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ABSTRACT 
Amazon Aurora is a relational database service for OLTP 
workloads offered as part of Amazon Web Services (AWS). In 
this paper, we describe the architecture of Aurora and the design 
considerations leading to that architecture. We believe the central 
constraint in high throughput data processing has moved from 
compute and storage to the network. Aurora brings a novel 
architecture to the relational database to address this constraint, 
most notably by pushing redo processing to a multi-tenant scale-
out storage service, purpose-built for Aurora. We describe how 
doing so not only reduces network traffic, but also allows for fast 
crash recovery, failovers to replicas without loss of data, and 
fault-tolerant, self-healing storage. We then describe how Aurora 
achieves consensus on durable state across numerous storage 
nodes using an efficient asynchronous scheme, avoiding 
expensive and chatty recovery protocols. Finally, having operated 
Aurora as a production service for over 18 months, we share 
lessons we have learned from our customers on what modern 
cloud applications expect from their database tier.   
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1. INTRODUCTION 
IT workloads are increasingly moving to public cloud providers. 
Significant reasons for this industry-wide transition include the 
ability to provision capacity on a flexible on-demand basis and to 
pay for this capacity using an operational expense as opposed to 
capital expense model. Many IT workloads require a relational 
OLTP database; providing equivalent or superior capabilities to 
on-premise databases is critical to support this secular transition. 

In modern distributed cloud services, resilience and scalability are 
increasingly achieved by decoupling compute from storage 
[10][24][36][38][39] and by replicating storage across multiple 
nodes. Doing so lets us handle operations such as replacing 
misbehaving or unreachable hosts, adding replicas, failing over 
from a writer to a replica, scaling the size of a database instance 
up or down, etc.  

The I/O bottleneck faced by traditional database systems changes 
in this environment. Since I/Os can be spread across many nodes 
and many disks in a multi-tenant fleet, the individual disks and 
nodes are no longer hot. Instead, the bottleneck moves to the 
network between the database tier requesting I/Os and the storage 
tier that performs these I/Os. Beyond the basic bottlenecks of 
packets per second (PPS) and bandwidth, there is amplification of 
traffic since a performant database will issue writes out to the 
storage fleet in parallel. The performance of the outlier storage 
node, disk or network path can dominate response time.  

Although most operations in a database can overlap with each 
other, there are several situations that require synchronous 
operations. These result in stalls and context switches. One such 
situation is a disk read due to a miss in the database buffer cache. 
A reading thread cannot continue until its read completes. A cache 
miss may also incur the extra penalty of evicting and flushing a 
dirty cache page to accommodate the new page. Background 
processing such as checkpointing and dirty page writing can 
reduce the occurrence of this penalty, but can also cause stalls, 
context switches and resource contention.  

Transaction commits are another source of interference; a stall in 
committing one transaction can inhibit others from progressing. 
Handling commits with multi-phase synchronization protocols 
such as 2-phase commit (2PC) [3][4][5] is challenging in a cloud-
scale distributed system. These protocols are intolerant of failure 
and high-scale distributed systems have a continual “background 
noise” of hard and soft failures. They are also high latency, as 
high scale systems are distributed across multiple data centers.  
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In this paper, we describe Amazon Aurora, a new database service 
that addresses the above issues by more aggressively leveraging 
the redo log across a highly-distributed cloud environment. We 
use a novel service-oriented architecture (see Figure 1) with a 
multi-tenant scale-out storage service that abstracts a virtualized 
segmented redo log and is loosely coupled to a fleet of database 
instances. Although each instance still includes most of the 
components of a traditional kernel (query processor, transactions, 
locking, buffer cache, access methods and undo management) 
several functions (redo logging, durable storage, crash recovery, 
and backup/restore) are off-loaded to the storage service. 
 
Our architecture has three significant advantages over traditional 
approaches. First, by building storage as an independent fault-
tolerant and self-healing service across multiple data-centers, we 
protect the database from performance variance and transient or 
permanent failures at either the networking or storage tiers. We 
observe that a failure in durability can be modeled as a long-
lasting availability event, and an availability event can be modeled 
as a long-lasting performance variation – a well-designed system 
can treat each of these uniformly [42]. Second, by only writing 
redo log records to storage, we are able to reduce network IOPS 
by an order of magnitude. Once we removed this bottleneck, we 
were able to aggressively optimize numerous other points of 
contention, obtaining significant throughput improvements over 
the base MySQL code base from which we started. Third, we 
move some of the most complex and critical functions (backup 
and redo recovery) from one-time expensive operations in the 
database engine to continuous asynchronous operations amortized 
across a large distributed fleet. This yields near-instant crash 
recovery without checkpointing as well as inexpensive backups 
that do not interfere with foreground processing.  
In this paper, we describe three contributions: 

1. How to reason about durability at cloud scale and how 
to design quorum systems that are resilient to correlated 
failures. (Section 2).  

2. How to leverage smart storage by offloading the lower 
quarter of a traditional database to this tier. (Section 3). 

3. How to eliminate multi-phase synchronization, crash 
recovery and checkpointing in distributed storage 
(Section 4). 

We then show how we bring these three ideas together to design 
the overall architecture of Aurora in Section 5, followed by a 
review of our performance results in Section 6 and the lessons we 
have learned in Section 7. Finally, we briefly survey related work 
in Section 8 and present concluding remarks in Section 9.  

2. DURABILITY AT SCALE 
If a database system does nothing else, it must satisfy the contract 
that data, once written, can be read. Not all systems do. In this 
section, we discuss the rationale behind our quorum model, why 
we segment storage, and how the two, in combination, provide not 
only durability, availability and reduction of jitter, but also help us 
solve the operational issues of managing a storage fleet at scale.  

2.1 Replication and Correlated Failures 
Instance lifetime does not correlate well with storage lifetime. 
Instances fail. Customers shut them down. They resize them up 
and down based on load. For these reasons, it helps to decouple 
the storage tier from the compute tier.  

