

Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta,
Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, Xiaofeng Bao

Amazon Web Services

ABSTRACT
Amazon Aurora is a relational database service for OLTP
workloads offered as part of Amazon Web Services (AWS). In
this paper, we describe the architecture of Aurora and the design
considerations leading to that architecture. We believe the central
constraint in high throughput data processing has moved from
compute and storage to the network. Aurora brings a novel
architecture to the relational database to address this constraint,
most notably by pushing redo processing to a multi-tenant scale-
out storage service, purpose-built for Aurora. We describe how
doing so not only reduces network traffic, but also allows for fast
crash recovery, failovers to replicas without loss of data, and
fault-tolerant, self-healing storage. We then describe how Aurora
achieves consensus on durable state across numerous storage
nodes using an efficient asynchronous scheme, avoiding
expensive and chatty recovery protocols. Finally, having operated
Aurora as a production service for over 18 months, we share
lessons we have learned from our customers on what modern
cloud applications expect from their database tier.

Keywords
Databases; Distributed Systems; Log Processing; Quorum
Models; Replication; Recovery; Performance; OLTP

1. INTRODUCTION
IT workloads are increasingly moving to public cloud providers.
Significant reasons for this industry-wide transition include the
ability to provision capacity on a flexible on-demand basis and to
pay for this capacity using an operational expense as opposed to
capital expense model. Many IT workloads require a relational
OLTP database; providing equivalent or superior capabilities to
on-premise databases is critical to support this secular transition.

In modern distributed cloud services, resilience and scalability are
increasingly achieved by decoupling compute from storage
[10][24][36][38][39] and by replicating storage across multiple
nodes. Doing so lets us handle operations such as replacing
misbehaving or unreachable hosts, adding replicas, failing over
from a writer to a replica, scaling the size of a database instance
up or down, etc.

The I/O bottleneck faced by traditional database systems changes
in this environment. Since I/Os can be spread across many nodes
and many disks in a multi-tenant fleet, the individual disks and
nodes are no longer hot. Instead, the bottleneck moves to the
network between the database tier requesting I/Os and the storage
tier that performs these I/Os. Beyond the basic bottlenecks of
packets per second (PPS) and bandwidth, there is amplification of
traffic since a performant database will issue writes out to the
storage fleet in parallel. The performance of the outlier storage
node, disk or network path can dominate response time.

Although most operations in a database can overlap with each
other, there are several situations that require synchronous
operations. These result in stalls and context switches. One such
situation is a disk read due to a miss in the database buffer cache.
A reading thread cannot continue until its read completes. A cache
miss may also incur the extra penalty of evicting and flushing a
dirty cache page to accommodate the new page. Background
processing such as checkpointing and dirty page writing can
reduce the occurrence of this penalty, but can also cause stalls,
context switches and resource contention.

Transaction commits are another source of interference; a stall in
committing one transaction can inhibit others from progressing.
Handling commits with multi-phase synchronization protocols
such as 2-phase commit (2PC) [3][4][5] is challenging in a cloud-
scale distributed system. These protocols are intolerant of failure
and high-scale distributed systems have a continual “background
noise” of hard and soft failures. They are also high latency, as
high scale systems are distributed across multiple data centers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists, require
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org
SIGMOD’17, May 14 – 19, 2017, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4197-4/17/05…$15.00
DOI: http://dx.doi.org/10.1145/3035918.3056101

Control PlaneData Plane

Amazon
DynamoDB

Amazon SWF

Logging + Storage

SQL

Transactions

Caching

Amazon S3

Figure 1: Move logging and storage off the database engine

1041

mailto:Permissions@acm.org

In this paper, we describe Amazon Aurora, a new database service
that addresses the above issues by more aggressively leveraging
the redo log across a highly-distributed cloud environment. We
use a novel service-oriented architecture (see Figure 1) with a
multi-tenant scale-out storage service that abstracts a virtualized
segmented redo log and is loosely coupled to a fleet of database
instances. Although each instance still includes most of the
components of a traditional kernel (query processor, transactions,
locking, buffer cache, access methods and undo management)
several functions (redo logging, durable storage, crash recovery,
and backup/restore) are off-loaded to the storage service.

Our architecture has three significant advantages over traditional
approaches. First, by building storage as an independent fault-
tolerant and self-healing service across multiple data-centers, we
protect the database from performance variance and transient or
permanent failures at either the networking or storage tiers. We
observe that a failure in durability can be modeled as a long-
lasting availability event, and an availability event can be modeled
as a long-lasting performance variation – a well-designed system
can treat each of these uniformly [42]. Second, by only writing
redo log records to storage, we are able to reduce network IOPS
by an order of magnitude. Once we removed this bottleneck, we
were able to aggressively optimize numerous other points of
contention, obtaining significant throughput improvements over
the base MySQL code base from which we started. Third, we
move some of the most complex and critical functions (backup
and redo recovery) from one-time expensive operations in the
database engine to continuous asynchronous operations amortized
across a large distributed fleet. This yields near-instant crash
recovery without checkpointing as well as inexpensive backups
that do not interfere with foreground processing.
In this paper, we describe three contributions:

1. How to reason about durability at cloud scale and how
to design quorum systems that are resilient to correlated
failures. (Section 2).

2. How to leverage smart storage by offloading the lower
quarter of a traditional database to this tier. (Section 3).

3. How to eliminate multi-phase synchronization, crash
recovery and checkpointing in distributed storage
(Section 4).

We then show how we bring these three ideas together to design
the overall architecture of Aurora in Section 5, followed by a
review of our performance results in Section 6 and the lessons we
have learned in Section 7. Finally, we briefly survey related work
in Section 8 and present concluding remarks in Section 9.

2. DURABILITY AT SCALE
If a database system does nothing else, it must satisfy the contract
that data, once written, can be read. Not all systems do. In this
section, we discuss the rationale behind our quorum model, why
we segment storage, and how the two, in combination, provide not
only durability, availability and reduction of jitter, but also help us
solve the operational issues of managing a storage fleet at scale.

2.1 Replication and Correlated Failures
Instance lifetime does not correlate well with storage lifetime.
Instances fail. Customers shut them down. They resize them up
and down based on load. For these reasons, it helps to decouple
the storage tier from the compute tier.

Once you do so, those storage nodes and disks can also fail. They
therefore must be replicated in some form to provide resiliency to
failure. In a large-scale cloud environment, there is a continuous

low level background noise of node, disk and network path
failures. Each failure can have a different duration and a different
blast radius. For example, one can have a transient lack of
network availability to a node, temporary downtime on a reboot,
or a permanent failure of a disk, a node, a rack, a leaf or a spine
network switch, or even a data center.
One approach to tolerate failures in a replicated system is to use a
quorum-based voting protocol as described in [6]. If each of the V
copies of a replicated data item is assigned a vote, a read or write
operation must respectively obtain a read quorum of Vr votes or a
write quorum of Vw votes. To achieve consistency, the quorums
must obey two rules. First, each read must be aware of the most
recent write, formulated as Vr + Vw > V. This rule ensures the set
of nodes used for a read intersects with the set of nodes used for a
write and the read quorum contains at least one location with the
newest version. Second, each write must be aware of the most
recent write to avoid conflicting writes, formulated as Vw > V/2.
A common approach to tolerate the loss of a single node is to
replicate data to (V = 3) nodes and rely on a write quorum of 2/3
(Vw = 2) and a read quorum of 2/3 (Vr = 2).

