
Random Sampling with a Reservoir

JEFFREY SCOTT VITTER
Brown University

We introduce fast algorithms for selecting a random sample of n records without replacement from
a pool of N records, where the value of N is unknown beforehand. The main result of the paper is
the design and analysis of Algorithm Z; it does the sampling in one pass using constant space and in
O(n(1 + log(N/n))) expected time, which is optimum, up to a constant factor. Several optimizations
are studied that collectively improve the speed of the naive version of the algorithm by an order of
magnitude. We give an efficient Pascal-like implementation that incorporates these modifications
and that is suitable for general use. Theoretical and empirical results indicate that Algorithm Z
outperforms current methods by a significant margin.

CR Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-
tics-probabilistic algorithms, random number generation, statistical software; G.4 [Mathematics of
Computing]: Mathematical Software-algorithm analysis

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Analysis of algorithms, optimization, random sampling, rejection
method, reservoir

1. INTRODUCTION

Random sampling is basic to many computer applications in computer science,
statistics, and engineering. The problem is to select without replacement a
random sample of size n from a set of size N. For example, we might want a
random sample of n records out of a pool of N records, or perhaps we might need
a random sample of n integers from the set {l, 2,. . . , NJ.

Many algorithms have been developed for this problem when the value of N is
known beforehand [l-3,6-8, lo]. In this paper we study a very different problem:
sampling when N is unknown and cannot be determined efficiently. The problem
arises, for example, in sampling records that reside on a magnetic tape of
indeterminate length. One solution is to determine the value of N in one pass
and then to use one of the methods given in [lo] during a second pass. However,
predetermining N may not always be practical or possible. In the tape analogy,
the extra pass though the tape could be very expensive.

Support for this research was provided in part by NSF research grants MCS-81-05324 and DCR-84-
03613, by an IBM research contract, by an IBM Faculty Development Award, and by ONR and
DARPA under Contract N00014-83-K-0146 and ARPA Order No. 4786. An extended abstract of this
research appeared in [111.
Author’s address: Department of Computer Science, Brown University, Providence, RI 02912.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 009&3/85/0300-0037 $00.75

ACM Transactions on Mathematical Software, Vol. 11, NO. 1, March 1985, Pages 37-57.

38 - Jeffrey Scott Vitter

Table I. Performance of Algorithms R, X, Y, and Z

Average number
of uniform

Algorithm random variates Average CPU time

R N-n O(N)

X =2n In N O(N)
n

Y -2n In E 0
n i(

n2 1 + log t log log t

Z -3n In: O(n(1 + log!))

For that reason, we will restrict ourselves to processing the file of records in one
sequential pass and without knowledge of N. The powerful techniques developed
in [lo] can be applied to yield several fast new algorithms for this problem. The
main result of this paper is the design and analysis of Algorithm Z, which does
the sampling in optimum time and using a constant amount of space. Algorithm
Z is significantly faster than the sampling methods in use today.

The measure of performance we will use in this paper to compare algorithms
is central processing unit (CPU) time. Input/output (I/O) time will be ignored
for the following reason: Any algorithm for this problem can be implemented
using the framework that we introduce in Section 3. This reduces the I/O time
dramatically by taking advantage of the random access of disks and the fast-
forwarding capabilities of modern tape drives; the resulting I/O time is the same
regardless of the algorithm. The remaining bottleneck is often the CPU time.
The algorithms we introduce in this paper succeed in reducing the CPU time
significantly, so that it is no longer a bottleneck.

It turns out that all sampling methods that process the file in one pass can be
characterized as reservoir algorithms. In the next section, we define what we
mean by a reservoir algorithm and discuss Algorithm R, which was previously
the method of choice for this problem. In Section 3, we present a new framework
for describing reservoir algorithms and derive a lower bound on the CPU time
required. Algorithms X and Y are introduced and analyzed in Section 4. The
main result, Algorithm Z, is presented in Section 5. We give several optimizations
in Section 6 that reduce the CPU time of the naive version of Algorithm Z by a
factor of roughly 8. The theoretical analysis of the algorithm appears in Section
7. An efficient implementation of Algorithm Z is given in Section 8 that incor-
porates the optimizations discussed in Section 6. The performance of these
algorithms is summarized in Table I.

The empirical timings given in Section 9 support the theoretical results and
show that Algorithm Z outperforms the other methods by substantial margins.
The CPU times (in microseconds) of optimized FORTRAN 77 implementations
of Algorithms R, X, and Z on a VAX 11/780 computer are roughly 16ON, 4ON,
and 950n In (N/n) - 1250n, respectively. Our results are summarized in Section
10.
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 39

2. RESERVOIR ALGORITHMS AND ALGORITHM R

All the algorithms we study in this paper are examples of reservoir algorithms.
We shall see in the next section that every algorithm for this sampling problem
must be a type of reservoir algorithm. The basic idea behind reservoir algorithms
is to select a sample of size 2 n, from which a random sample of size n can be .
generated. A reservoir algorithm is defined as follows:

Definition 1. The first step of any reservoir algorithm is to put the first n
records of the file into a “reservoir.” The rest of the records are processed
sequentially; records can be selected for the reservoir only as they are processed.
An algorithm is a reservoir algorithm if it maintains the invariant that after each
record is processed a true random sample of size n can be extracted from the
current state of the reservoir.

