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ABSTRACT 
This paper describes the use of Storm at Twitter. Storm is a real-
time fault-tolerant and distributed stream data processing system. 
Storm is currently being used to run various critical computations 
in Twitter at scale, and in real-time. This paper describes the 
architecture of Storm and its methods for distributed scale-out and 
fault-tolerance. This paper also describes how queries (aka. 
topologies) are executed in Storm, and presents some operational 
stories based on running Storm at Twitter. We also present results 
from an empirical evaluation demonstrating the resilience of 
Storm in dealing with machine failures. Storm is under active 
development at Twitter and we also present some potential 
directions for future work.  

1. INTRODUCTION 
Many modern data processing environments require processing 
complex computation on streaming data in real-time. This is 
particularly true at Twitter where each interaction with a user 
requires making a number of complex decisions, often based on 
data that has just been created.  

Storm is a real-time distributed stream data processing engine at 
Twitter that powers the real-time stream data management tasks 
that are crucial to provide Twitter services. Storm is designed to 
be: 

1. Scalable: The operations team needs to easily add or remove 

nodes from the Storm cluster without disrupting existing data 
flows through Storm topologies (aka. standing queries).  

2. Resilient: Fault-tolerance is crucial to Storm as it is often 
deployed on large clusters, and hardware components can fail. 
The Storm cluster must continue processing existing topologies 
with a minimal performance impact.  

3. Extensible: Storm topologies may call arbitrary external 
functions (e.g. looking up a MySQL service for the social 
graph), and thus needs a framework that allows extensibility.  

4. Efficient: Since Storm is used in real-time applications; it must 
have good performance characteristics. Storm uses a number of 
techniques, including keeping all its storage and computational 
data structures in memory. 

5. Easy to Administer: Since Storm is at that heart of user 
interactions on Twitter, end-users immediately notice if there 
are (failure or performance) issues associated with Storm. The 
operational team needs early warning tools and must be able to 
quickly point out the source of problems as they arise. Thus, 
easy-to-use administration tools are not a “nice to have 
feature,” but a critical part of the requirement.  

We note that Storm traces its lineage to the rich body of work on 
stream data processing (e.g. [1, 2, 3, 4]), and borrows heavily 
from that line of thinking. However a key difference is in bringing 
all the aspects listed above together in a single system. We also 
note that while Storm was one of the early stream processing 
systems, there have been other notable systems including S4 [5], 
and more recent systems such as MillWheel [6], Samza [7], Spark 
Streaming [8], and Photon [19]. Stream data processing 
technology has also been integrated as part of traditional database 
product pipelines (e.g. [9, 10, 11]).  

Many earlier stream data processing systems have led the way in 
terms of introducing various concepts (e.g. extensibility, 
scalability, resilience), and we do not claim that these concepts 
were invented in Storm, but rather recognize that stream 
processing is quickly becoming a crucial component of a 
comprehensive data processing solution for enterprises, and Storm 
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represents one of the early open-source and popular stream 
processing systems that is in use today.  
Storm was initially created by Nathan Marz at BackType, and 
BackType was acquired by Twitter in 2011. At Twitter, Storm has 
been improved in several ways, including scaling to a large 
number of nodes, and reducing the dependency of Storm on 
Zookeeper. Twitter open-sourced Storm in 2012, and Storm was 
then picked up by various other organizations. More than 60 
companies are either using Storm or experimenting with Storm. 
Some of the organizations that currently use Storm are: Yahoo!, 
Groupon, The Weather Channel, Alibaba, Baidu, and Rocket 
Fuel.  

We note that stream processing systems that are in use today are 
still evolving (including Storm), and will continue to draw from 
the rich body of research in stream processing; for example, many 
of these “modern” systems do not support a declarative query 
language, such as the one proposed in [12]. Thus, the area of 
stream processing is an active and fast evolving space for research 
and advanced development.  

We also note that there are number of online tutorials for Storm 
[20, 21] that continue to be valuable resources for the Storm user 
community.  

The move to YARN [23] has also kindled interest in integrating 
Storm with the Hadoop ecosystem, and a number of resources 
related to using Storm with Hadoop are now also available (e.g. 
[21, 22]). 

The remainder of this paper is organized as follows: The 
following section, Section 2, describes the Storm data model and 
architecture. Section 3 describes how Storm is used at Twitter. 
Section 3 contains some empirical results and discusses some 
operational aspects that we have encountered while running Storm 
at Twitter. Finally, Section 4 contains our conclusions, and points 
to a few directions for future work. 