We believe 2/3 quorums are inadequate. To understand why, let’s
first understand the concept of an Availability Zone (AZ) in
AWS. An AZ is a subset of a Region that is connected to other
AZs in the region through low latency links but is isolated for
most faults, including power, networking, software deployments,
flooding, etc. Distributing data replicas across AZs ensures that
typical failure modalities at scale only impact one data replica.
This implies that one can simply place each of the three replicas in
a different AZ, and be tolerant to large-scale events in addition to
the smaller individual failures.

However, in a large storage fleet, the background noise of failures
implies that, at any given moment in time, some subset of disks or
nodes may have failed and are being repaired. These failures may
be spread independently across nodes in each of AZ A, B and C.
However, the failure of AZ C, due to a fire, roof failure, flood,
etc, will break quorum for any of the replicas that concurrently
have failures in AZ A or AZ B. At that point, in a 2/3 read
quorum model, we will have lost two copies and will be unable to
determine if the third is up to date. In other words, while the
individual failures of replicas in each of the AZs are uncorrelated,
the failure of an AZ is a correlated failure of all disks and nodes in
that AZ. Quorums need to tolerate an AZ failure as well as
concurrently occuring background noise failures.

In Aurora, we have chosen a design point of tolerating (a) losing
an entire AZ and one additional node (AZ+1) without losing data,
and (b) losing an entire AZ without impacting the ability to write
data. We achieve this by replicating each data item 6 ways across
3 AZs with 2 copies of each item in each AZ. We use a quorum
model with 6 votes (V = 6), a write quorum of 4/6 (Vw = 4), and a
read quorum of 3/6 (Vr = 3). With such a model, we can (a) lose a
single AZ and one additional node (a failure of 3 nodes) without
losing read availability, and (b) lose any two nodes, including a
single AZ failure and maintain write availability. Ensuring read
quorum enables us to rebuild write quorum by adding additional
replica copies.

2.2 Segmented Storage
Let’s consider the question of whether AZ+1 provides sufficient
durability. To provide sufficient durability in this model, one must
ensure the probability of a double fault on uncorrelated failures
(Mean Time to Failure – MTTF) is sufficiently low over the time

1042

it takes to repair one of these failures (Mean Time to Repair –
MTTR). If the probability of a double fault is sufficiently high, we
may see these on an AZ failure, breaking quorum. It is difficult,
past a point, to reduce the probability of MTTF on independent
failures. We instead focus on reducing MTTR to shrink the
window of vulnerability to a double fault. We do so by
partitioning the database volume into small fixed size segments,
currently 10GB in size. These are each replicated 6 ways into
Protection Groups (PGs) so that each PG consists of six 10GB
segments, organized across three AZs, with two segments in each
AZ. A storage volume is a concatenated set of PGs, physically
implemented using a large fleet of storage nodes that are
provisioned as virtual hosts with attached SSDs using Amazon
Elastic Compute Cloud (EC2). The PGs that constitute a volume
are allocated as the volume grows. We currently support volumes
that can grow up to 64 TB on an unreplicated basis.

Segments are now our unit of independent background noise
failure and repair. We monitor and automatically repair faults as
part of our service. A 10GB segment can be repaired in 10
seconds on a 10Gbps network link. We would need to see two
such failures in the same 10 second window plus a failure of an
AZ not containing either of these two independent failures to lose
quorum. At our observed failure rates, that’s sufficiently unlikely,
even for the number of databases we manage for our customers.

2.3 Operational Advantages of Resilience
Once one has designed a system that is naturally resilient to long
failures, it is naturally also resilient to shorter ones. A storage
system that can handle the long-term loss of an AZ can also
handle a brief outage due to a power event or bad software
deployment requiring rollback. One that can handle a multi-
second loss of availability of a member of a quorum can handle a
brief period of network congestion or load on a storage node.

Since our system has a high tolerance to failures, we can leverage
this for maintenance operations that cause segment unavailability.
For example, heat management is straightforward. We can mark
one of the segments on a hot disk or node as bad, and the quorum
will be quickly repaired by migration to some other colder node in
the fleet. OS and security patching is a brief unavailability event
for that storage node as it is being patched. Even software
upgrades to our storage fleet are managed this way. We execute
them one AZ at a time and ensure no more than one member of a
PG is being patched simultaneously. This allows us to use agile
methodologies and rapid deployments in our storage service.

3. THE LOG IS THE DATABASE
In this section, we explain why using a traditional database on a
segmented replicated storage system as described in Section 2
imposes an untenable performance burden in terms of network
IOs and synchronous stalls. We then explain our approach where
we offload log processing to the storage service and
experimentally demonstrate how our approach can dramatically
reduce network IOs. Finally, we describe various techniques we
use in the storage service to minimize synchronous stalls and
unnecessary writes.

3.1 The Burden of Amplified Writes
Our model of segmenting a storage volume and replicating each
segment 6 ways with a 4/6 write quorum gives us high resilience.
Unfortunately, this model results in untenable performance for a
traditional database like MySQL that generates many different
actual I/Os for each application write. The high I/O volume is
amplified by replication, imposing a heavy packets per second
(PPS) burden. Also, the I/Os result in points of synchronization

that stall pipelines and dilate latencies. While chain replication [8]
and its alternatives can reduce network cost, they still suffer from
synchronous stalls and additive latencies.

Let’s examine how writes work in a traditional database. A
system like MySQL writes data pages to objects it exposes (e.g.,
heap files, b-trees etc.) as well as redo log records to a write-ahead
log (WAL). Each redo log record consists of the difference
between the after-image and the before-image of the page that was
modified. A log record can be applied to the before-image of the
page to produce its after-image.

In practice, other data must also be written. For instance, consider
a synchronous mirrored MySQL configuration that achieves high
availability across data-centers and operates in an active-standby
configuration as shown in Figure 2. There is an active MySQL
instance in AZ1 with networked storage on Amazon Elastic Block
Store (EBS). There is also a standby MySQL instance in AZ2,
also with networked storage on EBS. The writes made to the
primary EBS volume are synchronized with the standby EBS
volume using software mirroring.

Figure 2 shows the various types of data that the engine needs to
write: the redo log, the binary (statement) log that is archived to
Amazon Simple Storage Service (S3) in order to support point-in-
time restores, the modified data pages, a second temporary write
of the data page (double-write) to prevent torn pages, and finally
the metadata (FRM) files. The figure also shows the order of the
actual IO flow as follows. In Steps 1 and 2, writes are issued to
EBS, which in turn issues it to an AZ-local mirror, and the
acknowledgement is received when both are done. Next, in Step
3, the write is staged to the standby instance using synchronous
block-level software mirroring. Finally, in steps 4 and 5, writes
are written to the standby EBS volume and associated mirror.