Once you do so, those storage nodes and disks can also fail. They 
therefore must be replicated in some form to provide resiliency to 
failure. In a large-scale cloud environment, there is a continuous 

low level background noise of node, disk and network path 
failures. Each failure can have a different duration and a different 
blast radius. For example, one can have a transient lack of 
network availability to a node, temporary downtime on a reboot, 
or a permanent failure of a disk, a node, a rack, a leaf or a spine 
network switch, or even a data center.  
One approach to tolerate failures in a replicated system is to use a 
quorum-based voting protocol as described in [6]. If each of the V 
copies of a replicated data item is assigned a vote, a read or write 
operation must respectively obtain a read quorum of Vr votes or a 
write quorum of Vw votes. To achieve consistency, the quorums 
must obey two rules. First, each read must be aware of the most 
recent write, formulated as Vr + Vw > V. This rule ensures the set 
of nodes used for a read intersects with the set of nodes used for a 
write and the read quorum contains at least one location with the 
newest version. Second, each write must be aware of the most 
recent write to avoid conflicting writes, formulated as Vw > V/2.  
A common approach to tolerate the loss of a single node is to 
replicate data to (V = 3) nodes and rely on a write quorum of 2/3 
(Vw = 2) and a read quorum of 2/3 (Vr = 2).  

We believe 2/3 quorums are inadequate. To understand why, let’s 
first understand the concept of an Availability Zone (AZ) in 
AWS. An AZ is a subset of a Region that is connected to other 
AZs in the region through low latency links but is isolated for 
most faults, including power, networking, software deployments, 
flooding, etc. Distributing data replicas across AZs ensures that 
typical failure modalities at scale only impact one data replica. 
This implies that one can simply place each of the three replicas in 
a different AZ, and be tolerant to large-scale events in addition to 
the smaller individual failures.  

However, in a large storage fleet, the background noise of failures 
implies that, at any given moment in time, some subset of disks or 
nodes may have failed and are being repaired. These failures may 
be spread independently across nodes in each of AZ A, B and C. 
However, the failure of AZ C, due to a fire, roof failure, flood, 
etc, will break quorum for any of the replicas that concurrently 
have failures in AZ A or AZ B. At that point, in a 2/3 read 
quorum model, we will have lost two copies and will be unable to 
determine if the third is up to date. In other words, while the 
individual failures of replicas in each of the AZs are uncorrelated, 
the failure of an AZ is a correlated failure of all disks and nodes in 
that AZ. Quorums need to tolerate an AZ failure as well as 
concurrently occuring background noise failures.  

In Aurora, we have chosen a design point of tolerating (a) losing 
an entire AZ and one additional node (AZ+1) without losing data, 
and (b) losing an entire AZ without impacting the ability to write 
data. We achieve this by replicating each data item 6 ways across 
3 AZs with 2 copies of each item in each AZ. We use a quorum 
model with 6 votes (V = 6), a write quorum of 4/6 (Vw = 4), and a 
read quorum of 3/6 (Vr = 3). With such a model, we can (a) lose a 
single AZ and one additional node (a failure of 3 nodes) without 
losing read availability, and (b) lose any two nodes, including a 
single AZ failure and maintain write availability. Ensuring read 
quorum enables us to rebuild write quorum by adding additional 
replica copies.  

2.2 Segmented Storage 
Let’s consider the question of whether AZ+1 provides sufficient 
durability. To provide sufficient durability in this model, one must 
ensure the probability of a double fault on uncorrelated failures 
(Mean Time to Failure – MTTF) is sufficiently low over the time 
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it takes to repair one of these failures (Mean Time to Repair – 
MTTR). If the probability of a double fault is sufficiently high, we 
may see these on an AZ failure, breaking quorum. It is difficult, 
past a point, to reduce the probability of MTTF on independent 
failures. We instead focus on reducing MTTR to shrink the 
window of vulnerability to a double fault. We do so by 
partitioning the database volume into small fixed size segments, 
currently 10GB in size. These are each replicated 6 ways into 
Protection Groups (PGs) so that each PG consists of six 10GB 
segments, organized across three AZs, with two segments in each 
AZ. A storage volume is a concatenated set of PGs, physically 
implemented using a large fleet of storage nodes that are 
provisioned as virtual hosts with attached SSDs using Amazon 
Elastic Compute Cloud (EC2). The PGs that constitute a volume 
are allocated as the volume grows. We currently support volumes 
that can grow up to 64 TB on an unreplicated basis. 

Segments are now our unit of independent background noise 
failure and repair. We monitor and automatically repair faults as 
part of our service. A 10GB segment can be repaired in 10 
seconds on a 10Gbps network link. We would need to see two 
such failures in the same 10 second window plus a failure of an 
AZ not containing either of these two independent failures to lose 
quorum. At our observed failure rates, that’s sufficiently unlikely, 
even for the number of databases we manage for our customers. 

2.3 Operational Advantages of Resilience 
Once one has designed a system that is naturally resilient to long 
failures, it is naturally also resilient to shorter ones. A storage 
system that can handle the long-term loss of an AZ can also 
handle a brief outage due to a power event or bad software 
deployment requiring rollback. One that can handle a multi-
second loss of availability of a member of a quorum can handle a 
brief period of network congestion or load on a storage node.  

Since our system has a high tolerance to failures, we can leverage 
this for maintenance operations that cause segment unavailability. 
For example, heat management is straightforward. We can mark 
one of the segments on a hot disk or node as bad, and the quorum 
will be quickly repaired by migration to some other colder node in 
the fleet. OS and security patching is a brief unavailability event 
for that storage node as it is being patched. Even software 
upgrades to our storage fleet are managed this way. We execute 
them one AZ at a time and ensure no more than one member of a 
PG is being patched simultaneously. This allows us to use agile 
methodologies and rapid deployments in our storage service.  

3. THE LOG IS THE DATABASE 
In this section, we explain why using a traditional database on a 
segmented replicated storage system as described in Section 2 
imposes an untenable performance burden in terms of network 
IOs and synchronous stalls. We then explain our approach where 
we offload log processing to the storage service and 
experimentally demonstrate how our approach can dramatically 
reduce network IOs. Finally, we describe various techniques we 
use in the storage service to minimize synchronous stalls and 
unnecessary writes.  

3.1 The Burden of Amplified Writes 
Our model of segmenting a storage volume and replicating each 
segment 6 ways with a 4/6 write quorum gives us high resilience. 
Unfortunately, this model results in untenable performance for a 
traditional database like MySQL that generates many different 
actual I/Os for each application write. The high I/O volume is 
amplified by replication, imposing a heavy packets per second 
(PPS) burden. Also, the I/Os result in points of synchronization 

that stall pipelines and dilate latencies. While chain replication [8] 
and its alternatives can reduce network cost, they still suffer from 
synchronous stalls and additive latencies.  