2. Data Model and Execution Architecture 
The basic Storm data processing architecture consists of streams 
of tuples flowing through topologies. A topology is a directed 
graph where the vertices represent computation and the edges 
represent the data flow between the computation components. 
Vertices are further divided into two disjoint sets – spouts and 
bolts. Spouts are tuple sources for the topology. Typical spouts 
pull data from queues, such as Kafka [13] or Kestrel [14]. On the 
other hand, bolts process the incoming tuples and pass them to the 
next set of bolts downstream. Note that a Storm topology can have 
cycles. From the database systems perspective, one can think of a 
topology as a directed graph of operators.  
Figure 1 shows a simple topology that counts the words occurring 
in a stream of Tweets and produces these counts every 5 minutes. 
This topology has one spout (TweetSpout) and two bolts 
(ParseTweetBolt and WordCountBolt). The TweetSpout may pull 
tuples from Twitter’s Firehose API, and inject new Tweets 

continuously into the topology. The ParseTweetBolt breaks the 
Tweets into words and emits 2-ary tuples (word, count), one for 
each word. The WordCountBolt receives these 2-ary tuples and 
aggregates the counts for each word, and outputs the counts every 
5 minutes. After outputting the word counts, it clears the internal 
counters. 

2.1 Storm Overview 
Storm runs on a distributed cluster, and at Twitter often on 
another abstraction such as Mesos [15]. Clients submit topologies 
to a master node, which is called the Nimbus. Nimbus is 
responsible for distributing and coordinating the execution of the 
topology. The actual work is done on worker nodes. Each worker 
node runs one or more worker processes. At any point in time a 
single machine may have more than one worker processes, but 
each worker process is mapped to a single topology. Note more 
than one worker process on the same machine may be executing 
different part of the same topology. The high level architecture of 
Storm is shown in Figure 2. 

Each worker process runs a JVM, in which it runs one or more 
executors. Executors are made of one or more tasks. The actual 
work for a bolt or a spout is done in the task. 

Thus, tasks provide intra-bolt/intra-spout parallelism, and the 
executors provide intra-topology parallelism. Worker processes 
serve as containers on the host machines to run Storm topologies. 

Note that associated with each spout or bolt is a set of tasks 
running in a set of executors across machines in a cluster. Data is 
shuffled from a producer spout/bolt to a consumer bolt (both 
producer and consumer may have multiple tasks). This shuffling 
is like the exchange operator in parallel databases [16].  
Storm supports the following types of partitioning strategies:  

1. Shuffle grouping, which randomly partitions the tuples. 

2. Fields grouping, which hashes on a subset of the tuple 
attributes/fields. 

3. All grouping, which replicates the entire stream to all the 
consumer tasks. 

4. Global grouping, which sends the entire stream to a single bolt. 

 
Figure 2: High Level Architecture of Storm  

 
Figure 1: Tweet word count topology 
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5. Local grouping, which sends tuples to the consumer bolts in the 
same executor.  

The partitioning strategy is extensible and a topology can define 
and use its own partitioning strategy. 

Each worker node runs a Supervisor that communicates with 
Nimbus. The cluster state is maintained in Zookeeper [17], and 
Nimbus is responsible for scheduling the topologies on the worker 
nodes and monitoring the progress of the tuples flowing through 
the topology. More details about Nimbus is presented below in 
Section 2.2.1. 
Loosely, a topology can be considered as a logical query plan 
from a database systems perspective. As a part of the topology, 
the programmer specifies how many instances of each spout and 
bolt must be spawned. Storm creates these instances and also 
creates the interconnections for the data flow. For example, the 
physical execution plan for the Tweet word count topology is 
shown in Figure 3. 

We note that currently, the programmer has to specify the number 
of instances for each spout and bolt. Part of future work is to 
automatically pick and dynamically changes this number based on 
some higher-level objective, such as a target performance 
objective. 

2.2 Storm Internals 
In this section, we describe the key components of Storm (shown 
in Figure 2), and how these components interact with each other.  

2.2.1 Nimbus and Zookeeper 
Nimbus plays a similar role as the “JobTracker” in Hadoop, and is 
the touchpoint between the user and the Storm system. 

Nimbus is an Apache Thrift service and Storm topology 

definitions are Thrift objects. To submit a job to the Storm cluster 
(i.e. to Nimbus), the user describes the topology as a Thrift object 
and sends that object to Nimbus. With this design, any 
programming language can be used to create a Storm topology.  

A popular method for generating Storm topologies at Twitter is by 
using Summingbird [18]. Summingbird is a general stream 
processing abstraction, which provides a separate logical planner 
that can map to a variety of stream processing and batch 
processing systems. Summingbird provides a powerful Scala-
idiomatic way for programmers to express their computation and 
constraints. Since Summingbird understands types and 
relationships between data processing functions (such as 
associativity), it can perform a number of optimizations. Queries 
expressed in Summingbird can be automatically translated into 
Storm topologies. An interesting aspect of Summingbird is that it 
can also generate a MapReduce job to run on Hadoop. A common 
use case at Twitter is to use the Storm topology to compute 
approximate answers in real-time, which are later reconciled with 
accurate results from the MapReduce execution. 