The mirrored MySQL model described above is undesirable not
only because of how data is written but also because of what data
is written. First, steps 1, 3, and 5 are sequential and synchronous.
Latency is additive because many writes are sequential. Jitter is
amplified because, even on asynchronous writes, one must wait
for the slowest operation, leaving the system at the mercy of

Figure 2: Network IO in mirrored MySQL

1043

outliers. From a distributed system perspective, this model can be
viewed as having a 4/4 write quorum, and is vulnerable to failures
and outlier performance. Second, user operations that are a result
of OLTP applications cause many different types of writes often
representing the same information in multiple ways – for example,
the writes to the double write buffer in order to prevent torn pages
in the storage infrastructure.

3.2 Offloading Redo Processing to Storage
When a traditional database modifies a data page, it generates a
redo log record and invokes a log applicator that applies the redo
log record to the in-memory before-image of the page to produce
its after-image. Transaction commit requires the log to be written,
but the data page write may be deferred.

In Aurora, the only writes that cross the network are redo log
records. No pages are ever written from the database tier, not for
background writes, not for checkpointing, and not for cache
eviction. Instead, the log applicator is pushed to the storage tier
where it can be used to generate database pages in background or
on demand. Of course, generating each page from the complete
chain of its modifications from the beginning of time is
prohibitively expensive. We therefore continually materialize
database pages in the background to avoid regenerating them from
scratch on demand every time. Note that background
materialization is entirely optional from the perspective of
correctness: as far as the engine is concerned, the log is the
database, and any pages that the storage system materializes are
simply a cache of log applications. Note also that, unlike
checkpointing, only pages with a long chain of modifications need
to be rematerialized. Checkpointing is governed by the length of
the entire redo log chain. Aurora page materialization is governed
by the length of the chain for a given page.

Our approach dramatically reduces network load despite
amplifying writes for replication and provides performance as
well as durability. The storage service can scale out I/Os in an
embarrassingly parallel fashion without impacting write
throughput of the database engine. For instance, Figure 3 shows
an Aurora cluster with one primary instance and multiple replicas
instances deployed across multiple AZs. In this model, the
primary only writes log records to the storage service and streams
those log records as well as metadata updates to the replica
instances. The IO flow batches fully ordered log records based on
a common destination (a logical segment, i.e., a PG) and delivers
each batch to all 6 replicas where the batch is persisted on disk
and the database engine waits for acknowledgements from 4 out

of 6 replicas in order to satisfy the write quorum and consider the
log records in question durable or hardened. The replicas use the
redo log records to apply changes to their buffer caches.

To measure network I/O, we ran a test using the SysBench [9]
write-only workload with a 100GB data set for both
configurations described above: one with a synchronous mirrored
MySQL configuration across multiple AZs and the other with
RDS Aurora (with replicas across multiple AZs). In both
instances, the test ran for 30 minutes against database engines
running on an r3.8xlarge EC2 instance.

Table 1: Network IOs for Aurora vs MySQL
Configuration Transactions IOs/Transaction

Mirrored MySQL 780,000 7.4

Aurora with Replicas 27,378,000 0.95

The results of our experiment are summarized in Table 1. Over
the 30-minute period, Aurora was able to sustain 35 times more
transactions than mirrored MySQL. The number of I/Os per
transaction on the database node in Aurora was 7.7 times fewer
than in mirrored MySQL despite amplifying writes six times with
Aurora and not counting the chained replication within EBS nor
the cross-AZ writes in MySQL. Each storage node sees
unamplified writes, since it is only one of the six copies, resulting
in 46 times fewer I/Os requiring processing at this tier. The
savings we obtain by writing less data to the network allow us to
aggressively replicate data for durability and availability and issue
requests in parallel to minimize the impact of jitter.

Moving processing to a storage service also improves availability
by minimizing crash recovery time and eliminates jitter caused by
background processes such as checkpointing, background data
page writing and backups.

Let’s examine crash recovery. In a traditional database, after a
crash the system must start from the most recent checkpoint and
replay the log to ensure that all persisted redo records have been
applied. In Aurora, durable redo record application happens at the
storage tier, continuously, asynchronously, and distributed across
the fleet. Any read request for a data page may require some redo
records to be applied if the page is not current. As a result, the
process of crash recovery is spread across all normal foreground
processing. Nothing is required at database startup.

3.3 Storage Service Design Points
A core design tenet for our storage service is to minimize the
latency of the foreground write request. We move the majority of
storage processing to the background. Given the natural
variability between peak to average foreground requests from the
storage tier, we have ample time to perform these tasks outside the
foreground path. We also have the opportunity to trade CPU for
disk. For example, it isn’t necessary to run garbage collection
(GC) of old page versions when the storage node is busy
processing foreground write requests unless the disk is
approaching capacity. In Aurora, background processing has
negative correlation with foreground processing. This is unlike a
traditional database, where background writes of pages and
checkpointing have positive correlation with the foreground load
on the system. If we build up a backlog on the system, we will
throttle foreground activity to prevent a long queue buildup. Since
segments are placed with high entropy across the various storage
nodes in our system, throttling at one storage node is readily
handled by our 4/6 quorum writes, appearing as a slow node.

AZ 1 AZ 3

Primary
Instance

Amazon S3

AZ 2

Replica
Instance

ASYNC
4/6 QUORUM

DISTRIBUTED
WRITES

Replica
Instance

Figure 3: Network IO in Amazon Aurora

1044

Let’s examine the various activities on the storage node in more
detail. As seen in Figure 4, it involves the following steps: (1)
receive log record and add to an in-memory queue, (2) persist
record on disk and acknowledge, (3) organize records and identify
gaps in the log since some batches may be lost, (4) gossip with
peers to fill in gaps, (5) coalesce log records into new data pages,
(6) periodically stage log and new pages to S3, (7) periodically
garbage collect old versions, and finally (8) periodically validate
CRC codes on pages.

Note that not only are each of the steps above asynchronous, only
steps (1) and (2) are in the foreground path potentially impacting
latency.

4. THE LOG MARCHES FORWARD
In this section, we describe how the log is generated from the
database engine so that the durable state, the runtime state, and the
replica state are always consistent. In particular, we will describe
how consistency is implemented efficiently without an expensive
2PC protocol. First, we show how we avoid expensive redo
processing on crash recovery. Next, we explain normal operation
and how we maintain runtime and replica state. Finally, we
provide details of our recovery process.

