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Abstract
Google’s Borg system is a cluster manager that runs hun-
dreds of thousands of jobs, from many thousands of differ-
ent applications, across a number of clusters each with up to
tens of thousands of machines.

It achieves high utilization by combining admission con-
trol, efficient task-packing, over-commitment, and machine
sharing with process-level performance isolation. It supports
high-availability applications with runtime features that min-
imize fault-recovery time, and scheduling policies that re-
duce the probability of correlated failures. Borg simplifies
life for its users by offering a declarative job specification
language, name service integration, real-time job monitor-
ing, and tools to analyze and simulate system behavior.

We present a summary of the Borg system architecture
and features, important design decisions, a quantitative anal-
ysis of some of its policy decisions, and a qualitative ex-
amination of lessons learned from a decade of operational
experience with it.

1. Introduction
The cluster management system we internally call Borg ad-
mits, schedules, starts, restarts, and monitors the full range
of applications that Google runs. This paper explains how.

Borg provides three main benefits: it (1) hides the details
of resource management and failure handling so its users can
focus on application development instead; (2) operates with
very high reliability and availability, and supports applica-
tions that do the same; and (3) lets us run workloads across
tens of thousands of machines effectively. Borg is not the
first system to address these issues, but it’s one of the few op-
erating at this scale, with this degree of resiliency and com-
pleteness. This paper is organized around these topics, con-
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Figure 1: The high-level architecture of Borg. Only a tiny fraction
of the thousands of worker nodes are shown.

cluding with a set of qualitative observations we have made
from operating Borg in production for more than a decade.

2. The user perspective
Borg’s users are Google developers and system administra-
tors (site reliability engineers or SREs) that run Google’s
applications and services. Users submit their work to Borg
in the form of jobs, each of which consists of one or more
tasks that all run the same program (binary). Each job runs
in one Borg cell, a set of machines that are managed as a
unit. The remainder of this section describes the main fea-
tures exposed in the user view of Borg.

2.1 The workload
Borg cells run a heterogenous workload with two main parts.
The first is long-running services that should “never” go
down, and handle short-lived latency-sensitive requests (a
few µs to a few hundred ms). Such services are used for
end-user-facing products such as Gmail, Google Docs, and
web search, and for internal infrastructure services (e.g.,
BigTable). The second is batch jobs that take from a few
seconds to a few days to complete; these are much less sen-
sitive to short-term performance fluctuations. The workload
mix varies across cells, which run different mixes of applica-
tions depending on their major tenants (e.g., some cells are
quite batch-intensive), and also varies over time: batch jobs



come and go, and many end-user-facing service jobs see a
diurnal usage pattern. Borg is required to handle all these
cases equally well.

A representative Borg workload can be found in a publicly-
available month-long trace from May 2011 [80], which has
been extensively analyzed (e.g., [68] and [1, 26, 27, 57]).

Many application frameworks have been built on top of
Borg over the last few years, including our internal MapRe-
duce system [23], FlumeJava [18], Millwheel [3], and Pregel
[59]. Most of these have a controller that submits a master
job and one or more worker jobs; the first two play a similar
role to YARN’s application manager [76]. Our distributed
storage systems such as GFS [34] and its successor CFS,
Bigtable [19], and Megastore [8] all run on Borg.

For this paper, we classify higher-priority Borg jobs as
“production” (prod) ones, and the rest as “non-production”
(non-prod). Most long-running server jobs are prod; most
batch jobs are non-prod. In a representative cell, prod jobs
are allocated about 70% of the total CPU resources and rep-
resent about 60% of the total CPU usage; they are allocated
about 55% of the total memory and represent about 85% of
the total memory usage. The discrepancies between alloca-
tion and usage will prove important in §5.5.

2.2 Clusters and cells
The machines in a cell belong to a single cluster, defined by
the high-performance datacenter-scale network fabric that
connects them. A cluster lives inside a single datacenter
building, and a collection of buildings makes up a site.1

A cluster usually hosts one large cell and may have a few
smaller-scale test or special-purpose cells. We assiduously
avoid any single point of failure.

Our median cell size is about 10 k machines after exclud-
ing test cells; some are much larger. The machines in a cell
are heterogeneous in many dimensions: sizes (CPU, RAM,
disk, network), processor type, performance, and capabili-
ties such as an external IP address or flash storage. Borg iso-
lates users from most of these differences by determining
where in a cell to run tasks, allocating their resources, in-
stalling their programs and other dependencies, monitoring
their health, and restarting them if they fail.

2.3 Jobs and tasks
A Borg job’s properties include its name, owner, and the
number of tasks it has. Jobs can have constraints to force
its tasks to run on machines with particular attributes such as
processor architecture, OS version, or an external IP address.
Constraints can be hard or soft; the latter act like preferences
rather than requirements. The start of a job can be deferred
until a prior one finishes. A job runs in just one cell.

Each task maps to a set of Linux processes running in
a container on a machine [62]. The vast majority of the
Borg workload does not run inside virtual machines (VMs),

1 There are a few exceptions for each of these relationships.

because we don’t want to pay the cost of virtualization.
Also, the system was designed at a time when we had a
considerable investment in processors with no virtualization
support in hardware.

A task has properties too, such as its resource require-
ments and the task’s index within the job. Most task proper-
ties are the same across all tasks in a job, but can be over-
ridden – e.g., to provide task-specific command-line flags.
Each resource dimension (CPU cores, RAM, disk space,
disk access rate, TCP ports,2 etc.) is specified independently
at fine granularity; we don’t impose fixed-sized buckets or
slots (§5.4). Borg programs are statically linked to reduce
dependencies on their runtime environment, and structured
as packages of binaries and data files, whose installation is
orchestrated by Borg.

Users operate on jobs by issuing remote procedure calls
(RPCs) to Borg, most commonly from a command-line tool,
other Borg jobs, or our monitoring systems (§2.6). Most job
descriptions are written in the declarative configuration lan-
guage BCL. This is a variant of GCL [12], which gener-
ates protobuf files [67], extended with some Borg-specific
keywords. GCL provides lambda functions to allow calcula-
tions, and these are used by applications to adjust their con-
figurations to their environment; tens of thousands of BCL
files are over 1 k lines long, and we have accumulated tens
of millions of lines of BCL. Borg job configurations have
similarities to Aurora configuration files [6].

Figure 2 illustrates the states that jobs and tasks go
through during their lifetime.
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Figure 2: The state diagram for both jobs and tasks. Users can
trigger submit, kill, and update transitions.

A user can change the properties of some or all of the
tasks in a running job by pushing a new job configuration
to Borg, and then instructing Borg to update the tasks to
the new specification. This acts as a lightweight, non-atomic
transaction that can easily be undone until it is closed (com-
mitted). Updates are generally done in a rolling fashion, and
a limit can be imposed on the number of task disruptions

2 Borg manages the available ports on a machine and allocates them to tasks.



(reschedules or preemptions) an update causes; any changes
that would cause more disruptions are skipped.