As part of submitting the topology, the user also uploads the user 
code as a JAR file to Nimbus. Nimbus uses a combination of the 
local disk(s) and Zookeeper to store state about the topology. 
Currently the user code is stored on the local disk(s) of the 
Nimbus machine, and the topology Thrift objects are stored in 
Zookeeper. 

The Supervisors contact Nimbus with a periodic heartbeat 
protocol, advertising the topologies that they are currently 
running, and any vacancies that are available to run more 
topologies. Nimbus keeps track of the topologies that need 
assignment, and does the match-making between the pending 
topologies and the Supervisors.  
All coordination between Nimbus and the Supervisors is done 
using Zookeeper. Furthermore, Nimbus and the Supervisor 
daemons are fail-fast and stateless, and all their state is kept in 
Zookeeper or on the local disk(s). This design is the key to 
Storm’s resilience. If the Nimbus service fails, then the workers 
still continue to make forward progress. In addition, the 
Supervisors restart the workers if they fail.  

However, if Nimbus is down, then users cannot submit new 
topologies. Also, if running topologies experience machine 
failures, then they cannot be reassigned to different machines until 
Nimbus is revived. An interesting direction for future work is to 
address these limitations to make Storm even more resilient and 
reactive to failures. 

 

Figure 3: Physical Execution of the Tweet word count topology 

 

 

Figure 4:  Supervisor architecture Figure 5. Message flow inside a worker 
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2.2.2 Supervisor 
The supervisor runs on each Storm node. It receives assignments 
from Nimbus and spawns workers based on the assignment. It 
also monitors the health of the workers and respawns them if 
necessary. A high level architecture of the Supervisor is shown in 
Figure 4. As shown in the figure, the Supervisor spawns three 
threads. The main thread reads the Storm configuration, initializes 
the Supervisor’s global map, creates a persistent local state in the 
file system, and schedules recurring timer events. There are three 
types of events, which are: 

1. The heartbeat event, which is scheduled to run every 15 
seconds, and is runs in the context of the main thread. It reports 
to Nimbus that the supervisor is alive.  

2. The synchronize supervisor event, which is executed every 10 
seconds in the event manager thread. This thread is responsible 
for managing the changes in the existing assignments.  If the 
changes include addition of new topologies, it downloads the 
necessary JAR files and libraries, and immediately schedules a 
synchronize process event. 

3. The synchronize process event, which runs every 3 seconds 
under the context of the process event manager thread. This 
thread is responsible for managing worker processes that run a 
fragment of the topology on the same node as the supervisor. It 
reads worker heartbeats from the local state and classifies those 
workers as either valid, timed out, not started, or disallowed. A 
“timed out” worker implies that the worker did not provide a 
heartbeat in the specified time frame, and is now assumed to be 
dead. A “not started” worker indicates that it is yet to be started 
because it belongs to a newly submitted topology, or an 
existing topology whose worker is being moved to this 
supervisor. Finally, a “disallowed” worker means that the 
worker should not be running either because its topology has 
been killed, or the worker of the topology has been moved to 
another node. 

2.2.3 Workers and Executors 
Recall that each worker process runs several executors inside a 
JVM. These executors are threads within the worker process. 
Each executor can run several tasks. A task is an instance of a 
spout or a bolt. A task is strictly bound to an executor because that 
assignment is currently static. An interesting direction for future 
work is to allow dynamic reassignment to optimize for some 
higher-level goal such as load balancing or meeting a Service 
Level Objective (SLO). 

To route incoming and outgoing tuples, each worker process has 
two dedicated threads – a worker receive thread and a worker 
send thread. The worker receive thread listens on a TCP/IP port, 
and serves as a de-multiplexing point for all the incoming tuples. 
It examines the tuple destination task identifier and accordingly 
queues the incoming tuple to the appropriate in queue associated 
with its executor. 

Each executor consists of two threads namely the user logic 
thread and the executor send thread. The user logic thread takes 
incoming tuples from the in queue, examines the destination task 
identifier, and then runs the actual task (a spout or bolt instance) 
for the tuple, and generates output tuple(s). These outgoing tuples 
are then placed in an out queue that is associated with this 
executor. Next, the executor send thread takes these tuples from 
the out queue and puts them in a global transfer queue. The global 
transfer queue contains all the outgoing tuples from several 
executors.  