4.1 Solution sketch: Asynchronous Processing
Since we model the database as a redo log stream (as described in
Section 3), we can exploit the fact that the log advances as an
ordered sequence of changes. In practice, each log record has an
associated Log Sequence Number (LSN) that is a monotonically
increasing value generated by the database.
This lets us simplify a consensus protocol for maintaining state by
approaching the problem in an asynchronous fashion instead of
using a protocol like 2PC which is chatty and intolerant of
failures. At a high level, we maintain points of consistency and
durability, and continually advance these points as we receive
acknowledgements for outstanding storage requests. Since any
individual storage node might have missed one or more log
records, they gossip with the other members of their PG, looking
for gaps and fill in the holes. The runtime state maintained by the
database lets us use single segment reads rather than quorum reads
except on recovery when the state is lost and has to be rebuilt.
The database may have multiple outstanding isolated transactions,
which can complete (reach a finished and durable state) in a
different order than initiated. Supposing the database crashes or
reboots, the determination of whether to roll back is separate for

each of these individual transactions. The logic for tracking
partially completed transactions and undoing them is kept in the
database engine, just as if it were writing to simple disks.
However, upon restart, before the database is allowed to access
the storage volume, the storage service does its own recovery
which is focused not on user-level transactions, but on making
sure that the database sees a uniform view of storage despite its
distributed nature.

The storage service determines the highest LSN for which it can
guarantee availability of all prior log records (this is known as the
VCL or Volume Complete LSN). During storage recovery, every
log record with an LSN larger than the VCL must be truncated.
The database can, however, further constrain a subset of points
that are allowable for truncation by tagging log records and
identifying them as CPLs or Consistency Point LSNs. We
therefore define VDL or the Volume Durable LSN as the highest
CPL that is smaller than or equal to VCL and truncate all log
records with LSN greater than the VDL. For example, even if we
have the complete data up to LSN 1007, the database may have
declared that only 900, 1000, and 1100 are CPLs, in which case,
we must truncate at 1000. We are complete to 1007, but only
durable to 1000.

Completeness and durability are therefore different and a CPL can
be thought of as delineating some limited form of storage system
transaction that must be accepted in order. If the client has no use
for such distinctions, it can simply mark every log record as a
CPL. In practice, the database and storage interact as follows:

1. Each database-level transaction is broken up into
multiple mini-transactions (MTRs) that are ordered and
must be performed atomically.

2. Each mini-transaction is composed of multiple
contiguous log records (as many as needed).

3. The final log record in a mini-transaction is a CPL.

On recovery, the database talks to the storage service to establish
the durable point of each PG and uses that to establish the VDL
and then issue commands to truncate the log records above VDL.

4.2 Normal Operation
We now describe the “normal operation” of the database engine
and focus in turn on writes, reads, commits, and replicas.

4.2.1 Writes
In Aurora, the database continuously interacts with the storage
service and maintains state to establish quorum, advance volume
durability, and register transactions as committed. For instance, in
the normal/forward path, as the database receives
acknowledgements to establish the write quorum for each batch of
log records, it advances the current VDL. At any given moment,
there can be a large number of concurrent transactions active in
the database, each generating their own redo log records. The
database allocates a unique ordered LSN for each log record
subject to a constraint that no LSN is allocated with a value that is
greater than the sum of the current VDL and a constant called the
LSN Allocation Limit (LAL) (currently set to 10 million). This
limit ensures that the database does not get too far ahead of the
storage system and introduces back-pressure that can throttle the
incoming writes if the storage or network cannot keep up.
Note that each segment of each PG only sees a subset of log
records in the volume that affect the pages residing on that
segment. Each log record contains a backlink that identifies the
previous log record for that PG. These backlinks can be used to
track the point of completeness of the log records that have
reached each segment to establish a Segment Complete LSN

LOG RECORDS

Primary
Instance

INCOMING QUEUE

STORAGE NODE

S3 BACKUP

1

2

3

4

5

6

7

8
UPDATE
QUEUE

ACK

HOT
LOG

DATA
PAGES

POINT IN TIME
SNAPSHOT

GC

SCRUB
COALESCE

SORT
GROUP

PEER TO PEER GOSSIPPeer
Storage
Nodes

Figure 4: IO Traffic in Aurora Storage Nodes

1045

(SCL) that identifies the greatest LSN below which all log records
of the PG have been received. The SCL is used by the storage
nodes when they gossip with each other in order to find and
exchange log records that they are missing.

4.2.2 Commits
In Aurora, transaction commits are completed asynchronously.
When a client commits a transaction, the thread handling the
commit request sets the transaction aside by recording its “commit
LSN” as part of a separate list of transactions waiting on commit
and moves on to perform other work. The equivalent to the WAL
protocol is based on completing a commit, if and only if, the latest
VDL is greater than or equal to the transaction’s commit LSN. As
the VDL advances, the database identifies qualifying transactions
that are waiting to be committed and uses a dedicated thread to
send commit acknowledgements to waiting clients. Worker
threads do not pause for commits, they simply pull other pending
requests and continue processing.

4.2.3 Reads
In Aurora, as with most databases, pages are served from the
buffer cache and only result in a storage IO request if the page in
question is not present in the cache.

If the buffer cache is full, the system finds a victim page to evict
from the cache. In a traditional system, if the victim is a “dirty
page” then it is flushed to disk before replacement. This is to
ensure that a subsequent fetch of the page always results in the
latest data. While the Aurora database does not write out pages on
eviction (or anywhere else), it enforces a similar guarantee: a page
in the buffer cache must always be of the latest version. The
guarantee is implemented by evicting a page from the cache only
if its “page LSN” (identifying the log record associated with the
latest change to the page) is greater than or equal to the VDL. This
protocol ensures that: (a) all changes in the page have been
hardened in the log, and (b) on a cache miss, it is sufficient to
request a version of the page as of the current VDL to get its latest
durable version.

The database does not need to establish consensus using a read
quorum under normal circumstances. When reading a page from
disk, the database establishes a read-point, representing the VDL
at the time the request was issued. The database can then select a
storage node that is complete with respect to the read point,
knowing that it will therefore receive an up to date version. A
page that is returned by the storage node must be consistent with
the expected semantics of a mini-transaction (MTR) in the
database. Since the database directly manages feeding log records
to storage nodes and tracking progress (i.e., the SCL of each
segment), it normally knows which segment is capable of
satisfying a read (the segments whose SCL is greater than the
read-point) and thus can issue a read request directly to a segment
that has sufficient data.
Given that the database is aware of all outstanding reads, it can
compute at any time the Minimum Read Point LSN on a per-PG
basis. If there are read replicas the writer gossips with them to
establish the per-PG Minimum Read Point LSN across all nodes.
This value is called the Protection Group Min Read Point LSN
(PGMRPL) and represents the “low water mark” below which all
the log records of the PG are unnecessary. In other words, a
storage node segment is guaranteed that there will be no read page
requests with a read-point that is lower than the PGMRPL. Each
storage node is aware of the PGMRPL from the database and can,
therefore, advance the materialized pages on disk by coalescing
the older log records and then safely garbage collecting them.

The actual concurrency control protocols are executed in the
database engine exactly as though the database pages and undo
segments are organized in local storage as with traditional
MySQL.

