array allocation and our model is non-monotonic, re-
quiring the touch-up step of Line 12 in Algorithm 1. The
figure compares Timsort, which is the default sorting algo-
rithm for Java? and Python®, Quicksort, std::sort from the
C++ library, Radix sort, and a learned sort. We report the
total sorting time (left) as well as the sorting rate (right).
Note, that none of the implementations were tuned to take
advantage of SIMD or FMA instructions. As it can be seen
the learned variant has a significant performance benefit over
the comparison based approaches and an average margin of
18% faster execution than Radix sort. Even more inter-
estingly, the sorting rate for the learned approach is very
steady. Note that the RMI model building time was not in-
cluded in this case for the learned sorting approach. If we
would train a small model based on a (logarithmic) sample
of data the difference between Radix sort and learned sort
shrinks to 10%.

Figure 7 shows the time-breakdown of the learned sorting
between the approximate ordering (Line 5-10 in Algorithm
1), touch-up (Line 12-13), and merging the results (Line 15).
We believe, that this result shows the potential for learned
sorting approaches, which we expect to be the biggest for dis-
tributed sorting, large key sizes, and with GPUs/TPUs/F-
PGAs accelerators. Hence, many open research challenges
still remain from properly determining the complexity class
to building SIMD optimized implementations.

4.2 Joins and other operations

Joins can be sped up in a similar was as sorting. For
example, the CDF model could be used to skip over portions
of data as part of a merge sort. Consider a column store in
which the two join columns are sorted and we have one CDF
model per column. Now during a merge-join, we can use the
model to skip over data that will not join.

The learned models could also be helpful to improve other
algorithms. For example, a model could be used as a more

*https://docs.oracle.com/javase/8/docs/api/java/util/
Arrays.html#sort-java.lang.Object: A-
3https://svn.python.org/projects/python/trunk/Objects/
listsort.txt
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Figure 8: Our learned scheduler improves average job completion time of 10 randomly-sampled TPC-H queries by 45% over
Spark’s default FIFO scheduler, and by 19% over a fair scheduler on a cluster with 50 task slots (executors). Different queries
are shown in different colors; vertical red lines show job completions.

efficient hash-function as part of a group-by. Here the chal-
lenge is to adjust the learned model if the not all keys are
selected and efficiently integrate into the query plan. Simi-
larly, the model could be used as cardinality estimations as
part of the group-by or other operations, for example, to
allocate enough memory for intermediate results.

4.3 Scheduling

Today’s database systems use simple scheduling policies
like first-come-first-serve for their generality and ease-of-
implementation. However, a scheduler customized for a
specific workload can perform a variety of optimizations;
for example, it can prioritize fast and low-cost queries, se-
lect query-specific parallelism thresholds, and order opera-
tions in query execution to avoid bottlenecks (e.g., leverage
query structure to run slow stages in parallel with other non-
dependent stages). Such workload-specific policies are rarely
used in practice because they require expert knowledge and
take significant effort to devise, implement, and validate.

In SageDB we envision a new scheduling system that auto-
matically learns highly-efficient scheduling policies tailored
to the data and workload. Our system represents a schedul-
ing algorithm as a neural network that takes as input infor-
mation about the data (e.g., using a CDF model) and the
query workload (e.g., using a model trained on previous ex-
ecutions of queries) to make scheduling decisions. We train
the scheduling neural network using modern reinforcement
learning (RL) techniques to optimize a high-level system ob-
jectives such as minimal average query completion time.

Initial results: We implemented a first RL-based schedul-
ing system [21] for batch data analytics jobs and a proto-
type in Spark [38]. Our system uses a graph neural net-
work [3, 18] to encode scheduling algorithms for queries
represented as directed acyclic graphs (DAGs) of process-
ing stages. The neural network decides both how to divide
executors between DAGs and how to order the execution
of stages within each DAG. We train the neural network
through a large number of simulated experiments, where it
schedules a workload, observes the outcome, and gradually
improves its policy using a policy gradient RL algorithm.

Figure 8 visualizes the schedules imposed by (a) Spark’s
default FIFO scheduling; (b) a shortest-job-first (SJF) pol-
icy that strictly prioritizes short jobs; (¢) a fair scheduler
that dynamically divides task slots between jobs; and (d)
the learned scheduling policy, each running a random mix of
TPC-H queries. The learned scheduler improves average job
completion time (JCT) by 45% over Spark’s default FIFO
scheduler, and by 19% over the fair scheduler. It achieves
this speedup by (i) completing short jobs quickly —note the
five jobs that finish in the first 40 seconds (shown as verti-
cal red lines); and (%) maximizing cluster efficiency. Un-

like the SJF policy, which naively dedicates task slots to
small jobs in order to finish them early (but inefficiently),
the learned scheduler runs jobs near their parallelism “sweet
spot”. By controlling parallelism, it reduces the total time to
complete all jobs by 30% compared to SJF. Further, unlike
fair scheduling, it learns to partition task slots non-uniformly
across jobs, improving average JCT.