Some task updates (e.g., pushing a new binary) will al-
ways require the task to be restarted; some (e.g., increasing
resource requirements or changing constraints) might make
the task no longer fit on the machine, and cause it to be
stopped and rescheduled; and some (e.g., changing priority)
can always be done without restarting or moving the task.

Tasks can ask to be notified via a Unix SIGTERM sig-
nal before they are preempted by a SIGKILL, so they have
time to clean up, save state, finish any currently-executing
requests, and decline new ones. The actual notice may be
less if the preemptor sets a delay bound. In practice, a notice
is delivered about 80% of the time.

2.4 Allocs
A Borg alloc (short for allocation) is a reserved set of re-
sources on a machine in which one or more tasks can be
run; the resources remain assigned whether or not they are
used. Allocs can be used to set resources aside for future
tasks, to retain resources between stopping a task and start-
ing it again, and to gather tasks from different jobs onto the
same machine – e.g., a web server instance and an associ-
ated logsaver task that copies the server’s URL logs from
the local disk to a distributed file system. The resources of
an alloc are treated in a similar way to the resources of a ma-
chine; multiple tasks running inside one share its resources.
If an alloc must be relocated to another machine, its tasks are
rescheduled with it.

An alloc set is like a job: it is a group of allocs that reserve
resources on multiple machines. Once an alloc set has been
created, one or more jobs can be submitted to run in it. For
brevity, we will generally use “task” to refer to an alloc or a
top-level task (one outside an alloc) and “job” to refer to a
job or alloc set.

2.5 Priority, quota, and admission control
What happens when more work shows up than can be ac-
commodated? Our solutions for this are priority and quota.

Every job has a priority, a small positive integer. A high-
priority task can obtain resources at the expense of a lower-
priority one, even if that involves preempting (killing) the
latter. Borg defines non-overlapping priority bands for dif-
ferent uses, including (in decreasing-priority order): moni-
toring, production, batch, and best effort (also known as
testing or free). For this paper, prod jobs are the ones in the
monitoring and production bands.

Although a preempted task will often be rescheduled
elsewhere in the cell, preemption cascades could occur if
a high-priority task bumped out a slightly lower-priority
one, which bumped out another slightly-lower priority task,
and so on. To eliminate most of this, we disallow tasks in
the production priority band to preempt one another. Fine-
grained priorities are still useful in other circumstances –

e.g., MapReduce master tasks run at a slightly higher priority
than the workers they control, to improve their reliability.

Priority expresses relative importance for jobs that are
running or waiting to run in a cell. Quota is used to decide
which jobs to admit for scheduling. Quota is expressed as
a vector of resource quantities (CPU, RAM, disk, etc.) at a
given priority, for a period of time (typically months). The
quantities specify the maximum amount of resources that
a user’s job requests can ask for at a time (e.g., “20 TiB
of RAM at prod priority from now until the end of July
in cell xx”). Quota-checking is part of admission control,
not scheduling: jobs with insufficient quota are immediately
rejected upon submission.

Higher-priority quota costs more than quota at lower-
priority. Production-priority quota is limited to the actual
resources available in the cell, so that a user who submits
a production-priority job that fits in their quota can expect it
to run, modulo fragmentation and constraints. Even though
we encourage users to purchase no more quota than they
need, many users overbuy because it insulates them against
future shortages when their application’s user base grows.
We respond to this by over-selling quota at lower-priority
levels: every user has infinite quota at priority zero, although
this is frequently hard to exercise because resources are over-
subscribed. A low-priority job may be admitted but remain
pending (unscheduled) due to insufficient resources.

Quota allocation is handled outside of Borg, and is inti-
mately tied to our physical capacity planning, whose results
are reflected in the price and availability of quota in differ-
ent datacenters. User jobs are admitted only if they have suf-
ficient quota at the required priority. The use of quota re-
duces the need for policies like Dominant Resource Fairness
(DRF) [29, 35, 36, 66].

Borg has a capability system that gives special privileges
to some users; for example, allowing administrators to delete
or modify any job in the cell, or allowing a user to access
restricted kernel features or Borg behaviors such as disabling
resource estimation (§5.5) on their jobs.

2.6 Naming and monitoring
It’s not enough to create and place tasks: a service’s clients
and other systems need to be able to find them, even after
they are relocated to a new machine. To enable this, Borg
creates a stable “Borg name service” (BNS) name for each
task that includes the cell name, job name, and task number.
Borg writes the task’s hostname and port into a consistent,
highly-available file in Chubby [14] with this name, which
is used by our RPC system to find the task endpoint. The
BNS name also forms the basis of the task’s DNS name,
so the fiftieth task in job jfoo owned by user ubar in cell
cc would be reachable via 50.jfoo.ubar.cc.borg.google.com.
Borg also writes job size and task health information into
Chubby whenever it changes, so load balancers can see
where to route requests to.



Almost every task run under Borg contains a built-in
HTTP server that publishes information about the health of
the task and thousands of performance metrics (e.g., RPC
latencies). Borg monitors the health-check URL and restarts
tasks that do not respond promptly or return an HTTP er-
ror code. Other data is tracked by monitoring tools for dash-
boards and alerts on service level objective (SLO) violations.

A service called Sigma provides a web-based user inter-
face (UI) through which a user can examine the state of all
their jobs, a particular cell, or drill down to individual jobs
and tasks to examine their resource behavior, detailed logs,
execution history, and eventual fate. Our applications gener-
ate voluminous logs; these are automatically rotated to avoid
running out of disk space, and preserved for a while after the
task’s exit to assist with debugging. If a job is not running
Borg provides a “why pending?” annotation, together with
guidance on how to modify the job’s resource requests to
better fit the cell. We publish guidelines for “conforming”
resource shapes that are likely to schedule easily.

Borg records all job submissions and task events, as well
as detailed per-task resource usage information in Infrastore,
a scalable read-only data store with an interactive SQL-like
interface via Dremel [61]. This data is used for usage-based
charging, debugging job and system failures, and long-term
capacity planning. It also provided the data for the Google
cluster workload trace [80].

All of these features help users to understand and debug
the behavior of Borg and their jobs, and help our SREs
manage a few tens of thousands of machines per person.

3. Borg architecture
A Borg cell consists of a set of machines, a logically central-
ized controller called the Borgmaster, and an agent process
called the Borglet that runs on each machine in a cell (see
Figure 1). All components of Borg are written in C++.

3.1 Borgmaster
Each cell’s Borgmaster consists of two processes: the main
Borgmaster process and a separate scheduler (§3.2). The
main Borgmaster process handles client RPCs that either
mutate state (e.g., create job) or provide read-only access
to data (e.g., lookup job). It also manages state machines
for all of the objects in the system (machines, tasks, allocs,
etc.), communicates with the Borglets, and offers a web UI
as a backup to Sigma.

The Borgmaster is logically a single process but is ac-
tually replicated five times. Each replica maintains an in-
memory copy of most of the state of the cell, and this state is
also recorded in a highly-available, distributed, Paxos-based
store [55] on the replicas’ local disks. A single elected mas-
ter per cell serves both as the Paxos leader and the state
mutator, handling all operations that change the cell’s state,
such as submitting a job or terminating a task on a ma-
chine. A master is elected (using Paxos) when the cell is

brought up and whenever the elected master fails; it acquires
a Chubby lock so other systems can find it. Electing a master
and failing-over to the new one typically takes about 10 s, but
can take up to a minute in a big cell because some in-memory
state has to be reconstructed. When a replica recovers from
an outage, it dynamically re-synchronizes its state from other
Paxos replicas that are up-to-date.