4.2.4 Replicas
In Aurora, a single writer and up to 15 read replicas can all mount
a single shared storage volume. As a result, read replicas add no
additional costs in terms of consumed storage or disk write
operations. To minimize lag, the log stream generated by the
writer and sent to the storage nodes is also sent to all read replicas.
In the reader, the database consumes this log stream by
considering each log record in turn. If the log record refers to a
page in the reader's buffer cache, it uses the log applicator to
apply the specified redo operation to the page in the cache.
Otherwise it simply discards the log record. Note that the replicas
consume log records asynchronously from the perspective of the
writer, which acknowledges user commits independent of the
replica. The replica obeys the following two important rules while
applying log records: (a) the only log records that will be applied
are those whose LSN is less than or equal to the VDL, and (b) the
log records that are part of a single mini-transaction are applied
atomically in the replica's cache to ensure that the replica sees a
consistent view of all database objects. In practice, each replica
typically lags behind the writer by a short interval (20 ms or less).

4.3 Recovery
Most traditional databases use a recovery protocol such as ARIES
[7] that depends on the presence of a write-ahead log (WAL) that
can represent the precise contents of all committed transactions.
These systems also periodically checkpoint the database to
establish points of durability in a coarse-grained fashion by
flushing dirty pages to disk and writing a checkpoint record to the
log. On restart, any given page can either miss some committed
data or contain uncommitted data. Therefore, on crash recovery
the system processes the redo log records since the last checkpoint
by using the log applicator to apply each log record to the relevant
database page. This process brings the database pages to a
consistent state at the point of failure after which the in-flight
transactions during the crash can be rolled back by executing the
relevant undo log records. Crash recovery can be an expensive
operation. Reducing the checkpoint interval helps, but at the
expense of interference with foreground transactions. No such
tradeoff is required with Aurora.

A great simplifying principle of a traditional database is that the
same redo log applicator is used in the forward processing path as
well as on recovery where it operates synchronously and in the
foreground while the database is offline. We rely on the same
principle in Aurora as well, except that the redo log applicator is
decoupled from the database and operates on storage nodes, in
parallel, and all the time in the background. Once the database
starts up it performs volume recovery in collaboration with the
storage service and as a result, an Aurora database can recover
very quickly (generally under 10 seconds) even if it crashed while
processing over 100,000 write statements per second.

The database does need to reestablish its runtime state after a
crash. In this case, it contacts for each PG, a read quorum of
segments which is sufficient to guarantee discovery of any data
that could have reached a write quorum. Once the database has
established a read quorum for every PG it can recalculate the
VDL above which data is truncated by generating a truncation
range that annuls every log record after the new VDL, up to and
including an end LSN which the database can prove is at least as
high as the highest possible outstanding log record that could ever

1046

have been seen. The database infers this upper bound because it
allocates LSNs, and limits how far allocation can occur above
VDL (the 10 million limit described earlier). The truncation
ranges are versioned with epoch numbers, and written durably to
the storage service so that there is no confusion over the durability
of truncations in case recovery is interrupted and restarted.
The database still needs to perform undo recovery to unwind the
operations of in-flight transactions at the time of the crash.
However, undo recovery can happen when the database is online
after the system builds the list of these in-flight transactions from
the undo segments.

5. PUTTING IT ALL TOGETHER

In this section, we describe the building blocks of Aurora as
shown with a bird’s eye view in Figure 5.

The database engine is a fork of “community” MySQL/InnoDB
and diverges primarily in how InnoDB reads and writes data to
disk. In community InnoDB, a write operation results in data
being modified in buffer pages, and the associated redo log
records written to buffers of the WAL in LSN order. On
transaction commit, the WAL protocol requires only that the redo
log records of the transaction are durably written to disk. The
actual modified buffer pages are also written to disk eventually
through a double-write technique to avoid partial page writes.
These page writes take place in the background, or during eviction
from the cache, or while taking a checkpoint. In addition to the IO
Subsystem, InnoDB also includes the transaction subsystem, the
lock manager, a B+-Tree implementation and the associated
notion of a “mini transaction” (MTR). An MTR is a construct
only used inside InnoDB and models groups of operations that
must be executed atomically (e.g., split/merge of B+-Tree pages).
In the Aurora InnoDB variant, the redo log records representing
the changes that must be executed atomically in each MTR are
organized into batches that are sharded by the PGs each log record
belongs to, and these batches are written to the storage service.
The final log record of each MTR is tagged as a consistency point.
Aurora supports exactly the same isolation levels that are
supported by community MySQL in the writer (the standard
ANSI levels and Snapshot Isolation or consistent reads). Aurora
read replicas get continuous information on transaction starts and

commits in the writer and use this information to support snapshot
isolation for local transactions that are of course read-only. Note
that concurrency control is implemented entirely in the database
engine without impacting the storage service. The storage service
presents a unified view of the underlying data that is logically
identical to what you would get by writing the data to local
storage in community InnoDB.

Aurora leverages Amazon Relational Database Service (RDS) for
its control plane. RDS includes an agent on the database instance
called the Host Manager (HM) that monitors a cluster’s health and
determines if it needs to fail over, or if an instance needs to be
replaced. Each database instance is part of a cluster that consists
of a single writer and zero or more read replicas. The instances of
a cluster are in a single geographical region (e.g., us-east-1, us-
west-1 etc.), are typically placed in different AZs, and connect to
a storage fleet in the same region. For security, we isolate the
communication between the database, applications and storage. In
practice, each database instance can communicate on three
Amazon Virtual Private Cloud (VPC) networks: the customer
VPC through which customer applications interact with the
engine, the RDS VPC through which the database engine and
control plane interact with each other, and the Storage VPC
through which the database interacts with storage services.

The storage service is deployed on a cluster of EC2 VMs that are
provisioned across at least 3 AZs in each region and is
collectively responsible for provisioning multiple customer
storage volumes, reading and writing data to and from those
volumes, and backing up and restoring data from and to those
volumes. The storage nodes manipulate local SSDs and interact
with database engine instances, other peer storage nodes, and the
backup/restore services that continuously backup changed data to
S3 and restore data from S3 as needed. The storage control plane
uses the Amazon DynamoDB database service for persistent
storage of cluster and storage volume configuration, volume
metadata, and a detailed description of data backed up to S3. For
orchestrating long-running operations, e.g. a database volume
restore operation or a repair (re-replication) operation following a
storage node failure, the storage control plane uses the Amazon
Simple Workflow Service. Maintaining a high level of availability
requires pro-active, automated, and early detection of real and
potential problems, before end users are impacted. All critical
aspects of storage operations are constantly monitored using
metric collection services that raise alarms if key performance or
availability metrics indicate a cause for concern.

6. PERFORMANCE RESULTS

In this section, we will share our experiences in running Aurora as
a production service that was made “Generally Available” in July
2015. We begin with a summary of results running industry
standard benchmarks and then present some performance results
from our customers.

6.1 Results with Standard Benchmarks

Here we present results of different experiments that compare the
performance of Aurora and MySQL using industry standard
benchmarks such as SysBench and TPC-C variants. We ran
MySQL on instances that are attached to an EBS volume with
30K provisioned IOPS. Except when stated otherwise, these are
r3.8xlarge EC2 instances with 32 vCPUs and 244GB of memory

Figure 5: Aurora Architecture: A Bird's Eye View

1047

and features the Intel Xeon E5-2670 v2 (Ivy Bridge) processors.
The buffer cache on the r3.8xlarge is set to 170GB.