S. QUERY OPTIMIZER

Traditional query optimizers are extremely hard to build,
maintain, and often yield sub-optimal query plans. The brit-
tleness and complexity of the optimizer makes it a good can-
didate to be learned. Indeed, there have been several recent
approaches that aim to learn more efficient search strategies
for the best join-order [20, 22], to improve cardinality esti-
mation [17], or to learn the entire plan generation process
through reinforcement learning [24].

However, they largely make unrealistic assumptions. For
example, [20] assumes perfect cardinality estimation for pred-
icates over the base table, whereas both [17] and [24] do not
show if the improve cardinality estimation actually lead to
better query plans. The reason is, that it is relatively easy
to improve the average cardinality estimation but extremely
hard to improve the cardinality estimation in the cases where
it really matters: when it actually changes the join ordering
or when an estimate causes the “wrong” join algorithms to
be selected. Furthermore, existing approaches suffer from
the initialization problem; they often require huge amounts
of training data and assume no ad-hoc queries.

We therefore have to started to explore alternative ap-
proaches to query optimization. Most notable, we tried to
make a traditional cost model (e.g., the Selinger model [29])
differentiable. That is, we start with the traditional hand-
tuned model as, for example, defined in [29], but make it
differentiable so that we can improve the model after every
query to customize it for a particular instance of the data.
The biggest advantage of this approach is, that it solves the
initialization problem and the question of how the model
would perform for ad-hoc queries. In the beginning the sys-
tem uses the standard model, which is then refined over
time. Initial results of this approach has shown that we
can indeed improve the quality of the model, but that we
can not achieve huge gains without also making significant
improvements in the cardinality estimation problem.

We therefore started to explore hybrid model-based ap-
proaches to cardinality estimation. The core idea is, that
try to find the best balance between a model, which learns
the underlying patterns and correlations of the data, and
exception/outlier lists, which capture the extreme — hard
to learn — anomalies of the particular instance of the data.



6. OTHER OPPORTUNITIES

Beyond query optimization, data access path optimiza-
tion, and query execution, a model-centric database design
can provide additional benefits from approximate query pro-
cessing (AQP) to Inserts as outlined next:

AQP and Data Cubes: A CDF model opens up com-
pletely new possibilities for approximate query processing,
especially data cube operations. Recall, that a multi-dim
CDF allows us to arbitrarily filter by attributes. Further-
more, it is likely that the several dimensions of a typical data
cube have correlations, which can be learned. This in turn
can lead to compact models, which can be used to approx-
imate queries over them with high accuracy. While other
works have explored the use of models for AQP [26, 8], the
key difference is that SageDB uses the same type of models
for indexing, AQP, query optimization, etc.

Predictive Modeling: Similarly, CDF models can be
used to build predictive models over data. However, pre-
dictive models require generalizability to new data, whereas
our models focus on learning an empirical distribution where
overfitting is a good thing. Of course, there is a strong con-
nection between the empirical and underlying data distri-
bution, which potentially can be exploited to speed-up the
training of predictive models.

Inserts/Updates: While the current focus of SageDB
is on analytics, there exists huge potential for update-heavy
workloads. For example, assume that the data from the in-
serts follow a similar distribution to the already stored data
and that the model generalizes over the data. In that case
no re-training (i.e., re-balancing) is necessary. For indexes,
this means that inserts would become O(1) operations. In
[19] we discuss the potential for update-heavy workloads in
more detail, though clearly much more work has to be done.

Complexity Analysis and Robustness Guarantees:
There exists several interesting theoretical questions. The
most obvious one is, how to define a complexity class for
the learned algorithms and data structures. The obvious
starting point is the definition of instance-optimality which
defines that an algorithm B is instance optimal over a class
of algorithm A and a database d, if

cost(B,d) < c- cost(a,d) + ¢’ (1)

for every choice of a € A. Hence, the goal of customization
through Self-Design and Learning, can probably be phrased
as the goal of finding the best possible algorithm for a given
database.

Similarly, we would like provide worst-case performance
guarantees if the data distribution or the workload shifts.
For example, in [19] we proposed a hybrid learned data
structure, which in the worst-case provides the look-up per-
formance of a B-Tree O(log N). Yet, how to provide these
guarantees more broadly is largely an open question and has
a strong connection to smoothed analysis [30, 31] and robust
machine learning [32].

7. CONCLUSION

SageDB presents a radical new approach to build database
systems, by using using ML models combined with program
synthesis to generate system components. If successful, we
believe this approach will result in a new generation of big
data processing tools, which can better take advantage of
GPUs and TPUs, provide significant benefits in regard to

storage consumption and space, and, in some cases, even
change the complexity class of certain data operations. We
presented initial results and a preliminary design that show
the promise of these ideas, as well as a collection of future
directions that highlight the significant research opportunity
presented by our approach.
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