The worker send thread examines each tuple in the global transfer 
queue and based on its task destination identifier, it sends it to the 
next worker downstream. For outgoing tuples that are destined for 
a different task on the same worker, the executor send thread 
writes the tuple directly into the in queue of the destination task. 
The message flow inside workers is shown in Figure 5. 

2.3 Processing Semantics 
One of the key characteristics of Storm is its ability to provide 
guarantees about the data that it processes. It provides two types 
of semantic guarantees – “at least once,” and “at most once” 
semantics.  

At least once semantics guarantees that each tuple that is input to 
the topology will be processed at least once.  

With at most once semantics, each tuple is either processed once, 
or dropped in the case of a failure. 

To provide “at least once” semantics, the topology is augmented 
with an “acker” bolt that tracks the directed acyclic graph of 
tuples for every tuple that is emitted by a spout. For example, the 
augmented Tweet word count topology is shown in Figure 6. 

Storm attaches a randomly generated 64-bit “message id” to each 
new tuple that flows through the system. This id is attached to the 
tuple in the spout that first pulls the tuple from some input source. 
New tuples can be produced when processing a tuple; e.g. a tuple 
that contains an entire Tweet is split by a bolt into a set of 
trending topics, producing one tuple per topic for the input tuple. 
Such new tuples are assigned a new random 64-bit id, and the list 
of the tuple ids is also retained in a provenance tree that is 
associated with the output tuple. When a tuple finally leaves the 
topology, a backflow mechanism is used to acknowledge the tasks 
that contributed to that output tuple. This backflow mechanism 
eventually reaches the spout that started the tuple processing in 
the first place, at which point it can retire the tuple.  
A naïve implementation of this mechanism requires keeping track 
of the lineage for each tuple. This means that for each tuple, its 
source tuple ids must be retained till the end of the processing for 
that tuple. Such an implementation can lead to a large memory 
usage (for the provenance tracking), especially for complex 
topologies.  

To avoid this problem, Storm uses a novel implementation using 
bitwise XORs. As discussed earlier, when a tuple enters the spout, 
it is given a 64-bit message id. After the spout processes this 
tuple, it might emit one or more tuples. These emitted tuples are 
assigned new message ids. These message ids are XORed and 

 

Figure 6. Augmented word count topology 
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sent to the acker bolt along with the original tuple message id and 
a timeout parameter. Thus, the acker bolt keeps track of all the 
tuples. When the processing of a tuple is completed or acked, its 
message id as well as its original tuple message id is sent to the 
acker bolt. The acker bolt locates the original tuple and its XOR 
checksum. This XOR checksum is again XORed with the acked 
tuple id. When the XOR checksum goes to zero, the acker bolt 
sends the final ack to the spout that admitted the tuple. The spout 
now knows that this tuple has been fully processed.  

It is possible that due to failure, some of the XOR checksum will 
never go to zero. To handle such cases, the spout initially assigns 
a timeout parameter that is described above. The acker bolt keeps 
track of this timeout parameter, and if the XOR checksum does 
not become zero before the timeout, the tuple is considered to 
have failed. 

Note that communication in Storm happens over TCP/IP, which 
has reliable message delivery, so no tuple is delivered more than 
once. Consequently, the XORing mechanism works even though 
XOR is not idempotent.  

For at least once semantics, the data source must “hold” a tuple. 
For the tuple, if the spout received a positive ack then it can tell 
the data source to remove the tuple. If an ack or fail message does 
not arrive within a specified time, then the data source will expire 
the “hold” on the tuple and replay it back in the subsequent 
iteration. Kestrel queues provide such a behavior. On the other 
hand, for Kafka queues, the processed tuples (or message offsets) 
are check pointed in Zookeeper for every spout instance. When a 
spout instance fails and restarts, it starts processing tuples from 
the last “checkpoint” state that is recorded in Zookeeper.  

At most once semantics implies that the tuples entering the system 
are either processed at least once, or not at all. Storm achieves at 
most once semantics when the acking mechanism is disabled for 
the topology. When acks are disabled, there is no guarantee that a 
tuple is successfully processed or failed in each stage of the 
topology, and the processing continues to move forward. 

3. Storm in use @ Twitter 
In this section, we describe how Storm is used at Twitter. We also 
present three examples of how we dealt with some operational and 
deployment issues. Finally, we also present results from an 
empirical evaluation. 

3.1 Operational overview 
Storm currently runs on hundreds of servers (spread across 
multiple datacenters) at Twitter. Several hundreds of topologies 
run on these clusters some of which run on more than a few 
hundred nodes. Many terabytes of data flows through the Storm 
clusters every day, generating several billions of output tuples.  

Storm topologies are used by a number of groups inside Twitter, 
including revenue, user services, search, and content discovery. 
These topologies are used to do simple things like filtering and 
aggregating the content of various streams at Twitter (e.g. 
computing counts), and also for more complex things like running 
simple machine learning algorithms (e.g. clustering) on stream 
data.  