Let’s examine how writes work in a traditional database. A 
system like MySQL writes data pages to objects it exposes (e.g., 
heap files, b-trees etc.) as well as redo log records to a write-ahead 
log (WAL). Each redo log record consists of the difference 
between the after-image and the before-image of the page that was 
modified. A log record can be applied to the before-image of the 
page to produce its after-image.  

In practice, other data must also be written. For instance, consider 
a synchronous mirrored MySQL configuration that achieves high 
availability across data-centers and operates in an active-standby 
configuration as shown in Figure 2. There is an active MySQL 
instance in AZ1 with networked storage on Amazon Elastic Block 
Store (EBS). There is also a standby MySQL instance in AZ2, 
also with networked storage on EBS. The writes made to the 
primary EBS volume are synchronized with the standby EBS 
volume using software mirroring. 

Figure 2 shows the various types of data that the engine needs to 
write: the redo log, the binary (statement) log that is archived to 
Amazon Simple Storage Service (S3) in order to support point-in-
time restores, the modified data pages, a second temporary write 
of the data page (double-write) to prevent torn pages, and finally 
the metadata (FRM) files. The figure also shows the order of the 
actual IO flow as follows.  In Steps 1 and 2, writes are issued to 
EBS, which in turn issues it to an AZ-local mirror, and the 
acknowledgement is received when both are done. Next, in Step 
3, the write is staged to the standby instance using synchronous 
block-level software mirroring. Finally, in steps 4 and 5, writes 
are written to the standby EBS volume and associated mirror. 

The mirrored MySQL model described above is undesirable not 
only because of how data is written but also because of what data 
is written. First, steps 1, 3, and 5 are sequential and synchronous. 
Latency is additive because many writes are sequential. Jitter is 
amplified because, even on asynchronous writes, one must wait 
for the slowest operation, leaving the system at the mercy of 

Figure 2: Network IO in mirrored MySQL 
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outliers. From a distributed system perspective, this model can be 
viewed as having a 4/4 write quorum, and is vulnerable to failures 
and outlier performance. Second, user operations that are a result 
of OLTP applications cause many different types of writes often 
representing the same information in multiple ways – for example, 
the writes to the double write buffer in order to prevent torn pages 
in the storage infrastructure.  

3.2 Offloading Redo Processing to Storage 
When a traditional database modifies a data page, it generates a 
redo log record and invokes a log applicator that applies the redo 
log record to the in-memory before-image of the page to produce 
its after-image. Transaction commit requires the log to be written, 
but the data page write may be deferred. 

In Aurora, the only writes that cross the network are redo log 
records. No pages are ever written from the database tier, not for 
background writes, not for checkpointing, and not for cache 
eviction. Instead, the log applicator is pushed to the storage tier 
where it can be used to generate database pages in background or 
on demand. Of course, generating each page from the complete 
chain of its modifications from the beginning of time is 
prohibitively expensive. We therefore continually materialize 
database pages in the background to avoid regenerating them from 
scratch on demand every time. Note that background 
materialization is entirely optional from the perspective of 
correctness: as far as the engine is concerned, the log is the 
database, and any pages that the storage system materializes are 
simply a cache of log applications. Note also that, unlike 
checkpointing, only pages with a long chain of modifications need 
to be rematerialized. Checkpointing is governed by the length of 
the entire redo log chain. Aurora page materialization is governed 
by the length of the chain for a given page. 

Our approach dramatically reduces network load despite 
amplifying writes for replication and provides performance as 
well as durability. The storage service can scale out I/Os in an 
embarrassingly parallel fashion without impacting write 
throughput of the database engine. For instance, Figure 3 shows 
an Aurora cluster with one primary instance and multiple replicas 
instances deployed across multiple AZs. In this model, the 
primary only writes log records to the storage service and streams 
those log records as well as metadata updates to the replica 
instances. The IO flow batches fully ordered log records based on 
a common destination (a logical segment, i.e., a PG) and delivers 
each batch to all 6 replicas where the batch is persisted on disk 
and the database engine waits for acknowledgements from 4 out 

of 6 replicas in order to satisfy the write quorum and consider the 
log records in question durable or hardened. The replicas use the 
redo log records to apply changes to their buffer caches.  

To measure network I/O, we ran a test using the SysBench [9] 
write-only workload with a 100GB data set for both 
configurations described above: one with a synchronous mirrored 
MySQL configuration across multiple AZs and the other with 
RDS Aurora (with replicas across multiple AZs). In both 
instances, the test ran for 30 minutes against database engines 
running on an r3.8xlarge EC2 instance.  

Table 1: Network IOs for Aurora vs MySQL 
Configuration Transactions IOs/Transaction 

Mirrored MySQL 780,000 7.4 

Aurora with Replicas 27,378,000 0.95 

 

The results of our experiment are summarized in Table 1. Over 
the 30-minute period, Aurora was able to sustain 35 times more 
transactions than mirrored MySQL. The number of I/Os per 
transaction on the database node in Aurora was 7.7 times fewer 
than in mirrored MySQL despite amplifying writes six times with 
Aurora and not counting the chained replication within EBS nor 
the cross-AZ writes in MySQL. Each storage node sees 
unamplified writes, since it is only one of the six copies, resulting 
in 46 times fewer I/Os requiring processing at this tier. The 
savings we obtain by writing less data to the network allow us to 
aggressively replicate data for durability and availability and issue 
requests in parallel to minimize the impact of jitter.  

Moving processing to a storage service also improves availability 
by minimizing crash recovery time and eliminates jitter caused by 
background processes such as checkpointing, background data 
page writing and backups.  

Let’s examine crash recovery. In a traditional database, after a 
crash the system must start from the most recent checkpoint and 
replay the log to ensure that all persisted redo records have been 
applied. In Aurora, durable redo record application happens at the 
storage tier, continuously, asynchronously, and distributed across 
the fleet. Any read request for a data page may require some redo 
records to be applied if the page is not current. As a result, the 
process of crash recovery is spread across all normal foreground 
processing. Nothing is required at database startup.  