6.1.1 Scaling with instance sizes
In this experiment, we report that throughput in Aurora can scale
linearly with instance sizes, and with the highest instance size can
be 5x that of MySQL 5.6 and MySQL 5.7. Note that Aurora is
currently based on the MySQL 5.6 code base. We ran the
SysBench read-only and write-only benchmarks for a 1GB data
set (250 tables) on 5 EC2 instances of the r3 family (large, xlarge,
2xlarge, 4xlarge, 8xlarge). Each instance size has exactly half the
vCPUs and memory of the immediately larger instance.

The results are shown in Figure 7 and Figure 6, and measure the
performance in terms of write and read statements per second
respectively. Aurora’s performance doubles for each higher
instance size and for the r3.8xlarge achieves 121,000 writes/sec
and 600,000 reads/sec which is 5x that of MySQL 5.7 which tops
out at 20,000 reads/sec and 125,000 writes/sec.

6.1.2 Throughput with varying data sizes
In this experiment, we report that throughput in Aurora
significantly exceeds that of MySQL even with larger data sizes
including workloads with out-of-cache working sets. Table 2

shows that for the SysBench write-only workload, Aurora can be
up to 67x faster than MySQL with a database size of 100GB.
Even for a database size of 1TB with an out-of-cache workload,
Aurora is still 34x faster than MySQL.

Table 2: SysBench Write-Only (writes/sec)

DB Size Amazon Aurora MySQL

1 GB 107,000 8,400

10 GB 107,000 2,400

100 GB 101,000 1,500

1 TB 41,000 1,200

6.1.3 Scaling with user connections
In this experiment, we report that throughput in Aurora can scale
with the number of client connections. Table 3 shows the results
of running the SysBench OLTP benchmark in terms of writes/sec
as the number of connections grows from 50 to 500 to 5000.
While Aurora scales from 40,000 writes/sec to 110,000 writes/sec,
the throughput in MySQL peaks at around 500 connections and
then drops sharply as the number of connections grows to 5000.

Table 3: SysBench OLTP (writes/sec)

Connections Amazon Aurora MySQL

50 40,000 10,000

500 71,000 21,000

5,000 110,000 13,000

6.1.4 Scaling with Replicas
In this experiment, we report that the lag in an Aurora read replica
is significantly lower than that of a MySQL replica even with
more intense workloads. Table 4 shows that as the workload
varies from 1,000 to 10,000 writes/second, the replica lag in
Aurora grows from 2.62 milliseconds to 5.38 milliseconds. In
contrast, the replica lag in MySQL grows from under a second to
300 seconds. At 10,000 writes/second Aurora has a replica lag
that is several orders of magnitude smaller than that of MySQL.
Replica lag is measured in terms of the time it takes for a
committed transaction to be visible in the replica.

Table 4: Replica Lag for SysBench Write-Only (msec)
Writes/sec Amazon Aurora MySQL

1,000 2.62 < 1000

2,000 3.42 1000

5,000 3.94 60,000

10,000 5.38 300,000

6.1.5 Throughput with hot row contention
In this experiment, we report that Aurora performs very well
relative to MySQL on workloads with hot row contention, such as
those based on the TPC-C benchmark. We ran the Percona TPC-C
variant [37] against Amazon Aurora and MySQL 5.6 and 5.7 on
an r3.8xlarge where MySQL uses an EBS volume with 30K
provisioned IOPS. Table 5 shows that Aurora can sustain between
2.3x to 16.3x the throughput of MySQL 5.7 as the workload
varies from 500 connections and a 10GB data size to 5000
connections and a 100GB data size.

Figure 7: Aurora scales linearly for write-only workload

Figure 6: Aurora scales linearly for read-only workload

1048

Table 5: Percona TPC-C Variant (tpmC)

Connections/Size/
Warehouses

Amazon
Aurora

MySQL
5.6

MySQL
5.7

500/10GB/100 73,955 6,093 25,289

5000/10GB/100 42,181 1,671 2,592

500/100GB/1000 70,663 3,231 11,868

5000/100GB/1000 30,221 5,575 13,005

6.2 Results with Real Customer Workloads

In this section, we share results reported by some of our customers
who migrated production workloads from MySQL to Aurora.

6.2.1 Application response time with Aurora
An internet gaming company migrated their production service
from MySQL to Aurora on an r3.4xlarge instance. The average
response time that their web transactions experienced prior to the
migration was 15 ms. In contrast, after the migration the average
response time 5.5 ms, a 3x improvement as shown in Figure 8.

6.2.2 Statement Latencies with Aurora

An education technology company whose service helps schools
manage student laptops migrated their production workload from
MySQL to Aurora. The median (P50) and 95th percentile (P99)
latencies for select and per-record insert operations before and
after the migration (at 14:00 hours) are shown in Figure 9 and
Figure 10.

Before the migration, the P95 latencies ranged between 40ms to
80ms and were much worse than the P50 latencies of about 1ms.
The application was experiencing the kinds of poor outlier
performance that we described earlier in this paper. After the
migration, however, the P95 latencies for both operations
improved dramatically and approximated the P50 latencies.

6.2.3 Replica Lag with Multiple Replicas
MySQL replicas often lag significantly behind their writers and
can “can cause strange bugs” as reported by Weiner at Pinterest
[40]. For the education technology company described earlier, the
replica lag often spiked to 12 minutes and impacted application
correctness and so the replica was only useful as a stand by. In
contrast, after migrating to Aurora, the maximum replica lag
across 4 replicas never exceeded 20ms as shown in Figure 11. The
improved replica lag provided by Aurora let the company divert a
significant portion of their application load to the replicas saving
costs and increasing availability.

7. LESSONS LEARNED
We have now seen a large variety of applications run by
customers ranging from small internet companies all the way to
highly sophisticated organizations operating large numbers of
Aurora clusters. While many of their use cases are standard, we
focus on scenarios and expectations that are common in the cloud
and are leading us to new directions.

7.1 Multi-tenancy and database consolidation
Many of our customers operate Software-as-a-Service (SaaS)
businesses, either exclusively or with some residual on-premise
customers they are trying to move to their SaaS model. We find
that these customers often rely on an application they cannot
easily change. Therefore, they typically consolidate their different
customers on a single instance by using a schema/database as a
unit of tenancy. This idiom reduces costs: they avoid paying for a
dedicated instance per customer when it is unlikely that all of their
customers active at once. For instance, some of our SaaS
customers report ha ving more than 50,000 customers of their
own.