The topologies range in their complexity and a large number of 
topologies have fewer than three stages (i.e. the depth of the 
topology graph is less than three), but one topology has eight 

 

 

Figure 7: Storm Visualizations 
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stages. Currently, topologies are isolated on their own machines, 
and we hope to work on removing this limitation in the future. 

Storm is resilient to failures, and continues to work even when 
Nimbus is down (the workers continue making forward progress). 
Moreover, if we have to take a machine down for maintenance, 
then we can do that without affecting the topology. Our p99 
latency (i.e. the latency of the 99th percentile response time) for 
processing a tuple is close to 1ms, and cluster availability is 
99.9% over the last 6 months.   

3.2 Storm Visualization Operations 
A critical part about using Storm in practice is visualizing the 
Storm operations. Logs from Storm are continuously displayed 
using a rich visualization developed in-house, some of which are 
shown in Figure 7. To collect logs, each topology is augmented 
with a metrics bolt. All the metrics collected at each spout or bolt 
are sent to this bolt. This bolt in turn writes the metrics to Scribe, 
which routes the data to a persistent key value store. For each 
topology, a dashboard is created using this data for visualizing 
how this topology is behaving. 

The rich visualization is critical in assisting with identifying and 
resolving issues that have caused alarms to be triggered. 

The metrics can be broadly classified into system metrics and 
topology metrics. System metrics shows average CPU utilization, 
network utilization, per minute garbage collection counts, time 
spent in garbage collection per minute, and memory usage for the 
heap. Topology metrics are reported for every bolt and every 
spout. Spout metrics include the number of tuples emitted per 
minute, the number of tuple acks, the number of fail messages per 
minute, and the latency for processing an entire tuple in the 
topology. The bolt metrics include the number of tuples executed, 
the acks per minute, the average tuple processing latency, and the 
average latency to ack a specific tuple.  

3.3 Operational Stories 
In this section we present three Storm-related operational 
scenarios/stories. 

3.3.1 Overloaded Zookeeper 
As discussed above, Storm uses Zookeeper to keep track of state 
information. A recurring issue is how to set up and use Zookeeper 
in Storm, especially when Zookeeper is also used for other 
systems at Twitter. We have gone through various considerations 
about how to use and configure Zookeeper with Storm. 

The first configuration that we tried is to use an existing 
Zookeeper cluster at Twitter that was also being used by many 
other systems inside Twitter. We quickly exceeded the amount of 
clients that this Zookeeper cluster could support, which in turn 
impacted the uptime of other systems that were sharing the same 
Zookeeper cluster.  
Our second configuration of a Storm cluster was identical to the 
first one, except with dedicated hardware for the Zookeeper 
cluster. While this significantly improved the number of workers 
processes and topologies that we could run in our Storm cluster, 
we quickly hit a limit at around 300 workers per cluster. If we 
exceeding this number of workers, then we began to witness 
worker processes being killed and relaunched by the scheduler. 
This is because for every worker process there is a corresponding 
zknode (Zookeeper node) which must be written to every 15 
seconds, otherwise Nimbus deems that the worker is not alive and 
reschedules that worker onto a new machine.  

In our third configuration of a Storm cluster, we changed the 
Zookeeper hardware and configuration again: We used database 
class hardware with 6x 500GB SATA Spindles in RAID1+0 on 
which we stored the Zookeeper transaction log, and a 1x 500GB 
spindle (no RAID) on which we stored the snapshots. Separating 
the transaction logs and the snapshots to different disks is strongly 
recommended in the Zookeeper documentation, and if this 
recommendation is not followed, the Zookeeper cluster may 
become unstable. This third configuration scaled to approximately 
1200 workers. If we exceeded this number of workers, once again 
we started to see workers being killed and restarted (as in our 
second configuration). 

We then analyzed the Zookeeper write traffic by parsing the 
tcpdump log from one of the Zookeeper nodes. We discovered 
that 67% of the writes per second to the Zookeeper quorum was 
being performed not by the Storm core runtime, but by the Storm 
library called KafkaSpout. KafkaSpout uses Zookeeper to store a 
small amount of state regarding how much data has been 
consumed from a Kafka queue. The default configuration of 
KafkaSpout writes to Zookeeper every 2 seconds per partition, per 
Storm topology. The partition count of our topics in Kafka ranged 
between 15 and 150, and we had around 20 topologies in the 
cluster at that time. (Kafka is a general publisher-subscriber 
system and has a notion of topics. Producers can write about a 
topic, and consumers can consume data on topics of interest. So, 
for the purpose of this discussion, a topic is like a queue.)  
In our tcpdump sample, we saw 19956 writes in a 60 second 
window to zknodes that were owned by the KafkaSpout code. 
Furthermore, we found that 33% of writes to Zookeeper was 
being performed by the Storm code. Of that fraction, 96% of the 
traffic was coming from the Storm core that ships with worker 
processes that write heartbeats to the Zookeeper every 3 seconds 
by default.  