3.3 Storage Service Design Points 
A core design tenet for our storage service is to minimize the 
latency of the foreground write request. We move the majority of 
storage processing to the background. Given the natural 
variability between peak to average foreground requests from the 
storage tier, we have ample time to perform these tasks outside the 
foreground path. We also have the opportunity to trade CPU for 
disk. For example, it isn’t necessary to run garbage collection 
(GC) of old page versions when the storage node is busy 
processing foreground write requests unless the disk is 
approaching capacity. In Aurora, background processing has 
negative correlation with foreground processing. This is unlike a 
traditional database, where background writes of pages and 
checkpointing have positive correlation with the foreground load 
on the system. If we build up a backlog on the system, we will 
throttle foreground activity to prevent a long queue buildup. Since 
segments are placed with high entropy across the various storage 
nodes in our system, throttling at one storage node is readily 
handled by our 4/6 quorum writes, appearing as a slow node.  

AZ 1 AZ 3

Primary
Instance

Amazon S3

AZ 2

Replica
Instance

ASYNC
4/6 QUORUM

DISTRIBUTED 
WRITES

Replica
Instance

Figure 3: Network IO in Amazon Aurora 
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Let’s examine the various activities on the storage node in more 
detail. As seen in Figure 4, it involves the following steps: (1) 
receive log record and add to an in-memory queue, (2) persist 
record on disk and acknowledge, (3) organize records and identify 
gaps in the log since some batches may be lost, (4) gossip with 
peers to fill in gaps, (5) coalesce log records into new data pages, 
(6) periodically stage log and new pages to S3, (7) periodically 
garbage collect old versions, and finally (8) periodically validate 
CRC codes on pages. 

Note that not only are each of the steps above asynchronous, only 
steps (1) and (2) are in the foreground path potentially impacting 
latency.  

 

4. THE LOG MARCHES FORWARD 
In this section, we describe how the log is generated from the 
database engine so that the durable state, the runtime state, and the 
replica state are always consistent. In particular, we will describe 
how consistency is implemented efficiently without an expensive 
2PC protocol. First, we show how we avoid expensive redo 
processing on crash recovery. Next, we explain normal operation 
and how we maintain runtime and replica state. Finally, we 
provide details of our recovery process. 

4.1 Solution sketch: Asynchronous Processing  
Since we model the database as a redo log stream (as described in 
Section 3), we can exploit the fact that the log advances as an 
ordered sequence of changes. In practice, each log record has an 
associated Log Sequence Number (LSN) that is a monotonically 
increasing value generated by the database. 
This lets us simplify a consensus protocol for maintaining state by 
approaching the problem in an asynchronous fashion instead of 
using a protocol like 2PC which is chatty and intolerant of 
failures. At a high level, we maintain points of consistency and 
durability, and continually advance these points as we receive 
acknowledgements for outstanding storage requests. Since any 
individual storage node might have missed one or more log 
records, they gossip with the other members of their PG, looking 
for gaps and fill in the holes. The runtime state maintained by the 
database lets us use single segment reads rather than quorum reads 
except on recovery when the state is lost and has to be rebuilt.  
The database may have multiple outstanding isolated transactions, 
which can complete (reach a finished and durable state) in a 
different order than initiated. Supposing the database crashes or 
reboots, the determination of whether to roll back is separate for 

each of these individual transactions. The logic for tracking 
partially completed transactions and undoing them is kept in the 
database engine, just as if it were writing to simple disks. 
However, upon restart, before the database is allowed to access 
the storage volume, the storage service does its own recovery 
which is focused not on user-level transactions, but on making 
sure that the database sees a uniform view of storage despite its 
distributed nature.  

The storage service determines the highest LSN for which it can 
guarantee availability of all prior log records (this is known as the 
VCL or Volume Complete LSN). During storage recovery, every 
log record with an LSN larger than the VCL must be truncated. 
The database can, however, further constrain a subset of points 
that are allowable for truncation by tagging log records and 
identifying them as CPLs or Consistency Point LSNs. We 
therefore define VDL or the Volume Durable LSN as the highest 
CPL that is smaller than or equal to VCL and truncate all log 
records with LSN greater than the VDL. For example, even if we 
have the complete data up to LSN 1007, the database may have 
declared that only 900, 1000, and 1100 are CPLs, in which case, 
we must truncate at 1000. We are complete to 1007, but only 
durable to 1000. 

Completeness and durability are therefore different and a CPL can 
be thought of as delineating some limited form of storage system 
transaction that must be accepted in order. If the client has no use 
for such distinctions, it can simply mark every log record as a 
CPL. In practice, the database and storage interact as follows: 

1. Each database-level transaction is broken up into 
multiple mini-transactions (MTRs) that are ordered and 
must be performed atomically. 

2. Each mini-transaction is composed of multiple 
contiguous log records (as many as needed). 

3. The final log record in a mini-transaction is a CPL. 

On recovery, the database talks to the storage service to establish 
the durable point of each PG and uses that to establish the VDL 
and then issue commands to truncate the log records above VDL. 

4.2 Normal Operation 
We now describe the “normal operation” of the database engine 
and focus in turn on writes, reads, commits, and replicas.  

4.2.1 Writes 
In Aurora, the database continuously interacts with the storage 
service and maintains state to establish quorum, advance volume 
durability, and register transactions as committed. For instance, in 
the normal/forward path, as the database receives 
acknowledgements to establish the write quorum for each batch of 
log records, it advances the current VDL.  At any given moment, 
there can be a large number of concurrent transactions active in 
the database, each generating their own redo log records. The 
database allocates a unique ordered LSN for each log record 
subject to a constraint that no LSN is allocated with a value that is 
greater than the sum of the current VDL and a constant called the 
LSN Allocation Limit (LAL) (currently set to 10 million). This 
limit ensures that the database does not get too far ahead of the 
storage system and introduces back-pressure that can throttle the 
incoming writes if the storage or network cannot keep up.  
Note that each segment of each PG only sees a subset of log 
records in the volume that affect the pages residing on that 
segment. Each log record contains a backlink that identifies the 
previous log record for that PG. These backlinks can be used to 
track the point of completeness of the log records that have 
reached each segment to establish a Segment Complete LSN 
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(SCL) that identifies the greatest LSN below which all log records 
of the PG have been received. The SCL is used by the storage 
nodes when they gossip with each other in order to find and 
exchange log records that they are missing.  

4.2.2 Commits 
In Aurora, transaction commits are completed asynchronously. 
When a client commits a transaction, the thread handling the 
commit request sets the transaction aside by recording its “commit 
LSN” as part of a separate list of transactions waiting on commit 
and moves on to perform other work. The equivalent to the WAL 
protocol is based on completing a commit, if and only if, the latest 
VDL is greater than or equal to the transaction’s commit LSN. As 
the VDL advances, the database identifies qualifying transactions 
that are waiting to be committed and uses a dedicated thread to 
send commit acknowledgements to waiting clients. Worker 
threads do not pause for commits, they simply pull other pending 
requests and continue processing.   