Figure 8: Web application response time

Figure 9: SELECT latency (P50 vs P95)

Figure 10: INSERT per-record latency (P50 vs P95)

Figure 11: Maximum Replica Lag (averaged hourly)

1049

This model is markedly different from well-known multi-tenant
applications like Salesforce.com [14] which use a multi-tenant
data model and pack the data of multiple customers into unified
tables of a single schema with tenancy identified on a per-row
basis. As a result, we see many customers with consolidated
databases containing a large number of tables. Production
instances of over 150,000 tables for small database are quite
common. This puts pressure on components that manage metadata
like the dictionary cache. More importantly, such customers need
(a) to sustain a high level of throughput and many concurrent user
connections, (b) a model where data is only provisioned and paid
for as it is used since it is hard to anticipate in advance how much
storage space is needed, and (c) reduced jitter so that spikes for a
single tenant have minimal impact on other tenants. Aurora
supports these attributes and fits such SaaS applications very well.

7.2 Highly concurrent auto-scaling workloads
Internet workloads often need to deal with spikes in traffic based
on sudden unexpected events. One of our major customers had a
special appearance in a highly popular nationally televised show
and experienced one such spike that greatly surpassed their
normal peak throughput without stressing the database. To
support such spikes, it is important for a database to handle many
concurrent connections. This approach is feasible in Aurora since
the underlying storage system scales so well. We have several
customers that run at over 8000 connections per second.

7.3 Schema evolution
Modern web application frameworks such as Ruby on Rails
deeply integrate object-relational mapping tools. As a result, it is
easy for application developers to make many schema changes to
their database making it challenging for DBAs to manage how the
schema evolves. In Rails applications, these are called “DB
Migrations” and we have heard first-hand accounts of DBAs that
have to either deal with a “few dozen migrations a week”, or put
in place hedging strategies to ensure that future migrations take
place without pain. The situation is exacerbated with MySQL
offering liberal schema evolution semantics and implementing
most changes using a full table copy. Since frequent DDL is a
pragmatic reality, we have implemented an efficient online DDL
implementation that (a) versions schemas on a per-page basis and
decodes individual pages on demand using their schema history,
and (b) lazily upgrades individual pages to the latest schema using
a modify-on-write primitive.

7.4 Availability and Software Upgrades
Our customers have demanding expectations of cloud-native
databases that can conflict with how we operate the fleet and how
often we patch servers. Since our customers use Aurora primarily
as an OLTP service backing production applications, any
disruption can be traumatic. As a result, many of our customers
have a very low tolerance to our updates of database software,
even if this amounts to a planned downtime of 30 seconds every 6
weeks or so. Therefore, we recently released a new Zero-
Downtime Patch (ZDP) feature that allows us to patch a customer
while in-flight database connections are unaffected.

As shown in Figure 12, ZDP works by looking for an instant
where there are no active transactions, and in that instant spooling
the application state to local ephemeral storage, patching the
engine and then reloading the application state. In the process,
user sessions remain active and oblivious that the engine changed
under the covers.

8. RELATED WORK

In this section, we discuss other contributions and how they relate
to the approaches taken in Aurora.

Decoupling storage from compute. Although traditional systems
have usually been built as monolithic daemons [27], there has
been recent work on databases that decompose the kernel into
different components. For instance, Deuteronomy [10] is one such
system that separates a Transaction Component (TC) that provides
concurrency control and recovery from a Data Component (DC)
that provides access methods on top of LLAMA [34], a latch-free
log-structured cache and storage manager. Sinfonia [39] and
Hyder [38] are systems that abstract transactional access methods
over a scale out service and database systems can be implemented
using these abstractions. The Yesquel [36] system implements a
multi-version distributed balanced tree and separates concurrency
control from the query processor. Aurora decouples storage at a
level lower than that of Deuteronomy, Hyder, Sinfonia, and
Yesquel. In Aurora, query processing, transactions, concurrency,
buffer cache, and access methods are decoupled from logging,
storage, and recovery that are implemented as a scale out service.

Distributed Systems. The trade-offs between correctness and
availability in the face of partitions have long been known with
the major result that one-copy serializability is not possible in the
face of network partitions [15]. More recently Brewer’s CAP
Theorem as proved in [16] stated that a highly available system
cannot provide “strong” consistency guarantees in the presence of
network partitions. These results and our experience with cloud-
scale complex and correlated failures motivated our consistency
goals even in the presence of partitions caused by an AZ failure.

Bailis et al [12] study the problem of providing Highly Available
Transactions (HATs) that neither suffer unavailability during
partitions nor incur high network latency. They show that
Serializability, Snapshot Isolation and Repeatable Read isolation
are not HAT-compliant, while most other isolation levels are
achievable with high availability. Aurora provides all these
isolation levels by making a simplifying assumption that at any
time there is only a single writer generating log updates with
LSNs allocated from a single ordered domain.

Google’s Spanner [24] provides externally consistent [25] reads
and writes, and globally-consistent reads across the database at a
timestamp. These features enable Spanner to support consistent
backups, consistent distributed query processing [26], and atomic
schema updates, all at global scale, and even in the presence of
ongoing transactions. As explained by Bailis [12], Spanner is
highly specialized for Google’s read-heavy workload and relies on
two-phase commit and two-phase locking for read/write
transactions.

Figure 12: Zero-Downtime Patching

1050

Concurrency Control. Weaker consistency (PACELC [17]) and
isolation models [18][20] are well known in distributed databases
and have led to optimistic replication techniques [19] as well as
eventually consistent systems [21][22][23]. Other approaches in
centralized systems range from classic pessimistic schemes based
on locking [28], optimistic schemes like multi-versioned
concurrency control in Hekaton [29], sharded approaches such as
VoltDB [30] and Timestamp ordering in HyPer [31][32] and
Deuteronomy. Aurora’s storage service provides the database
engine the abstraction of a local disk that is durably persisted, and
allows the engine to determine isolation and concurrency control.

Log-structured storage. Log-structured storage systems were
introduced by LFS [33] in 1992. More recently Deuteronomy and
the associated work in LLAMA [34] and Bw-Tree [35] use log-
structured techniques in multiple ways across the storage engine
stack and, like Aurora, reduce write amplification by writing
deltas instead of whole pages. Both Deuteronomy and Aurora
implement pure redo logging, and keep track of the highest stable
LSN for acknowledging commits.

Recovery. While traditional databases rely on a recovery protocol
based on ARIES [5], some recent systems have chosen other paths
for performance. For example, Hekaton and VoltDB rebuild their
in-memory state after a crash using some form of an update log.
Systems like Sinfonia [39] avoid recovery by using techniques
like process pairs and state machine replication. Graefe [41]
describes a system with per-page log record chains that enables
on-demand page-by-page redo that can make recovery fast. Like
Aurora, Deuteronomy does not require redo recovery. This is
because Deuteronomy delays transactions so that only committed
updates are posted to durable storage. As a result, unlike Aurora,
the size of transactions can be constrained in Deuteronomy.