Since we had achieved as much write performance from our 
Zookeeper cluster as we thought was possible with our current 
hardware, we decided to significantly reduce the number of writes 
that we perform to Zookeeper. Thus, for our fourth and the current 
production configuration of Storm clusters at Twitter, we changed 
the KafkaSpout code to write its state to a key-value store. We 
also changed the Storm core to write its heartbeat state to a 
custom storage system (called “heartbeat daemons”) designed 
specifically for the purpose of storing the Storm heartbeat data. 
The heartbeat daemon cluster is designed to trade off read 
consistency in favor of high availability and high write 
performance. They are horizontally scalable to match the load that 
is placed on them by the workers running in the Storm core, 
which now write their heartbeats to the heartbeat daemon cluster. 

3.3.2 Storm Overheads 
At one point there was some concern that Storm topologies that 
consumed data from a Kafka queue (i.e. used Kafka in the spouts) 
were underperforming relative to hand-written Java code that 
directly used the Kafka client. The concern began when a Storm 
topology that was consuming from a Kafka queue needed 10 
machines in order in order to successfully process the input that 
was arriving onto the queue at a rate of 300K msgs/sec.  

If fewer than 10 machines were used, then the consumption rate of 
the topology would become lower than the production rate into 
the queue that the topology consumed. At that point, the topology 
would no longer be real-time. For this topology, the notion of 
real-time was that the latency between the initial events 
represented in an input tuple to the time when the computation 
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was actually performed on the tuple should be less than five 
seconds. The specification of the machines used in this case was 
2x Intel E5645@2.4Ghz CPUs, 12-physical cores with hyper-
threading, 24-hardware threads, 24GB of RAM, and a 500GB 
SATA disk.  

In our first experiment we wrote a Java program that did not use 
Storm, or any of Storm’s streaming computational framework. 
This program would use the Kafka Java client to consume from 
the same Kafka cluster and topic as the Storm topology, using just 
a “for loop” to read messages as fast as possible, and then 
deserialize the messages. After deserialization, if no other 
processing was done in this program, then the item would then be 
garbage collected.  

Since this program did not use Storm it didn’t support reliable 
message processing, recovery from machine failure, and it didn’t 
do any repartition of the stream. This program was able to 
consume input at a rate of 300K msgs/sec, and process data in 
real-time while running on a single machine with CPU utilization 
averaging around 700% as reported by the top Unix command line 
tool (with 12-physical cores, the upper bound for the CPU 
utilization is 1200%).  

The second experiment was to write a Storm topology that had a 
similar amount of logic/functionality as the Java program. We 
built a simple Storm topology much like the Java program in that 
all it did was deserialize the input data. We also disabled message 
reliability support in this experiment. All the JVM processes that 
executed this Storm topology were co-located on the same 
machine using Storm’s Isolation Scheduler, mimicking the same 
setup as the Java program. This topology had 10 processes, and 38 
threads per process. This topology was also able to consume at the 
rate of 300K msgs/sec, and process the data in real-time while 
running on a single machine (i.e. it has the same specifications as 
above) with a CPU utilization averaging around 660% as reported 
by top. This CPU utilization is marginally lower than the first 
experiment that did not use Storm.  

For the third experiment we took the same topology from 
experiment two, but now enabled message reliability. This 
topology needs at least 3 machines in order to consume input at 
the rate of 300K msgs/sec. Additionally it was configured with 30 
JVM processes (10 per machine), and 5 threads per process. The 
average CPU utilization was 924% as reported by top. These 
experiments give a rough indication of the CPU costs of enabling 
message reliability relative to the CPU costs associated with 
deserializing messages (about 3X). 

These experiments mitigated the concerns regarding Storm adding 
significant overhead compared to vanilla Java code that did the 
same computation, since when both applications provided the 
same message reliability guarantees, they had roughly the same 
CPU utilization.  

These experiments did bring to light that the Storm CPU costs 
related to the message reliability mechanism in Storm are non-
trivial, and on the same order as the message deserialization costs. 
We were unable to reproduce the original Storm topology that 
required 10 machines in a Java program that did not use Storm, as 
this would involve significant work since this topology had 3 
layers of bolts and spouts and repartitioned the stream twice. 
Reimplementing all this functionality without Storm would 
require too much time. The extra machines needed could be 
explained by the overhead of the business logic within this 
topology, and/or the deserialization and the serialization costs that 
are incurred when a tuple is sent over the network because the 
stream needed to be repartitioned. 