4.2.3 Reads 
In Aurora, as with most databases, pages are served from the 
buffer cache and only result in a storage IO request if the page in 
question is not present in the cache.  

If the buffer cache is full, the system finds a victim page to evict 
from the cache.  In a traditional system, if the victim is a “dirty 
page” then it is flushed to disk before replacement. This is to 
ensure that a subsequent fetch of the page always results in the 
latest data. While the Aurora database does not write out pages on 
eviction (or anywhere else), it enforces a similar guarantee: a page 
in the buffer cache must always be of the latest version. The 
guarantee is implemented by evicting a page from the cache only 
if its “page LSN” (identifying the log record associated with the 
latest change to the page) is greater than or equal to the VDL. This 
protocol ensures that: (a) all changes in the page have been 
hardened in the log, and (b) on a cache miss, it is sufficient to 
request a version of the page as of the current VDL to get its latest 
durable version.  

The database does not need to establish consensus using a read 
quorum under normal circumstances. When reading a page from 
disk, the database establishes a read-point, representing the VDL 
at the time the request was issued. The database can then select a 
storage node that is complete with respect to the read point, 
knowing that it will therefore receive an up to date version. A 
page that is returned by the storage node must be consistent with 
the expected semantics of a mini-transaction (MTR) in the 
database. Since the database directly manages feeding log records 
to storage nodes and tracking progress (i.e., the SCL of each 
segment), it normally knows which segment is capable of 
satisfying a read (the segments whose SCL is greater than the 
read-point) and thus can issue a read request directly to a segment 
that has sufficient data.  
Given that the database is aware of all outstanding reads, it can 
compute at any time the Minimum Read Point LSN on a per-PG 
basis. If there are read replicas the writer gossips with them to 
establish the per-PG Minimum Read Point LSN across all nodes.  
This value is called the Protection Group Min Read Point LSN 
(PGMRPL) and represents the “low water mark” below which all 
the log records of the PG are unnecessary. In other words, a 
storage node segment is guaranteed that there will be no read page 
requests with a read-point that is lower than the PGMRPL. Each 
storage node is aware of the PGMRPL from the database and can, 
therefore, advance the materialized pages on disk by coalescing 
the older log records and then safely garbage collecting them. 

The actual concurrency control protocols are executed in the 
database engine exactly as though the database pages and undo 
segments are organized in local storage as with traditional 
MySQL. 

4.2.4 Replicas 
In Aurora, a single writer and up to 15 read replicas can all mount 
a single shared storage volume. As a result, read replicas add no 
additional costs in terms of consumed storage or disk write 
operations. To minimize lag, the log stream generated by the 
writer and sent to the storage nodes is also sent to all read replicas. 
In the reader, the database consumes this log stream by 
considering each log record in turn. If the log record refers to a 
page in the reader's buffer cache, it uses the log applicator to 
apply the specified redo operation to the page in the cache. 
Otherwise it simply discards the log record. Note that the replicas 
consume log records asynchronously from the perspective of the 
writer, which acknowledges user commits independent of the 
replica. The replica obeys the following two important rules while 
applying log records: (a) the only log records that will be applied 
are those whose LSN is less than or equal to the VDL, and (b) the 
log records that are part of a single mini-transaction are applied 
atomically in the replica's cache to ensure that the replica sees a 
consistent view of all database objects. In practice, each replica 
typically lags behind the writer by a short interval (20 ms or less).  

4.3 Recovery 
Most traditional databases use a recovery protocol such as ARIES 
[7] that depends on the presence of a write-ahead log (WAL) that 
can represent the precise contents of all committed transactions. 
These systems also periodically checkpoint the database to 
establish points of durability in a coarse-grained fashion by 
flushing dirty pages to disk and writing a checkpoint record to the 
log. On restart, any given page can either miss some committed 
data or contain uncommitted data. Therefore, on crash recovery 
the system processes the redo log records since the last checkpoint   
by using the log applicator to apply each log record to the relevant 
database page. This process brings the database pages to a 
consistent state at the point of failure after which the in-flight 
transactions during the crash can be rolled back by executing the 
relevant undo log records. Crash recovery can be an expensive 
operation. Reducing the checkpoint interval helps, but at the 
expense of interference with foreground transactions. No such 
tradeoff is required with Aurora.  

A great simplifying principle of a traditional database is that the 
same redo log applicator is used in the forward processing path as 
well as on recovery where it operates synchronously and in the 
foreground while the database is offline. We rely on the same 
principle in Aurora as well, except that the redo log applicator is 
decoupled from the database and operates on storage nodes, in 
parallel, and all the time in the background. Once the database 
starts up it performs volume recovery in collaboration with the 
storage service and as a result, an Aurora database can recover 
very quickly (generally under 10 seconds) even if it crashed while 
processing over 100,000 write statements per second. 

The database does need to reestablish its runtime state after a 
crash. In this case, it contacts for each PG, a read quorum of 
segments which is sufficient to guarantee discovery of any data 
that could have reached a write quorum.  Once the database has 
established a read quorum for every PG it can recalculate the 
VDL above which data is truncated by generating a truncation 
range that annuls every log record after the new VDL, up to and 
including an end LSN which the database can prove is at least as 
high as the highest possible outstanding log record that could ever 
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have been seen. The database infers this upper bound because it 
allocates LSNs, and limits how far allocation can occur above 
VDL (the 10 million limit described earlier). The truncation 
ranges are versioned with epoch numbers, and written durably to 
the storage service so that there is no confusion over the durability 
of truncations in case recovery is interrupted and restarted.  
The database still needs to perform undo recovery to unwind the 
operations of in-flight transactions at the time of the crash. 
However, undo recovery can happen when the database is online 
after the system builds the list of these in-flight transactions from 
the undo segments.  
 

5. PUTTING IT ALL TOGETHER 
 

In this section, we describe the building blocks of Aurora as 
shown with a bird’s eye view in Figure 5.  