The Borgmaster’s state at a point in time is called a
checkpoint, and takes the form of a periodic snapshot plus a
change log kept in the Paxos store. Checkpoints have many
uses, including restoring a Borgmaster’s state to an arbitrary
point in the past (e.g., just before accepting a request that
triggered a software defect in Borg so it can be debugged);
fixing it by hand in extremis; building a persistent log of
events for future queries; and offline simulations.

A high-fidelity Borgmaster simulator called Fauxmaster
can be used to read checkpoint files, and contains a complete
copy of the production Borgmaster code, with stubbed-out
interfaces to the Borglets. It accepts RPCs to make state ma-
chine changes and perform operations, such as “schedule all
pending tasks”, and we use it to debug failures, by interact-
ing with it as if it were a live Borgmaster, with simulated
Borglets replaying real interactions from the checkpoint file.
A user can step through and observe the changes to the sys-
tem state that actually occurred in the past. Fauxmaster is
also useful for capacity planning (“how many new jobs of
this type would fit?”), as well as sanity checks before mak-
ing a change to a cell’s configuration (“will this change evict
any important jobs?”).

3.2 Scheduling
When a job is submitted, the Borgmaster records it persis-
tently in the Paxos store and adds the job’s tasks to the pend-
ing queue. This is scanned asynchronously by the scheduler,
which assigns tasks to machines if there are sufficient avail-
able resources that meet the job’s constraints. (The sched-
uler primarily operates on tasks, not jobs.) The scan pro-
ceeds from high to low priority, modulated by a round-robin
scheme within a priority to ensure fairness across users and
avoid head-of-line blocking behind a large job. The schedul-
ing algorithm has two parts: feasibility checking, to find ma-
chines on which the task could run, and scoring, which picks
one of the feasible machines.

In feasibility checking, the scheduler finds a set of ma-
chines that meet the task’s constraints and also have enough
“available” resources – which includes resources assigned
to lower-priority tasks that can be evicted. In scoring, the
scheduler determines the “goodness” of each feasible ma-
chine. The score takes into account user-specified prefer-
ences, but is mostly driven by built-in criteria such as mini-
mizing the number and priority of preempted tasks, picking
machines that already have a copy of the task’s packages,
spreading tasks across power and failure domains, and pack-
ing quality including putting a mix of high and low priority



tasks onto a single machine to allow the high-priority ones
to expand in a load spike.

Borg originally used a variant of E-PVM [4] for scoring,
which generates a single cost value across heterogeneous
resources and minimizes the change in cost when placing
a task. In practice, E-PVM ends up spreading load across
all the machines, leaving headroom for load spikes – but at
the expense of increased fragmentation, especially for large
tasks that need most of the machine; we sometimes call this
“worst fit”.

The opposite end of the spectrum is “best fit”, which tries
to fill machines as tightly as possible. This leaves some ma-
chines empty of user jobs (they still run storage servers), so
placing large tasks is straightforward, but the tight packing
penalizes any mis-estimations in resource requirements by
users or Borg. This hurts applications with bursty loads, and
is particularly bad for batch jobs which specify low CPU
needs so they can schedule easily and try to run opportunis-
tically in unused resources: 20% of non-prod tasks request
less than 0.1 CPU cores.

Our current scoring model is a hybrid one that tries to
reduce the amount of stranded resources – ones that cannot
be used because another resource on the machine is fully
allocated. It provides about 3–5% better packing efficiency
(defined in [78]) than best fit for our workloads.

If the machine selected by the scoring phase doesn’t have
enough available resources to fit the new task, Borg preempts
(kills) lower-priority tasks, from lowest to highest priority,
until it does. We add the preempted tasks to the scheduler’s
pending queue, rather than migrate or hibernate them.3

Task startup latency (the time from job submission to
a task running) is an area that has received and continues
to receive significant attention. It is highly variable, with
the median typically about 25 s. Package installation takes
about 80% of the total: one of the known bottlenecks is
contention for the local disk where packages are written to.
To reduce task startup time, the scheduler prefers to assign
tasks to machines that already have the necessary packages
(programs and data) installed: most packages are immutable
and so can be shared and cached. (This is the only form of
data locality supported by the Borg scheduler.) In addition,
Borg distributes packages to machines in parallel using tree-
and torrent-like protocols.

Additionally, the scheduler uses several techniques to let
it scale up to cells with tens of thousands of machines (§3.4).

3.3 Borglet
The Borglet is a local Borg agent that is present on every
machine in a cell. It starts and stops tasks; restarts them if
they fail; manages local resources by manipulating OS ker-
nel settings; rolls over debug logs; and reports the state of the
machine to the Borgmaster and other monitoring systems.

3 Exception: tasks that provide virtual machines for Google Compute En-
gine users are migrated.

The Borgmaster polls each Borglet every few seconds to
retrieve the machine’s current state and send it any outstand-
ing requests. This gives Borgmaster control over the rate of
communication, avoids the need for an explicit flow control
mechanism, and prevents recovery storms [9].

The elected master is responsible for preparing messages
to send to the Borglets and for updating the cell’s state with
their responses. For performance scalability, each Borgmas-
ter replica runs a stateless link shard to handle the communi-
cation with some of the Borglets; the partitioning is recalcu-
lated whenever a Borgmaster election occurs. For resiliency,
the Borglet always reports its full state, but the link shards
aggregate and compress this information by reporting only
differences to the state machines, to reduce the update load
at the elected master.

If a Borglet does not respond to several poll messages its
machine is marked as down and any tasks it was running
are rescheduled on other machines. If communication is
restored the Borgmaster tells the Borglet to kill those tasks
that have been rescheduled, to avoid duplicates. A Borglet
continues normal operation even if it loses contact with the
Borgmaster, so currently-running tasks and services stay up
even if all Borgmaster replicas fail.

3.4 Scalability
We are not sure where the ultimate scalability limit to Borg’s
centralized architecture will come from; so far, every time
we have approached a limit, we’ve managed to eliminate it.
A single Borgmaster can manage many thousands of ma-
chines in a cell, and several cells have arrival rates above
10 000 tasks per minute. A busy Borgmaster uses 10–14
CPU cores and up to 50 GiB RAM. We use several tech-
niques to achieve this scale.

Early versions of Borgmaster had a simple, synchronous
loop that accepted requests, scheduled tasks, and commu-
nicated with Borglets. To handle larger cells, we split the
scheduler into a separate process so it could operate in paral-
lel with the other Borgmaster functions that are replicated for
failure tolerance. A scheduler replica operates on a cached
copy of the cell state. It repeatedly: retrieves state changes
from the elected master (including both assigned and pend-
ing work); updates its local copy; does a scheduling pass
to assign tasks; and informs the elected master of those as-
signments. The master will accept and apply these assign-
ments unless they are inappropriate (e.g., based on out of
date state), which will cause them to be reconsidered in the
scheduler’s next pass. This is quite similar in spirit to the
optimistic concurrency control used in Omega [69], and in-
deed we recently added the ability for Borg to use different
schedulers for different workload types.