3.3.3 Max Spout Tuning 
Storm topologies have a max spout pending parameter. The max 
spout pending value for a topology can be configured via the 
“topology.max.spout.pending” setting in the topology 
configuration yaml file. This value puts a limit on how many 
tuples can be in flight, i.e. have not yet been acked or failed, in a 
Storm topology at any point of time. The need for this parameter 
comes from the fact that Storm uses ZeroMQ [25] to dispatch 
tuples from one task to another task. If the consumer side of 
ZeroMQ is unable to keep up with the tuple rate, then the 
ZeroMQ queue starts to build up. Eventually tuples timeout at the 
spout and get replayed to the topology thus adding more pressure 
on the queues. To avoid this pathological failure case, Storm 
allows the user to put a limit on the number of tuples that are in 
flight in the topology. This limit takes effect on a per spout task 
basis and not on a topology level. For cases when the spouts are 
unreliable, i.e. they don’t emit a message id in their tuples, this 
value has no effect. 
One of the problems that Storm users continually face is in 
coming up with the right value for this max spout pending 
parameter.  A very small value can easily starve the topology and 
a sufficiently large value can overload the topology with a huge 
number of tuples to the extent of causing failures and replays. 
Users have to go through several iterations of topology 
deployments with different max spout pending values to find the 
value that works best for them. 

To alleviate this problem, at Twitter we have implemented an 
auto-tuning algorithm for the max spout pending value which 
adjusts the value periodically to achieve maximum throughput in 
the topology. The throughput in this case is measured by how 
much we can advance the progress of the spout and not 
necessarily by how many more tuples we can push into or through 
the topology. The algorithm works for the Kafka and Kestrel 
spouts, which have been augmented to track and report the 
progress they make over time. 
The algorithm works as follows: 

a) The spout tasks keep track of a metric called “progress.” This 
metric is an indicator of how much data has been 
successfully processed for this spout task. For the Kafka 
spout, this metric is measured by looking at the offset in the 
Kafka log that is deemed as “committed,” i.e. the offset 
before which all the data has been successfully processed and 
will never be replayed back. For the Kestrel spout, this 
metric is measured by counting the number of acks that have 
been received from the Storm topology. Note that we cannot 
use the number of acks received as the progress metric for 
the Kafka Spout because in its implementation, tuples that 
have been acked but not yet committed could still be 
replayed. 

b) We have a pluggable implementation of the max spout 
parameter “tuner” class that does auto-tuning of the max 
spout pending values. The two APIs that the default 
implementation support are:  

• void autoTune(long deltaProgress), which tunes the max 
spout pending value using the progress made between the 
last call to autoTune() 

• long get(), which returns the tuned max spout pending 
value. 
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c) Every “t” seconds (in our case the default value for t is 120 
seconds), the spout calls autoTune and provides it the 
progress that the spout has made in the last t seconds. 

d) The tuner class records the last “action” that it took, and 
given the current progress value what actions it could take 
next. The action value affects the max spout pending value, 
and the possible values are: Increase, Decrease, or No 
Change. The action tagged as Increase moves the max spout 
pending value up by 25%. A Decrease action reduces the 
max spout pending value by Max (25%, (last delta progress - 
current delta progress)/last delta progress * 100)%. A No 
Change action indicates that the max spout pending 
parameter should remain the same as the current value.    
The autoTune function has a state machine to determine the 
next transition that is should make. This state machine 
transition is described next: 

• If the last action is equal to No Change, then 
(i) If this is the first time that auto tuning has been 

invoked, then set action to Increase, and increase the 
max spout pending value. 

(ii) If the last delta progress was higher than the current 
delta progress, then set action to Decrease and 
decrease max spout pending. 

(iii) If the last delta progress is lower than the current 
delta progress, then set action to Increase and 
increase max spout pending. 

(iv) If the last delta progress is similar to the current delta 
progress, then set action to No Change and increment 
a counter by 1, which states how many consecutive 
turns we have spent in this No Change state. If that 
counter is equal to 5 then set action to Increase, and 
increase the max spout pending value. 

• If the last action is equal to Increase, then 
(i) If the last delta progress was higher than the current 

delta progress, then set the action to Decrease, and 
decrease the max spout pending value. 

(ii) If the last delta progress is lower than the current 
delta progress, then set the action to Increase, and 
increase the max spout pending value. 

(iii) If the last delta progress is similar to the current delta 
progress, then set the action to No Change, and 
restore the max spout pending value to the value that 
it had before the last increase was made. 

• If the last action is equal to Decrease, then 

(i) If the last delta progress is lower than the current 
delta progress, then set the action to Increase, and 
increase the max spout pending value. 