 

 

 

The database engine is a fork of “community” MySQL/InnoDB 
and diverges primarily in how InnoDB reads and writes data to 
disk. In community InnoDB, a write operation results in data 
being modified in buffer pages, and the associated redo log 
records written to buffers of the WAL in LSN order. On 
transaction commit, the WAL protocol requires only that the redo 
log records of the transaction are durably written to disk. The 
actual modified buffer pages are also written to disk eventually 
through a double-write technique to avoid partial page writes. 
These page writes take place in the background, or during eviction 
from the cache, or while taking a checkpoint. In addition to the IO 
Subsystem, InnoDB also includes the transaction subsystem, the 
lock manager, a B+-Tree implementation and the associated 
notion of a “mini transaction” (MTR). An MTR is a construct 
only used inside InnoDB and models groups of operations that 
must be executed atomically (e.g., split/merge of B+-Tree pages).  
In the Aurora InnoDB variant, the redo log records representing 
the changes that must be executed atomically in each MTR are 
organized into batches that are sharded by the PGs each log record 
belongs to, and these batches are written to the storage service. 
The final log record of each MTR is tagged as a consistency point. 
Aurora supports exactly the same isolation levels that are 
supported by community MySQL in the writer (the standard 
ANSI levels and Snapshot Isolation or consistent reads). Aurora 
read replicas get continuous information on transaction starts and 

commits in the writer and use this information to support snapshot 
isolation for local transactions that are of course read-only. Note 
that concurrency control is implemented entirely in the database 
engine without impacting the storage service. The storage service 
presents a unified view of the underlying data that is logically 
identical to what you would get by writing the data to local 
storage in community InnoDB. 

Aurora leverages Amazon Relational Database Service (RDS) for 
its control plane. RDS includes an agent on the database instance 
called the Host Manager (HM) that monitors a cluster’s health and 
determines if it needs to fail over, or if an instance needs to be 
replaced. Each database instance is part of a cluster that consists 
of a single writer and zero or more read replicas. The instances of 
a cluster are in a single geographical region (e.g., us-east-1, us-
west-1 etc.), are typically placed in different AZs, and connect to 
a storage fleet in the same region. For security, we isolate the 
communication between the database, applications and storage. In 
practice, each database instance can communicate on three 
Amazon Virtual Private Cloud (VPC) networks: the customer 
VPC through which customer applications interact with the 
engine, the RDS VPC through which the database engine and 
control plane interact with each other, and the Storage VPC 
through which the database interacts with storage services.  

The storage service is deployed on a cluster of EC2 VMs that are 
provisioned across at least 3 AZs in each region and is 
collectively responsible for provisioning multiple customer 
storage volumes, reading and writing data to and from those 
volumes, and backing up and restoring data from and to those 
volumes. The storage nodes manipulate local SSDs and interact 
with database engine instances, other peer storage nodes, and the 
backup/restore services that continuously backup changed data to 
S3 and restore data from S3 as needed. The storage control plane 
uses the Amazon DynamoDB database service for persistent 
storage of cluster and storage volume configuration, volume 
metadata, and a detailed description of data backed up to S3.  For 
orchestrating long-running operations, e.g. a database volume 
restore operation or a repair (re-replication) operation following a 
storage node failure, the storage control plane uses the Amazon 
Simple Workflow Service. Maintaining a high level of availability 
requires pro-active, automated, and early detection of real and 
potential problems, before end users are impacted.  All critical 
aspects of storage operations are constantly monitored using 
metric collection services that raise alarms if key performance or 
availability metrics indicate a cause for concern.  
 

6. PERFORMANCE RESULTS 
 
In this section, we will share our experiences in running Aurora as 
a production service that was made “Generally Available” in July 
2015. We begin with a summary of results running industry 
standard benchmarks and then present some performance results 
from our customers. 

6.1 Results with Standard Benchmarks 
 

Here we present results of different experiments that compare the 
performance of Aurora and MySQL using industry standard 
benchmarks such as SysBench and TPC-C variants. We ran 
MySQL on instances that are attached to an EBS volume with 
30K provisioned IOPS. Except when stated otherwise, these are 
r3.8xlarge EC2 instances with 32 vCPUs and 244GB of memory 

Figure 5: Aurora Architecture: A Bird's Eye View 
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and features the Intel Xeon E5-2670 v2 (Ivy Bridge) processors. 
The buffer cache on the r3.8xlarge is set to 170GB. 

6.1.1 Scaling with instance sizes 
In this experiment, we report that throughput in Aurora can scale 
linearly with instance sizes, and with the highest instance size can 
be 5x that of MySQL 5.6 and MySQL 5.7. Note that Aurora is 
currently based on the MySQL 5.6 code base. We ran the 
SysBench read-only and write-only benchmarks for a 1GB data 
set (250 tables) on 5 EC2 instances of the r3 family (large, xlarge, 
2xlarge, 4xlarge, 8xlarge). Each instance size has exactly half the 
vCPUs and memory of the immediately larger instance.  

The results are shown in Figure 7 and Figure 6, and measure the 
performance in terms of write and read statements per second 
respectively. Aurora’s performance doubles for each higher 
instance size and for the r3.8xlarge achieves 121,000 writes/sec 
and 600,000 reads/sec which is 5x that of MySQL 5.7 which tops 
out at 20,000 reads/sec and 125,000 writes/sec. 
 

6.1.2 Throughput with varying data sizes 
In this experiment, we report that throughput in Aurora 
significantly exceeds that of MySQL even with larger data sizes 
including workloads with out-of-cache working sets. Table 2 

shows that for the SysBench write-only workload, Aurora can be 
up to 67x faster than MySQL with a database size of 100GB. 
Even for a database size of 1TB with an out-of-cache workload, 
Aurora is still 34x faster than MySQL. 

Table 2: SysBench Write-Only (writes/sec) 

DB Size Amazon Aurora MySQL 

1 GB 107,000 8,400 

10 GB 107,000 2,400 

100 GB 101,000 1,500 

1 TB 41,000 1,200 

 
6.1.3 Scaling with user connections 
In this experiment, we report that throughput in Aurora can scale 
with the number of client connections. Table 3 shows the results 
of running the SysBench OLTP benchmark in terms of writes/sec 
as the number of connections grows from 50 to 500 to 5000. 
While Aurora scales from 40,000 writes/sec to 110,000 writes/sec, 
the throughput in MySQL peaks at around 500 connections and 
then drops sharply as the number of connections grows to 5000. 