To improve response times, we added separate threads
to talk to the Borglets and respond to read-only RPCs. For
greater performance, we sharded (partitioned) these func-
tions across the five Borgmaster replicas §3.3. Together,
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Figure 3: Task-eviction rates and causes for production and non-
production workloads. Data from August 1st 2013.

these keep the 99%ile response time of the UI below 1 s
and the 95%ile of the Borglet polling interval below 10 s.

Several things make the Borg scheduler more scalable:
Score caching: Evaluating feasibility and scoring a ma-

chine is expensive, so Borg caches the scores until the prop-
erties of the machine or task change – e.g., a task on the ma-
chine terminates, an attribute is altered, or a task’s require-
ments change. Ignoring small changes in resource quantities
reduces cache invalidations.

Equivalence classes: Tasks in a Borg job usually have
identical requirements and constraints, so rather than deter-
mining feasibility for every pending task on every machine,
and scoring all the feasible machines, Borg only does fea-
sibility and scoring for one task per equivalence class – a
group of tasks with identical requirements.

Relaxed randomization: It is wasteful to calculate fea-
sibility and scores for all the machines in a large cell, so the
scheduler examines machines in a random order until it has
found “enough” feasible machines to score, and then selects
the best within that set. This reduces the amount of scoring
and cache invalidations needed when tasks enter and leave
the system, and speeds up assignment of tasks to machines.
Relaxed randomization is somewhat akin to the batch sam-
pling of Sparrow [65] while also handling priorities, preemp-
tions, heterogeneity and the costs of package installation.

In our experiments (§5), scheduling a cell’s entire work-
load from scratch typically took a few hundred seconds, but
did not finish after more than 3 days when the above tech-
niques were disabled. Normally, though, an online schedul-
ing pass over the pending queue completes in less than half
a second.

4. Availability
Failures are the norm in large scale systems [10, 11, 22].
Figure 3 provides a breakdown of task eviction causes in
15 sample cells. Applications that run on Borg are expected
to handle such events, using techniques such as replication,
storing persistent state in a distributed file system, and (if
appropriate) taking occasional checkpoints. Even so, we try
to mitigate the impact of these events. For example, Borg:
• automatically reschedules evicted tasks, on a new ma-

chine if necessary;
• reduces correlated failures by spreading tasks of a job

across failure domains such as machines, racks, and
power domains;
• limits the allowed rate of task disruptions and the number

of tasks from a job that can be simultaneously down
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Figure 4: The effects of compaction. A CDF of the percentage of
original cell size achieved after compaction, across 15 cells.

during maintenance activities such as OS or machine
upgrades;
• uses declarative desired-state representations and idem-

potent mutating operations, so that a failed client can
harmlessly resubmit any forgotten requests;
• rate-limits finding new places for tasks from machines

that become unreachable, because it cannot distinguish
between large-scale machine failure and a network parti-
tion;
• avoids repeating task::machine pairings that cause task or

machine crashes; and
• recovers critical intermediate data written to local disk by

repeatedly re-running a logsaver task (§2.4), even if the
alloc it was attached to is terminated or moved to another
machine. Users can set how long the system keeps trying;
a few days is common.

A key design feature in Borg is that already-running tasks
continue to run even if the Borgmaster or a task’s Borglet
goes down. But keeping the master up is still important
because when it is down new jobs cannot be submitted
or existing ones updated, and tasks from failed machines
cannot be rescheduled.

Borgmaster uses a combination of techniques that enable
it to achieve 99.99% availability in practice: replication for
machine failures; admission control to avoid overload; and
deploying instances using simple, low-level tools to mini-
mize external dependencies. Each cell is independent of the
others to minimize the chance of correlated operator errors
and failure propagation. These goals, not scalability limita-
tions, are the primary argument against larger cells.

5. Utilization
One of Borg’s primary goals is to make efficient use of
Google’s fleet of machines, which represents a significant
financial investment: increasing utilization by a few percent-
age points can save millions of dollars. This section dis-
cusses and evaluates some of the policies and techniques that
Borg uses to do so.



A B C D E
0

50

100

150

200

Cell

P
e

rc
e

n
ta

g
e

 o
f 

c
e

ll
prod non-prod baseline unused

(a) The left column for each cell shows the original size and the
combined workload; the right one shows the segregated case.

-10 0 10 20 30 40 50 60
0

20

40

60

80

100

Overhead from segregation [%]

P
e

rc
e

n
ta

g
e

 o
f 

c
e

lls

(b) CDF of additional machines that would be needed if we
segregated the workload of 15 representative cells.

Figure 5: Segregating prod and non-prod work into different cells would need more machines. Both graphs show how many extra machines
would be needed if the prod and non-prod workloads were sent to separate cells, expressed as a percentage of the minimum number of
machines required to run the workload in a single cell. In this, and subsequent CDF plots, the value shown for each cell is derived from the
90%ile of the different cell sizes our experiment trials produced; the error bars show the complete range of values from the trials.

5.1 Evaluation methodology
Our jobs have placement constraints and need to handle rare
workload spikes, our machines are heterogenous, and we
run batch jobs in resources reclaimed from service jobs. So,
to evaluate our policy choices we needed a more sophisti-
cated metric than “average utilization”. After much exper-
imentation we picked cell compaction: given a workload,
we found out how small a cell it could be fitted into by
removing machines until the workload no longer fitted, re-
peatedly re-packing the workload from scratch to ensure that
we didn’t get hung up on an unlucky configuration. This
provided clean termination conditions and facilitated auto-
mated comparisons without the pitfalls of synthetic work-
load generation and modeling [31]. A quantitative compari-
son of evaluation techniques can be found in [78]: the details
are surprisingly subtle.

It wasn’t possible to perform experiments on live produc-
tion cells, but we used Fauxmaster to obtain high-fidelity
simulation results, using data from real production cells
and workloads, including all their constraints, actual lim-
its, reservations, and usage data (§5.5). This data came
from Borg checkpoints taken on Wednesday 2014-10-01
14:00 PDT. (Other checkpoints produced similar results.)
We picked 15 Borg cells to report on by first eliminating
special-purpose, test, and small (< 5000 machines) cells,
and then sampled the remaining population to achieve a
roughly even spread across the range of sizes.

To maintain machine heterogeneity in the compacted cell
we randomly selected machines to remove. To maintain
workload heterogeneity, we kept it all, except for server and
storage tasks tied to a particular machine (e.g., the Borglets).
We changed hard constraints to soft ones for jobs larger than
half the original cell size, and allowed up to 0.2% tasks to go
pending if they were very “picky” and could only be placed
on a handful of machines; extensive experiments showed
that this produced repeatable results with low variance. If

Figure 6: Segregating users would need more machines. The total
number of cells and the additional machines that would be needed
if users larger than the threshold shown were given their own
private cells, for 5 different cells.

we needed a larger cell than the original we cloned the orig-
inal cell a few times before compaction; if we needed more
cells, we just cloned the original.