9. CONCLUSION
We designed Aurora as a high throughput OLTP database that
compromises neither availability nor durability in a cloud-scale
environment. The big idea was to move away from the monolithic
architecture of traditional databases and decouple storage from
compute. In particular, we moved the lower quarter of the
database kernel to an independent scalable and distributed service
that managed logging and storage. With all I/Os written over the
network, our fundamental constraint is now the network. As a
result we need to focus on techniques that relieve the network and
improve throughput. We rely on quorum models that can handle
the complex and correlated failures that occur in large-scale cloud
environments and avoid outlier performance penalties, log
processing to reduce the aggregate I/O burden, and asynchronous
consensus to eliminate chatty and expensive multi-phase
synchronization protocols, offline crash recovery, and
checkpointing in distributed storage. Our approach has led to a
simplified architecture with reduced complexity that is easy to
scale as well as a foundation for future advances.

10. ACKNOWLEDGMENTS
We thank the entire Aurora development team for their efforts on
the project including our current members as well as our
distinguished alumni (James Corey, Sam McKelvie, Yan
Leshinsky, Lon Lundgren, Pradeep Madhavarapu, and Stefano
Stefani). We are particularly grateful to our customers who
operate production workloads using our service and have been
generous in sharing their experiences and expectations with us.
We also thank the shepherds for their invaluable comments in
shaping this paper.

11. REFERENCES

[1] B. Calder, J. Wang, et al. Windows Azure storage: A highly
available cloud storage service with strong consistency. In
SOSP 2011.

[2] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang.
Rethinking erasure codes for cloud file systems: Minimizing
I/O for recovery and degraded reads. In FAST 2012.

[3] P.A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems,
Chapter 7, Addison Wesley Publishing Company, ISBN 0-
201-10715-5, 1997.

[4] C. Mohan, B. Lindsay, and R. Obermarck. Transaction
management in the R* distributed database management
system”. ACM TODS, 11(4):378-396, 1986.

[5] C. Mohan and B. Lindsay. Efficient commit protocols for the
tree of processes model of distributed transactions. ACM
SIGOPS Operating Systems Review, 19(2):40-52, 1985.

[6] D.K. Gifford. Weighted voting for replicated data. In SOSP
1979.

[7] C. Mohan, D.L. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz. ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-
ahead logging. ACM TODS, 17 (1): 94–162, 1992.

[8] R. van Renesse and F. Schneider. Chain replication for
supporting high throughput and availability. In OSDI 2004.

[9] A. Kopytov. Sysbench Manual. Available at
http://imysql.com/wp-content/uploads/2014/10/sysbench-
manual.pdf

[10] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman, and R.
Wang. High performance transactions in deuteronomy. In
CIDR 2015.

[11] P. Bailis, A. Fekete, A. Ghodsi, J.M. Hellerstein, and I.
Stoica. Scalable atomic visibility with RAMP Transactions.
In SIGMOD 2014.

[12] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J.M.
Hellerstein, and I. Stoica. Highly available transactions:
virtues and limitations. In VLDB 2014.

[13] R. Taft, E. Mansour, M. Serafini, J. Duggan, A.J. Elmore, A.
Aboulnaga, A. Pavlo, and M. Stonebraker. E-Store: fine-
grained elastic partitioning for distributed transaction
processing systems. In VLDB 2015.

[14] R. Woollen. The internal design of salesforce.com’s multi-
tenant architecture. In SoCC 2010.

[15] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency
in partitioned networks. ACM CSUR, 17(3):341–370, 1985.

[16] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, 2002.

[17] D.J. Abadi. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story. IEEE
Computer, 45(2), 2012.

[18] A. Adya. Weak consistency: a generalized theory and
optimistic implementations for distributed transactions. PhD
Thesis, MIT, 1999.

1051

http://doi.acm.org/10.1145/161468.16147
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf

[19] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1), Mar. 2005.

[20] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In
SIGMOD 1995.

[21] P. Bailis and A. Ghodsi. Eventual consistency today:
limitations, extensions, and beyond. ACM Queue, 11(3),
March 2013.

[22] P. Bernstein and S. Das. Rethinking eventual consistency. In
SIGMOD, 2013.

[23] B. Cooper et al. PNUTS: Yahoo!’s hosted data serving
platform. In VLDB 2008.

[24] J. C. Corbett, J. Dean, et al. Spanner: Google’s globally-
distributed database. In OSDI 2012.

[25] David K. Gifford. Information Storage in a Decentralized
Computer System. Tech. rep. CSL-81-8. PhD dissertation.
Xerox PARC, July 1982.

[26] Jeffrey Dean and Sanjay Ghemawat. MapReduce: a flexible
data processing tool”. CACM 53 (1):72-77, 2010.

[27] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton.
Architecture of a database system. Foundations and Trends
in Databases. 1(2) pp. 141-259, 2007.

[28] J. Gray, R. A. Lorie, G. R. Putzolu, I. L. Traiger. Granularity
of locks in a shared data base. In VLDB 1975.

[29] P-A Larson, et al. High-Performance Concurrency control
mechanisms for main-memory databases. PVLDB, 5(4): 298-
309, 2011.

[30] M. Stonebraker and A. Weisberg. The VoltDB main memory
DBMS. IEEE Data Eng. Bull., 36(2): 21-27, 2013.

[31] V. Leis, A. Kemper, et al. Exploiting hardware transactional
memory in main-memory databases. In ICDE 2014.

[32] H. Mühe, S. Wolf, A. Kemper, and T. Neumann: An
evaluation of strict timestamp ordering concurrency control
for main-memory database systems. In IMDM 2013.

[33] M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. ACM TOCS
10(1): 26–52, 1992.

[34] J. Levandoski, D. Lomet, S. Sengupta. LLAMA: A
cache/storage subsystem for modern hardware. PVLDB
6(10): 877-888, 2013.

[35] J. Levandoski, D. Lomet, and S. Sengupta. The Bw-Tree: A
B-tree for new hardware platforms. In ICDE 2013.

[36] M. Aguilera, J. Leners, and M. Walfish. Yesquel: scalable
SQL storage for web applications. In SOSP 2015.

[37] Percona Lab. TPC-C Benchmark over MySQL. Available at
https://github.com/Percona-Lab/tpcc-mysql

[38] P. Bernstein, C. Reid, and S. Das. Hyder – A transactional
record manager for shared flash. In CIDR 2011.

[39] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C.
Karamanolis. Sinfonia: A new paradigm for building scalable
distributed systems. ACM Trans. Comput. Syst. 27(3): 2009.

[40] M. Weiner. Sharding Pinterest: How we scaled our MySQL
fleet. Pinterest Engineering Blog. Available at:
https://engineering.pinterest.com/blog/sharding-pinterest-
how-we-scaled-our-mysql-fleet

[41] G. Graefe. Instant recovery for data center savings. ACM
SIGMOD Record. 44(2):29-34, 2015.

[42] J. Dean and L. Barroso. The tail at scale. CACM 56(2):74-
80, 2013.

1052

https://github.com/Percona-Lab/tpcc-mysql
https://engineering.pinterest.com/blog/sharding-pinterest-how-we-scaled-our-mysql-fleet
https://engineering.pinterest.com/blog/sharding-pinterest-how-we-scaled-our-mysql-fleet