Table 3: SysBench OLTP (writes/sec) 

Connections Amazon Aurora MySQL 

50 40,000 10,000 

500 71,000 21,000 

5,000 110,000 13,000 

 
6.1.4 Scaling with Replicas 
In this experiment, we report that the lag in an Aurora read replica 
is significantly lower than that of a MySQL replica even with 
more intense workloads. Table 4 shows that as the workload 
varies from 1,000 to 10,000 writes/second, the replica lag in 
Aurora grows from 2.62 milliseconds to 5.38 milliseconds. In 
contrast, the replica lag in MySQL grows from under a second to 
300 seconds. At 10,000 writes/second Aurora has a replica lag 
that is several orders of magnitude smaller than that of MySQL. 
Replica lag is measured in terms of the time it takes for a 
committed transaction to be visible in the replica. 

Table 4: Replica Lag for SysBench Write-Only (msec) 
Writes/sec Amazon Aurora MySQL 

1,000 2.62 < 1000 

2,000 3.42  1000 

5,000 3.94  60,000 

10,000 5.38 300,000 

 
6.1.5 Throughput with hot row contention 
In this experiment, we report that Aurora performs very well 
relative to MySQL on workloads with hot row contention, such as 
those based on the TPC-C benchmark. We ran the Percona TPC-C 
variant [37] against Amazon Aurora and MySQL 5.6 and 5.7 on 
an r3.8xlarge where MySQL uses an EBS volume with 30K 
provisioned IOPS. Table 5 shows that Aurora can sustain between 
2.3x to 16.3x the throughput of MySQL 5.7 as the workload 
varies from 500 connections and a 10GB data size to 5000 
connections and a 100GB data size. 

Figure 7: Aurora scales linearly for write-only workload 

Figure 6: Aurora scales linearly for read-only workload 
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Table 5: Percona TPC-C Variant (tpmC) 

Connections/Size/
Warehouses 

Amazon 
Aurora 

MySQL 
5.6 

MySQL 
5.7 

500/10GB/100 73,955 6,093 25,289 

5000/10GB/100 42,181 1,671 2,592 

500/100GB/1000 70,663 3,231 11,868 

5000/100GB/1000 30,221 5,575 13,005 

 

6.2 Results with Real Customer Workloads 
 

In this section, we share results reported by some of our customers 
who migrated production workloads from MySQL to Aurora.  

6.2.1 Application response time with Aurora 
An internet gaming company migrated their production service 
from MySQL to Aurora on an r3.4xlarge instance. The average 
response time that their web transactions experienced prior to the 
migration was 15 ms. In contrast, after the migration the average 
response time 5.5 ms, a 3x improvement as shown in Figure 8. 

 

6.2.2 Statement Latencies with Aurora 
 

An education technology company whose service helps schools 
manage student laptops migrated their production workload from 
MySQL to Aurora. The median (P50) and 95th percentile (P99) 
latencies for select and per-record insert operations before and 
after the migration (at 14:00 hours) are shown in Figure 9 and 
Figure 10.  

Before the migration, the P95 latencies ranged between 40ms to 
80ms and were much worse than the P50 latencies of about 1ms. 
The application was experiencing the kinds of poor outlier 
performance that we described earlier in this paper. After the 
migration, however, the P95 latencies for both operations 
improved dramatically and approximated the P50 latencies. 

  

6.2.3 Replica Lag with Multiple Replicas 
MySQL replicas often lag significantly behind their writers and 
can “can cause strange bugs” as reported by Weiner at Pinterest 
[40]. For the education technology company described earlier, the 
replica lag often spiked to 12 minutes and impacted application 
correctness and so the replica was only useful as a stand by. In 
contrast, after migrating to Aurora, the maximum replica lag 
across 4 replicas never exceeded 20ms as shown in Figure 11. The 
improved replica lag provided by Aurora let the company divert a 
significant portion of their application load to the replicas saving 
costs and increasing availability.  

 

7. LESSONS LEARNED 
We have now seen a large variety of applications run by 
customers ranging from small internet companies all the way to 
highly sophisticated organizations operating large numbers of 
Aurora clusters. While many of their use cases are standard, we 
focus on scenarios and expectations that are common in the cloud 
and are leading us to new directions. 

7.1 Multi-tenancy and database consolidation 
Many of our customers operate Software-as-a-Service (SaaS) 
businesses, either exclusively or with some residual on-premise 
customers they are trying to move to their SaaS model. We find 
that these customers often rely on an application they cannot 
easily change. Therefore, they typically consolidate their different 
customers on a single instance by using a schema/database as a 
unit of tenancy. This idiom reduces costs: they avoid paying for a 
dedicated instance per customer when it is unlikely that all of their 
customers active at once. For instance, some of our SaaS 
customers report ha ving more than 50,000 customers of their 
own. 

Figure 8: Web application response time 

Figure 9: SELECT latency (P50 vs P95) 

Figure 10: INSERT per-record latency (P50 vs P95) 

Figure 11: Maximum Replica Lag (averaged hourly) 
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This model is markedly different from well-known multi-tenant 
applications like Salesforce.com [14] which use a multi-tenant 
data model and pack the data of multiple customers into unified 
tables of a single schema with tenancy identified on a per-row 
basis. As a result, we see many customers with consolidated 
databases containing a large number of tables. Production 
instances of over 150,000 tables for small database are quite 
common. This puts pressure on components that manage metadata 
like the dictionary cache. More importantly, such customers need 
(a) to sustain a high level of throughput and many concurrent user 
connections, (b) a model where data is only provisioned and paid 
for as it is used since it is hard to anticipate in advance how much 
storage space is needed, and (c) reduced jitter so that spikes for a 
single tenant have minimal impact on other tenants. Aurora 
supports these attributes and fits such SaaS applications very well.  

7.2 Highly concurrent auto-scaling workloads 
Internet workloads often need to deal with spikes in traffic based 
on sudden unexpected events. One of our major customers had a 
special appearance in a highly popular nationally televised show 
and experienced one such spike that greatly surpassed their 
normal peak throughput without stressing the database. To 
support such spikes, it is important for a database to handle many 
concurrent connections. This approach is feasible in Aurora since 
the underlying storage system scales so well. We have several 
customers that run at over 8000 connections per second.  