Each experiment was repeated 11 times for each cell with
different random-number seeds. In the graphs, we use an er-
ror bar to display the min and max of the number of ma-
chines needed, and select the 90%ile value as the “result” –
the mean or median would not reflect what a system admin-
istrator would do if they wanted to be reasonably sure that
the workload would fit. We believe cell compaction provides
a fair, consistent way to compare scheduling policies, and it
translates directly into a cost/benefit result: better policies
require fewer machines to run the same workload.

Our experiments focused on scheduling (packing) a
workload from a point in time, rather than replaying a long-
term workload trace. This was partly to avoid the difficulties
of coping with open and closed queueing models [71, 79],
partly because traditional time-to-completion metrics don’t
apply to our environment with its long-running services,
partly to provide clean signals for making comparisons,
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Figure 7: Subdividing cells into smaller ones would require more machines. The additional machines (as a percentage of the single-cell
case) that would be needed if we divided these particular cells into a varying number of smaller cells.

partly because we don’t believe the results would be sig-
nificantly different, and partly a practical matter: we found
ourselves consuming 200 000 Borg CPU cores for our ex-
periments at one point—even at Google’s scale, this is a
non-trivial investment.

In production, we deliberately leave significant headroom
for workload growth, occasional “black swan” events, load
spikes, machine failures, hardware upgrades, and large-scale
partial failures (e.g., a power supply bus duct). Figure 4
shows how much smaller our real-world cells would be if
we were to apply cell compaction to them. The baselines in
the graphs that follow use these compacted sizes.

5.2 Cell sharing
Nearly all of our machines run both prod and non-prod tasks
at the same time: 98% of the machines in shared Borg cells,
83% across the entire set of machines managed by Borg. (We
have a few dedicated cells for special uses.)

Since many other organizations run user-facing and batch
jobs in separate clusters, we examined what would happen if
we did the same. Figure 5 shows that segregating prod and
non-prod work would need 20–30% more machines in the
median cell to run our workload. That’s because prod jobs
usually reserve resources to handle rare workload spikes, but
don’t use these resources most of the time. Borg reclaims the
unused resources (§5.5) to run much of the non-prod work,
so we need fewer machines overall.

Most Borg cells are shared by thousands of users. Figure
6 shows why. For this test, we split off a user’s workload
into a new cell if they consumed at least 10 TiB of mem-
ory (or 100 TiB). Our existing policy looks good: even with
the larger threshold, we would need 2–16× as many cells,
and 20–150% additional machines. Once again, pooling re-
sources significantly reduces costs.

But perhaps packing unrelated users and job types onto
the same machines results in CPU interference, and so we
would need more machines to compensate? To assess this,
we looked at how the CPI (cycles per instruction) changed

for tasks in different environments running on the same ma-
chine type with the same clock speed. Under these condi-
tions, CPI values are comparable and can be used as a proxy
for performance interference, since a doubling of CPI dou-
bles the runtime of a CPU-bound program. The data was
gathered from ∼ 12000 randomly selected prod tasks over
a week, counting cycles and instructions over a 5 minute in-
terval using the hardware profiling infrastructure described
in [83], and weighting samples so that every second of CPU
time is counted equally. The results were not clear-cut.

(1) We found that CPI was positively correlated with
two measurements over the same time interval: the overall
CPU usage on the machine, and (largely independently) the
number of tasks on the machine; adding a task to a machine
increases the CPI of other tasks by 0.3% (using a linear
model fitted to the data); increasing machine CPU usage by
10% increases CPI by less than 2%. But even though the
correlations are statistically significant, they only explain 5%
of the variance we saw in CPI measurements; other factors
dominate, such as inherent differences in applications and
specific interference patterns [24, 83].

(2) Comparing the CPIs we sampled from shared cells to
ones from a few dedicated cells with less diverse applica-
tions, we saw a mean CPI of 1.58 (σ = 0.35) in shared cells
and a mean of 1.53 (σ = 0.32) in dedicated cells – i.e., CPU
performance is about 3% worse in shared cells.

(3) To address the concern that applications in different
cells might have different workloads, or even suffer selection
bias (maybe programs that are more sensitive to interference
had been moved to dedicated cells), we looked at the CPI of
the Borglet, which runs on all the machines in both types of
cell. We found it had a CPI of 1.20 (σ = 0.29) in dedicated
cells and 1.43 (σ = 0.45) in shared ones, suggesting that
it runs 1.19× as fast in a dedicated cell as in a shared
one, although this over-weights the effect of lightly loaded
machines, slightly biasing the result in favor of dedicated
cells.
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These experiments confirm that performance compar-
isons at warehouse-scale are tricky, reinforcing the observa-
tions in [51], and also suggest that sharing doesn’t drastically
increase the cost of running programs.

But even assuming the least-favorable of our results, shar-
ing is still a win: the CPU slowdown is outweighed by the
decrease in machines required over several different parti-
tioning schemes, and the sharing advantages apply to all re-
sources including memory and disk, not just CPU.

5.3 Large cells
Google builds large cells, both to allow large computations
to be run, and to decrease resource fragmentation. We tested
the effects of the latter by partitioning the workload for a cell
across multiple smaller cells – by first randomly permuting
the jobs and then assigning them in a round-robin manner
among the partitions. Figure 7 confirms that using smaller
cells would require significantly more machines.
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Figure 10: Resource reclamation is quite effective. A CDF of the
additional machines that would be needed if we disabled it for 15
representative cells.
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The straight lines are artifacts of the resource-estimation process.

5.4 Fine-grained resource requests
Borg users request CPU in units of milli-cores, and memory
and disk space in bytes. (A core is a processor hyperthread,
normalized for performance across machine types.) Figure 8
shows that they take advantage of this granularity: there are
few obvious “sweet spots” in the amount of memory or CPU
cores requested, and few obvious correlations between these
resources. These distributions are quite similar to the ones
presented in [68], except that we see slightly larger memory
requests at the 90%ile and above.

Offering a set of fixed-size containers or virtual machines,
although common among IaaS (infrastructure-as-a-service)
providers [7, 33], would not be a good match to our needs.
To show this, we “bucketed” CPU core and memory resource
limits for prod jobs and allocs (§2.4) by rounding them up to
the next nearest power of two in each resource dimension,
starting at 0.5 cores for CPU and 1 GiB for RAM. Figure 9
shows that doing so would require 30–50% more resources
in the median case. The upper bound comes from allocating
an entire machine to large tasks that didn’t fit after quadru-
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pling the original cell before compaction began; the lower
bound from allowing these tasks to go pending. (This is less
than the roughly 100% overhead reported in [37] because we
supported more than 4 buckets and permitted CPU and RAM
capacity to scale independently.)