(ii) For any other case, set the action to No Change. 

3.4 Empirical Evaluation 
In this section we present results from an empirical evaluation that 
was conducted for this paper. The goal of this empirical 
evaluation is to examine the resiliency of Storm and efficiency 
when faced with machine failures. 

For this experiment, we created the sample topology that is shown 
below, and ran it with “at least once” semantics (see Section 2.3). 
This topology was constructed primarily for this empirical 
evaluation, and should not be construed as being the 
representative topology for Twitter Storm workloads. 
For simplicity, in Figure 8, we do not show the acker bolt.  

As can be seen in Figure 8, this topology has one spout. This 
spout is a Kafka spout for a “client_event” feed. Tuples from the 
spout are shuffle grouped to a Distributor bolt, which partitions 
the data on an attribute/field called “user_id.” The UserCount bolt 
computes the number of unique users for various events, such as 
“following,” “unfollowing,” “viewing a tweet,” and other events 
from mobile and web clients. These counts are computed every 
second (i.e. a 1 Hertz rate). These counts are partitioned on the 
timestamp attribute/field and sent to the next (Aggregator) bolt. 
The aggregator bolt aggregates all the counts that it has received.  

3.4.1 Setup 
For this experiment, we provisioned 16 physical machines. The 
initial number of tasks for each component in the topology is 
listed below:  

Component # tasks 

Spout 200 
DistributorBolt 200 
UserCountBold 300 
AggregatorBolt 20 

 
 

The total number of workers was set to 50 and remained at 50 
throughout the experiment. We started the topology on 16 
machines. Then, we waited for about 15 minutes and 
removed/killed three machines, and repeated this step three more 
times. This experimental setup is summarized below:  
 

Time (relative 
to the start of 
the experiment) 

# 
machines 

# 
workers 

Approximate 
#workers/machine 

0 minutes 16 50 3 
+15 minutes 13 50 4 
+30 minutes 10 50 5 
+45 minutes 7 50 7 
+60 minutes 4 50 12 

 

 

Figure 8: Sample topology used in the experiments 
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We continually monitored the throughput (# tuples processed by 
the topology/minute), and the average end-to-end latency (per 
minute) to process a tuple in the topology. The throughput is 
measured as the number of tuples acked per minute (in the acker 
bolt). These results are reported below. 

3.4.2 Results 
We first report the stable average throughput and latencies below. 
 

Time Window 
(relative to the 
start of the 
experiment) 

# 
machines 

Average 
throughput/
minute 
(millions) 

Average 
latency/minute 
(milliseconds) 

0-15 minutes 16 6.8  7.8 
15-30 minutes 13 5.8 12 
30-45 minutes 10 5.2 17 
45-60 minutes 7 4.5 25 
60-75 minutes 4 2.2 45 

 
 

The throughput and latency graphs for this experiment, as seen 
from the visualizer (see Section 3.2), are shown in Figures 9 and 
10 respectively. 

As can be seen in Figure 9, there is a temporary spike whenever 
we remove a group of machines, but the system recovers quickly. 
Also, notice how the throughput drops every 15 minutes, which is 
expected as the same topology is running on fewer machines. As 
can be seen in the figure, the throughput stabilizes fairly quickly 
in each 15 minute window. 

Figure 10 shows the latency graph for this experiment, and as 
expected the latency increases every time a group of machines is 
removed. Notice how in the first few 15 minute periods, the 
spikes in the latency graph are small, but in the last two windows 
(when the resources are much tighter) the spikes are higher; but, 
as can be seen, the system stabilizes fairly quickly in all cases.  

Overall, as can be seen in this experiment, Storm is resilient to 
machine failures, and efficient in stabilizing the performance 
following a machine failure event. 

4. Conclusions and Future Work 
Storm is a critical infrastructure at Twitter that powers many of 
the real-time data-driven decisions that are made at Twitter. The 
use of Storm at Twitter is expanding rapidly, and raises a number 
of potentially interesting directions for future work. These include 
automatically optimizing the topology (intra-bolt parallelism and 
the packaging of tasks in executors) statically, and re-optimizing 
dynamically at runtime. We also want to explore adding exact-
once semantics (similar to Trident [24]), without incurring a big 
performance impact. In addition, we want to improve the 
visualization tools, improve the reliability of certain parts (e.g. 
move the state stored in local disk on Nimbus to a more fault-
tolerant system like HDFS), provide a better integration of Storm 
with Hadoop, and potentially use Storm to monitor, react, and 
adapt itself to improve the configuration of running topologies. 
Another interesting direction for future work is to support a 
declarative query paradigm for Storm that still allows easy 
extensibility.  
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