7.3 Schema evolution 
Modern web application frameworks such as Ruby on Rails 
deeply integrate object-relational mapping tools. As a result, it is 
easy for application developers to make many schema changes to 
their database making it challenging for DBAs to manage how the 
schema evolves. In Rails applications, these are called “DB 
Migrations” and we have heard first-hand accounts of DBAs that 
have to either deal with a “few dozen migrations a week”, or put 
in place hedging strategies to ensure that future migrations take 
place without pain. The situation is exacerbated with MySQL 
offering liberal schema evolution semantics and implementing 
most changes using a full table copy. Since frequent DDL is a 
pragmatic reality, we have implemented an efficient online DDL 
implementation that (a) versions schemas on a per-page basis and 
decodes individual pages on demand using their schema history, 
and (b) lazily upgrades individual pages to the latest schema using 
a modify-on-write primitive.  
 

7.4 Availability and Software Upgrades 
Our customers have demanding expectations of cloud-native 
databases that can conflict with how we operate the fleet and how 
often we patch servers. Since our customers use Aurora primarily 
as an OLTP service backing production applications, any 
disruption can be traumatic. As a result, many of our customers 
have a very low tolerance to our updates of database software, 
even if this amounts to a planned downtime of 30 seconds every 6 
weeks or so. Therefore, we recently released a new Zero-
Downtime Patch (ZDP) feature that allows us to patch a customer 
while in-flight database connections are unaffected.  

As shown in Figure 12, ZDP works by looking for an instant 
where there are no active transactions, and in that instant spooling 
the application state to local ephemeral storage, patching the 
engine and then reloading the application state. In the process, 
user sessions remain active and oblivious that the engine changed 
under the covers.  

8. RELATED WORK 
 

In this section, we discuss other contributions and how they relate 
to the approaches taken in Aurora.  

Decoupling storage from compute. Although traditional systems 
have usually been built as monolithic daemons [27], there has 
been recent work on databases that decompose the kernel into 
different components. For instance, Deuteronomy [10] is one such 
system that separates a Transaction Component (TC) that provides 
concurrency control and recovery from a Data Component (DC) 
that provides access methods on top of LLAMA [34], a latch-free 
log-structured cache and storage manager. Sinfonia [39] and 
Hyder [38] are systems that abstract transactional access methods 
over a scale out service and database systems can be implemented 
using these abstractions. The Yesquel [36] system implements a 
multi-version distributed balanced tree and separates concurrency 
control from the query processor. Aurora decouples storage at a 
level lower than that of Deuteronomy, Hyder, Sinfonia, and 
Yesquel. In Aurora, query processing, transactions, concurrency, 
buffer cache, and access methods are decoupled from logging, 
storage, and recovery that are implemented as a scale out service. 

Distributed Systems. The trade-offs between correctness and 
availability in the face of partitions have long been known with 
the major result that one-copy serializability is not possible in the 
face of network partitions [15]. More recently Brewer’s CAP 
Theorem as proved in [16] stated that a highly available system 
cannot provide “strong” consistency guarantees in the presence of 
network partitions. These results and our experience with cloud-
scale complex and correlated failures motivated our consistency 
goals even in the presence of partitions caused by an AZ failure.  

Bailis et al [12] study the problem of providing Highly Available 
Transactions (HATs) that neither suffer unavailability during 
partitions nor incur high network latency. They show that 
Serializability, Snapshot Isolation and Repeatable Read isolation 
are not HAT-compliant, while most other isolation levels are 
achievable with high availability. Aurora provides all these 
isolation levels by making a simplifying assumption that at any 
time there is only a single writer generating log updates with 
LSNs allocated from a single ordered domain.  

Google’s Spanner [24] provides externally consistent [25] reads 
and writes, and globally-consistent reads across the database at a 
timestamp. These features enable Spanner to support consistent 
backups, consistent distributed query processing [26], and atomic 
schema updates, all at global scale, and even in the presence of 
ongoing transactions. As explained by Bailis [12], Spanner is 
highly specialized for Google’s read-heavy workload and relies on  
two-phase commit and two-phase locking for read/write 
transactions. 

Figure 12: Zero-Downtime Patching 
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Concurrency Control. Weaker consistency (PACELC [17]) and 
isolation models  [18][20] are well known in distributed databases 
and have led to optimistic replication techniques [19] as well as 
eventually consistent systems [21][22][23]. Other approaches in 
centralized systems range from classic pessimistic schemes based 
on locking [28], optimistic schemes like multi-versioned 
concurrency control in Hekaton [29], sharded approaches such as 
VoltDB [30] and Timestamp ordering in HyPer [31][32] and 
Deuteronomy. Aurora’s storage service provides the database 
engine the abstraction of a local disk that is durably persisted, and 
allows the engine to determine isolation and concurrency control.  

Log-structured storage. Log-structured storage systems were 
introduced by LFS [33] in 1992. More recently Deuteronomy and 
the associated work in LLAMA [34] and Bw-Tree [35] use log-
structured techniques in multiple ways across the storage engine 
stack and, like Aurora, reduce write amplification by writing 
deltas instead of whole pages. Both Deuteronomy and Aurora 
implement pure redo logging, and keep track of the highest stable 
LSN for acknowledging commits.    

Recovery. While traditional databases rely on a recovery protocol 
based on ARIES [5], some recent systems have chosen other paths 
for performance. For example, Hekaton and VoltDB rebuild their 
in-memory state after a crash using some form of an update log. 
Systems like Sinfonia [39] avoid recovery by using techniques 
like process pairs and state machine replication. Graefe [41] 
describes a system with per-page log record chains that enables 
on-demand page-by-page redo that can make recovery fast. Like 
Aurora, Deuteronomy does not require redo recovery. This is 
because Deuteronomy delays transactions so that only committed 
updates are posted to durable storage. As a result, unlike Aurora, 
the size of transactions can be constrained in Deuteronomy.  

9. CONCLUSION 
We designed Aurora as a high throughput OLTP database that 
compromises neither availability nor durability in a cloud-scale 
environment. The big idea was to move away from the monolithic 
architecture of traditional databases and decouple storage from 
compute. In particular, we moved the lower quarter of the 
database kernel to an independent scalable and distributed service 
that managed logging and storage. With all I/Os written over the 
network, our fundamental constraint is now the network. As a 
result we need to focus on techniques that relieve the network and 
improve throughput. We rely on quorum models that can handle 
the complex and correlated failures that occur in large-scale cloud 
environments and avoid outlier performance penalties, log 
processing to reduce the aggregate I/O burden, and asynchronous 
consensus to eliminate chatty and expensive multi-phase 
synchronization protocols, offline crash recovery, and 
checkpointing in distributed storage. Our approach has led to a 
simplified architecture with reduced complexity that is easy to 
scale as well as a foundation for future advances. 
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