5.5 Resource reclamation
A job can specify a resource limit – an upper bound on the
resources that each task should be granted. The limit is used
by Borg to determine if the user has enough quota to admit
the job, and to determine if a particular machine has enough
free resources to schedule the task. Just as there are users
who buy more quota than they need, there are users who
request more resources than their tasks will use, because
Borg will normally kill a task that tries to use more RAM
or disk space than it requested, or throttle CPU to what it
asked for. In addition, some tasks occasionally need to use
all their resources (e.g., at peak times of day or while coping
with a denial-of-service attack), but most of the time do not.

Rather than waste allocated resources that are not cur-
rently being consumed, we estimate how many resources a
task will use and reclaim the rest for work that can tolerate
lower-quality resources, such as batch jobs. This whole pro-
cess is called resource reclamation. The estimate is called
the task’s reservation, and is computed by the Borgmas-
ter every few seconds, using fine-grained usage (resource-
consumption) information captured by the Borglet. The ini-
tial reservation is set equal to the resource request (the limit);
after 300 s, to allow for startup transients, it decays slowly
towards the actual usage plus a safety margin. The reserva-
tion is rapidly increased if the usage exceeds it.

The Borg scheduler uses limits to calculate feasibility
(§3.2) for prod tasks,4 so they never rely on reclaimed re-
sources and aren’t exposed to resource oversubscription; for
non-prod tasks, it uses the reservations of existing tasks so
the new tasks can be scheduled into reclaimed resources.

A machine may run out of resources at runtime if the
reservations (predictions) are wrong – even if all tasks use

4 To be precise, high-priority latency-sensitive ones – see §6.2.
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Figure 13: Scheduling delays as a function of load. A plot of how
often a runnable thread had to wait longer than 1ms to get access to
a CPU, as a function of how busy the machine was. In each pair of
bars, latency-sensitive tasks are on the left, batch ones on the right.
In only a few percent of the time did a thread have to wait longer
than 5 ms to access a CPU (the white bars); they almost never had
to wait longer (the darker bars). Data from a representative cell for
the month of December 2013; error bars show day-to-day variance.

less than their limits. If this happens, we kill or throttle non-
prod tasks, never prod ones.

Figure 10 shows that many more machines would be
required without resource reclamation. About 20% of the
workload (§6.2) runs in reclaimed resources in a median cell.

We can see more details in Figure 11, which shows the
ratio of reservations and usage to limits. A task that exceeds
its memory limit will be the first to be preempted if resources
are needed, regardless of its priority, so it is rare for tasks
to exceed their memory limit. On the other hand, CPU can
readily be throttled, so short-term spikes can push usage
above reservation fairly harmlessly.

Figure 11 suggests that resource reclamation may be un-
necessarily conservative: there is significant area between
the reservation and usage lines. To test this, we picked a live
production cell and adjusted the parameters of its resource
estimation algorithm to an aggressive setting for a week by
reducing the safety margin, and then to an medium setting
that was mid-way between the baseline and aggressive set-
tings for the next week, and then reverted to the baseline.



Figure 12 shows what happened. Reservations are clearly
closer to usage in the second week, and somewhat less so in
the third, with the biggest gaps shown in the baseline weeks
(1st and 4th). As anticipated, the rate of out-of-memory
(OOM) events increased slightly in weeks 2 and 3.5 After
reviewing these results, we decided that the net gains out-
weighed the downsides, and deployed the medium resource
reclamation parameters to other cells.

6. Isolation
50% of our machines run 9 or more tasks; a 90%ile machine
has about 25 tasks and will be running about 4500 threads
[83]. Although sharing machines between applications in-
creases utilization, it also requires good mechanisms to pre-
vent tasks from interfering with one another. This applies to
both security and performance.

6.1 Security isolation
We use a Linux chroot jail as the primary security isolation
mechanism between multiple tasks on the same machine. To
allow remote debugging, we used to distribute (and rescind)
ssh keys automatically to give a user access to a machine
only while it was running tasks for the user. For most users,
this has been replaced by the borgssh command, which col-
laborates with the Borglet to construct an ssh connection to
a shell that runs in the same chroot and cgroup as the task,
locking down access even more tightly.

VMs and security sandboxing techniques are used to run
external software by Google’s AppEngine (GAE) [38] and
Google Compute Engine (GCE). We run each hosted VM in
a KVM process [54] that runs as a Borg task.

6.2 Performance isolation
Early versions of Borglet had relatively primitive resource
isolation enforcement: post-hoc usage checking of memory,
disk space and CPU cycles, combined with termination of
tasks that used too much memory or disk and aggressive ap-
plication of Linux’s CPU priorities to rein in tasks that used
too much CPU. But it was still too easy for rogue tasks to af-
fect the performance of other tasks on the machine, so some
users inflated their resource requests to reduce the number of
tasks that Borg could co-schedule with theirs, thus decreas-
ing utilization. Resource reclamation could claw back some
of the surplus, but not all, because of the safety margins in-
volved. In the most extreme cases, users petitioned to use
dedicated machines or cells.

Now, all Borg tasks run inside a Linux cgroup-based re-
source container [17, 58, 62] and the Borglet manipulates the
container settings, giving much improved control because
the OS kernel is in the loop. Even so, occasional low-level
resource interference (e.g., memory bandwidth or L3 cache
pollution) still happens, as in [60, 83].

5 The anomaly at the end of week 3 is unrelated to this experiment.

To help with overload and overcommitment, Borg tasks
have an application class or appclass. The most important
distinction is between the latency-sensitive (LS) appclasses
and the rest, which we call batch in this paper. LS tasks are
used for user-facing applications and shared infrastructure
services that require fast response to requests. High-priority
LS tasks receive the best treatment, and are capable of tem-
porarily starving batch tasks for several seconds at a time.

A second split is between compressible resources (e.g.,
CPU cycles, disk I/O bandwidth) that are rate-based and
can be reclaimed from a task by decreasing its quality of
service without killing it; and non-compressible resources
(e.g., memory, disk space) which generally cannot be re-
claimed without killing the task. If a machine runs out of
non-compressible resources, the Borglet immediately termi-
nates tasks, from lowest to highest priority, until the remain-
ing reservations can be met. If the machine runs out of com-
pressible resources, the Borglet throttles usage (favoring LS
tasks) so that short load spikes can be handled without killing
any tasks. If things do not improve, Borgmaster will remove
one or more tasks from the machine.

A user-space control loop in the Borglet assigns mem-
ory to containers based on predicted future usage (for prod
tasks) or on memory pressure (for non-prod ones); handles
Out-of-Memory (OOM) events from the kernel; and kills
tasks when they try to allocate beyond their memory lim-
its, or when an over-committed machine actually runs out
of memory. Linux’s eager file-caching significantly compli-
cates the implementation because of the need for accurate
memory-accounting.

To improve performance isolation, LS tasks can reserve
entire physical CPU cores, which stops other LS tasks from
using them. Batch tasks are permitted to run on any core,
but they are given tiny scheduler shares relative to the LS
tasks. The Borglet dynamically adjusts the resource caps of
greedy LS tasks in order to ensure that they do not starve
batch tasks for multiple minutes, selectively applying CFS
bandwidth control when needed [75]; shares are insufficient
because we have multiple priority levels.

Like Leverich [56], we found that the standard Linux
CPU scheduler (CFS) required substantial tuning to support
both low latency and high utilization. To reduce schedul-
ing delays, our version of CFS uses extended per-cgroup
load history [16], allows preemption of batch tasks by LS
tasks, and reduces the scheduling quantum when multiple LS
tasks are runnable on a CPU. Fortunately, many of our ap-
plications use a thread-per-request model, which mitigates
the effects of persistent load imbalances. We sparingly use
cpusets to allocate CPU cores to applications with particu-
larly tight latency requirements. Some results of these efforts
are shown in Figure 13. Work continues in this area, adding
thread placement and CPU management that is NUMA-,
hyperthreading-, and power-aware (e.g., [81]), and improv-
ing the control fidelity of the Borglet.



Tasks are permitted to consume resources up to their
limit. Most of them are allowed to go beyond that for com-
pressible resources like CPU, to take advantage of unused
(slack) resources. Only 5% of LS tasks disable this, presum-
ably to get better predictability; fewer than 1% of batch tasks
do. Using slack memory is disabled by default, because it in-
creases the chance of a task being killed, but even so, 10%
of LS tasks override this, and 79% of batch tasks do so be-
cause it’s a default setting of the MapReduce framework.
This complements the results for reclaimed resources (§5.5).
Batch tasks are willing to exploit unused as well as reclaimed
memory opportunistically: most of the time this works, al-
though the occasional batch task is sacrificed when an LS
task needs resources in a hurry.

7. Related work
Resource scheduling has been studied for decades, in con-
texts as varied as wide-area HPC supercomputing Grids, net-
works of workstations, and large-scale server clusters. We
focus here on only the most relevant work in the context of
large-scale server clusters.

Several recent studies have analyzed cluster traces from
Yahoo!, Google, and Facebook [20, 52, 63, 68, 70, 80, 82],
and illustrate the challenges of scale and heterogeneity in-
herent in these modern datacenters and workloads. [69] con-
tains a taxonomy of cluster manager architectures.

Apache Mesos [45] splits the resource management and
placement functions between a central resource manager
(somewhat like Borgmaster minus its scheduler) and mul-
tiple “frameworks” such as Hadoop [41] and Spark [73]
using an offer-based mechanism. Borg mostly centralizes
these functions using a request-based mechanism that scales
quite well. DRF [29, 35, 36, 66] was initially developed for
Mesos; Borg uses priorities and admission quotas instead.
The Mesos developers have announced ambitions to extend
Mesos to include speculative resource assignment and recla-
mation, and to fix some of the issues identified in [69].

YARN [76] is a Hadoop-centric cluster manager. Each ap-
plication has a manager that negotiates for the resources it
needs with a central resource manager; this is much the same
scheme that Google MapReduce jobs have used to obtain
resources from Borg since about 2008. YARN’s resource
manager only recently became fault tolerant. A related open-
source effort is the Hadoop Capacity Scheduler [42] which
provides multi-tenant support with capacity guarantees, hi-
erarchical queues, elastic sharing and fairness. YARN has re-
cently been extended to support multiple resource types, pri-
orities, preemptions, and advanced admission control [21].
The Tetris research prototype [40] supports makespan-aware
job packing.

Facebook’s Tupperware [64], is a Borg-like system for
scheduling cgroup containers on a cluster; only a few details
have been disclosed, although it seems to provide a form
of resource reclamation. Twitter has open-sourced Aurora

[5], a Borg-like scheduler for long running services that runs
on top of Mesos, with a configuration language and state
machine similar to Borg’s.

The Autopilot system from Microsoft [48] provides “au-
tomating software provisioning and deployment; system
monitoring; and carrying out repair actions to deal with
faulty software and hardware” for Microsoft clusters. The
Borg ecosystem provides similar features, but space pre-
cludes a discussion here; Isaard [48] outlines many best
practices that we adhere to as well.

Quincy [49] uses a network flow model to provide fairness-
and data locality-aware scheduling for data-processing DAGs
on clusters of a few hundred nodes. Borg uses quota and pri-
orities to share resources among users and scales to tens of
thousands of machines. Quincy handles execution graphs
directly while this is built separately on top of Borg.

Cosmos [44] focuses on batch processing, with an em-
phasis on ensuring that its users get fair access to resources
they have donated to the cluster. It uses a per-job manager to
acquire resources; few details are publicly available.

Microsoft’s Apollo system [13] uses per-job schedulers
for short-lived batch jobs to achieve high throughput on clus-
ters that seem to be comparably-sized to Borg cells. Apollo
uses opportunistic execution of lower-priority background
work to boost utilization to high levels at the cost of (some-
times) multi-day queueing delays. Apollo nodes provide a
prediction matrix of starting times for tasks as a function
of size over two resource dimensions, which the schedulers
combine with estimates of startup costs and remote-data-
access to make placement decisions, modulated by random
delays to reduce collisions. Borg uses a central scheduler for
placement decisions based on state about prior allocations,
can handle more resource dimensions, and focuses on the
needs of high-availability, long-running applications; Apollo
can probably handle a higher task arrival rate.

Alibaba’s Fuxi [84] supports data-analysis workloads;
it has been running since 2009. Like Borgmaster, a cen-
tral FuxiMaster (replicated for failure-tolerance) gathers
resource-availability information from nodes, accepts re-
quests from applications, and matches one to the other. The
Fuxi incremental scheduling policy is the inverse of Borg’s
equivalence classes: instead of matching each task to one
of a suitable set of machines, Fuxi matches newly-available
resources against a backlog of pending work. Like Mesos,
Fuxi allows “virtual resource” types to be defined. Only syn-
thetic workload results are publicly available.

Omega [69] supports multiple parallel, specialized “verti-
cals” that are each roughly equivalent to a Borgmaster minus
its persistent store and link shards. Omega schedulers use
optimistic concurrency control to manipulate a shared repre-
sentation of desired and observed cell state stored in a cen-
tral persistent store, which is synced to/from the Borglets by
a separate link component. The Omega architecture was de-
signed to support multiple distinct workloads that have their



own application-specific RPC interface, state machines, and
scheduling policies (e.g., long-running servers, batch jobs
from various frameworks, infrastructure services like clus-
ter storage systems, virtual machines from the Google Cloud
Platform). On the other hand, Borg offers a “one size fits all”
RPC interface, state machine semantics, and scheduler pol-
icy, which have grown in size and complexity over time as a
result of needing to support many disparate workloads, and
scalability has not yet been a problem (§3.4).

Google’s open-source Kubernetes system [53] places
applications in Docker containers [28] onto multiple host
nodes. It runs both on bare metal (like Borg) and on various
cloud hosting providers, such as Google Compute Engine.
It is under active development by many of the same engi-
neers who built Borg. Google offers a hosted version called
Google Container Engine [39]. We discuss how lessons from
Borg are being applied to Kubernetes in the next section.

The high-performance computing community has a long
tradition of work in this area (e.g., Maui, Moab, Platform
LSF [2, 47, 50]); however the requirements of scale, work-
loads and fault tolerance are different from those of Google’s
cells. In general, such systems achieve high utilization by
having large backlogs (queues) of pending work.

Virtualization providers such as VMware [77] and data-
center solution providers such as HP and IBM [46] provide
cluster management solutions that typically scale to O(1000)
machines. In addition, several research groups have proto-
typed systems that improve the quality of scheduling deci-
sions in certain ways (e.g., [25, 40, 72, 74]).

And finally, as we have indicated, another important part
of managing large scale clusters is automation and “operator
scaleout”. [43] describes how planning for failures, multi-
tenancy, health checking, admission control, and restartabil-
ity are necessary to achieve high numbers of machines per
operator. Borg’s design philosophy is similar and allows us
to support tens of thousands of machines per operator (SRE).

8. Lessons and future work
In this section we recount some of the qualitative lessons
we’ve learned from operating Borg in production for more
than a decade, and describe how these observations have
been leveraged in designing Kubernetes [53].

8.1 Lessons learned: the bad
We begin with some features of Borg that serve as cautionary
tales, and informed alternative designs in Kubernetes.

Jobs are restrictive as the only grouping mechanism
for tasks. Borg has no first-class way to manage an entire
multi-job service as a single entity, or to refer to related
instances of a service (e.g., canary and production tracks).
As a hack, users encode their service topology in the job
name and build higher-level management tools to parse these
names. At the other end of the spectrum, it’s not possible to

refer to arbitrary subsets of a job, which leads to problems
like inflexible semantics for rolling updates and job resizing.

To avoid such difficulties, Kubernetes rejects the job no-
tion and instead organizes its scheduling units (pods) using
labels – arbitrary key/value pairs that users can attach to any
object in the system. The equivalent of a Borg job can be
achieved by attaching a job:jobname label to a set of pods,
but any other useful grouping can be represented too, such
as the service, tier, or release-type (e.g., production, stag-
ing, test). Operations in Kubernetes identify their targets by
means of a label query that selects the objects that the op-
eration should apply to. This approach gives more flexibility
than the single fixed grouping of a job.

One IP address per machine complicates things. In
Borg, all tasks on a machine use the single IP address of
their host, and thus share the host’s port space. This causes
a number of difficulties: Borg must schedule ports as a re-
source; tasks must pre-declare how many ports they need,
and be willing to be told which ones to use when they start;
the Borglet must enforce port isolation; and the naming and
RPC systems must handle ports as well as IP addresses.

Thanks to the advent of Linux namespaces, VMs, IPv6,
and software-defined networking, Kubernetes can take a
more user-friendly approach that eliminates these complica-
tions: every pod and service gets its own IP address, allowing
developers to choose ports rather than requiring their soft-
ware to adapt to the ones chosen by the infrastructure, and
removes the infrastructure complexity of managing ports.

Optimizing for power users at the expense of casual
ones. Borg provides a large set of features aimed at “power
users” so they can fine-tune the way their programs are run
(the BCL specification lists about 230 parameters): the ini-
tial focus was supporting the largest resource consumers at
Google, for whom efficiency gains were paramount. Unfor-
tunately the richness of this API makes things harder for the
“casual” user, and constrains its evolution. Our solution has
been to build automation tools and services that run on top of
Borg, and determine appropriate settings from experimenta-
tion. These benefit from the freedom to experiment afforded
by failure-tolerant applications: if the automation makes a
mistake it is a nuisance, not a disaster.

8.2 Lessons learned: the good
On the other hand, a number of Borg’s design features have
been remarkably beneficial and have stood the test of time.

Allocs are useful. The Borg alloc abstraction spawned
the widely-used logsaver pattern (§2.4) and another popular
one in which a simple data-loader task periodically updates
the data used by a web server. Allocs and packages allow
such helper services to be developed by separate teams. The
Kubernetes equivalent of an alloc is the pod, which is a
resource envelope for one or more containers that are always
scheduled onto the same machine and can share resources.
Kubernetes uses helper containers in the same pod instead
of tasks in an alloc, but the idea is the same.



Cluster management is more than task management.
Although Borg’s primary role is to manage the lifecycles
of tasks and machines, the applications that run on Borg
benefit from many other cluster services, including naming
and load balancing. Kubernetes supports naming and load
balancing using the service abstraction: a service has a name
and a dynamic set of pods defined by a label selector. Any
container in the cluster can connect to the service using the
service name. Under the covers, Kubernetes automatically
load-balances connections to the service among the pods that
match the label selector, and keeps track of where the pods
are running as they get rescheduled over time due to failures.

Introspection is vital. Although Borg almost always
“just works,” when something goes wrong, finding the root
cause can be challenging. An important design decision in
Borg was to surface debugging information to all users rather
than hiding it: Borg has thousands of users, so “self-help”
has to be the first step in debugging. Although this makes it
harder for us to deprecate features and change internal poli-
cies that users come to rely on, it is still a win, and we’ve
found no realistic alternative. To handle the enormous vol-
ume of data, we provide several levels of UI and debugging
tools, so users can quickly identify anomalous events related
to their jobs, and then drill down to detailed event and error
logs from their applications and the infrastructure itself.

Kubernetes aims to replicate many of Borg’s introspec-
tion techniques. For example, it ships with tools such as
cAdvisor [15] for resource monitoring, and log aggregation
based on Elasticsearch/Kibana [30] and Fluentd [32]. The
master can be queried for a snapshot of its objects’ state.
Kubernetes has a unified mechanism that all components can
use to record events (e.g., a pod being scheduled, a container
failing) that are made available to clients.

The master is the kernel of a distributed system.
Borgmaster was originally designed as a monolithic sys-
tem, but over time, it became more of a kernel sitting at the
heart of an ecosystem of services that cooperate to man-
age user jobs. For example, we split off the scheduler and
the primary UI (Sigma) into separate processes, and added
services for admission control, vertical and horizontal auto-
scaling, re-packing tasks, periodic job submission (cron),
workflow management, and archiving system actions for
off-line querying. Together, these have allowed us to scale
up the workload and feature set without sacrificing perfor-
mance or maintainability.

The Kubernetes architecture goes further: it has an API
server at its core that is responsible only for processing re-
quests and manipulating the underlying state objects. The
cluster management logic is built as small, composable
micro-services that are clients of this API server, such as
the replication controller, which maintains the desired num-
ber of replicas of a pod in the face of failures, and the node
controller, which manages the machine lifecycle.

8.3 Conclusion
Virtually all of Google’s cluster workloads have switched to
use Borg over the past decade. We continue to evolve it, and
have applied the lessons we learned from it to Kubernetes.
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After the camera-ready copy was finalized, we noticed a few inadvertent omissions and 
ambiguities. 

The user perspective 

SREs do much more than system administration: they are the engineers responsible for Google’s 
production services.  They design and implement software, including automation systems, and 
manage applications, service infrastructure and platforms to ensure high performance and 
reliability at Google scale. 

Related work 

Borg leveraged much from its internal predecessor, the Global Work Queue system, which was 
initially developed by Jeff Dean, Olcan Sercinoglu, and Percy Liang. 
 
Condor [1] has been widely used for aggregating collections of idle resources, and its ClassAds 
mechanism [2] supports declarative statements and automated attribute/property matching. 
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