At the end of the sequential pass through the file, the final random sample
must be extracted from the reservoir. The reservoir might be rather large, and so
this process could be expensive. The most efficient reservoir algorithms (including
the ones we discuss in this paper) avoid this step by always maintaining a set of
n designated candidates in the reservoir, which form a true random sample of the
records processed so far. When a record is chosen for the reservoir, it becomes a
candidate and replaces one of the former candidates; at the end of the sequential
pass through the file, the current set of n candidates is output as the final sample.

Algorithm R (which is is a reservoir algorithm due to Alan Waterman) works
as follows: When the (t + 1)st record in the file is being processed, for t L n, the
n candidates form a random sample of the first t records. The (t + 1)st record
has a n/(t + 1) chance of being in a random sample of size n of the first t + 1
records, and so it is made a candidate with probability n/(t + 1). The candidate
it replaces is chosen randomly from the n candidates. It is easy to see that the
resulting set of n candidates forms a random sample of the first t + 1 records.

The complete algorithm is given below. The current set of n candidates is
stored in the array C, in locations C[O], C[l], . . . , C[n - 11. Built-in Boolean
function eof returns true if the end of file has been reached. The random number
generator RANDOM returns a real number in the unit interval. The procedure
call READ-NEXT-RECORD(R) reads the next record from the file and stores
it in the record R. The procedure call SKIP-RECORDS(k) reads past (i.e., skips
over) the next k records in the tile.
{Make the first n records candidates for the sample)
for j := 0 to n - 1 do READ-NEXT-RECORD(C[j]);
t := n; {t is the number of records processed so far}
while not eof do (Process the rest of the records1

begin
t := t + 1;
d := TRUNC (t x RANDOM()); {A is random in the range 0 5 A 5 t - 11
if.H<nthen {Make the next record a candidate, replacing one at random)

READ-NEXT-RECORD(C[d])
else

SKIP-RECORDS(l)
(Skip over the next record)

end;

When the end of file has been reached, the n candidates stored in the array C
form a true random sample of the N records in the file.

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

40 - Jeffrey Scott Vitter

If the internal memory is not large enough to store the n candidates, the
algorithm can be modified as follows: The reservoir is stored sequentially on
secondary storage; pointers to the current candidates are stored in internal
memory in an array, which we call I. (We assume that there is enough space to
store n pointers.) Suppose during the algorithm that record R’ is chosen as a
candidate to replace record R, which is pointed to by I[k]. Record R is written
sequentially ont,o secondary storage, and I[k] is set to point to R. The above code
can be modified by replacing the initial for loop with the following code:
for j := 0 to n - 1 do

begin
Copy the jth record onto secondary storage;
Set I[j] to point to the jth record;
end,

Program statement “READ-NEXT-RECORD(C[&])” should be replaced by

begin
Copy the next record onto secondary storage;
Set I[.H] to point to that record
end

Retrieval of the final sample from secondary storage can be sped up by retrieving
the records in sequential order. This can be done by sorting the pointers 1[1],
WI, . - * , I[n]. The sort should be very fast because it can be done in internal
memory.

The average number of records in the reservoir at the end of the algorithm is

n
n+ c. -

nst<N t + 1
= n(1 + HN - H,) =. n (2.1)

The notation Hk denotes the “kth harmonic number,” defined by xisisk l/i. An
easy modification of the derivation shows that the average number of records
chosen for the reservoir after t records have been processed so far is

n(HN - Ht) = n ln 7. (2.2)

It is clear that Algorithm R runs in time O(N) because the entire file must. be
scanned and since each record can be processed in constant time. This algorithm
can be reformulated easily by using the framework that we develop in the next
section, so that the I/O time is reduced from O(N) to O(n(1 + log(N/n))).

3. OUR FRAMEWORK FOR RESERVOIR ALGORITHMS

The limiting restrictions on algorithms for this sampling problem are that the
records must be read sequentially and at most once. This means that any
algorithm for this problem must maintain a reservoir that contains a random
sample of size n of the records processed so far. This gives us the following
generalization.

THEOREM 1. Every algorithm for this sampling problem is a type of reservoir
algorithm.

Let us denote the number of records processed so far by t. If the file contains
t + 1 records, each of the t + 1 records has probability n/(t + 1) of being in a
ACM Transactions on Mathematical Software, Vol. 11, NO. 1, March 1985.

Random Sampling with a Reservoir l 41

true random sample of size n. This means that the (t + 1)st record should be
chosen for the reservoir with probability L n/(t + 1). Thus the average size of
the reservoir must be at least as big as that in Algorithm R, which is n(1 + HN
- H,) = n (1 + ln(N/n)). This gives a lower bound on the time required to do
the sampling.

The framework we use in this paper to develop reservoir algorithms faster than
Algorithm R revolves around the following random variate:

Definition 2. The random variable 9(n, t) is defined to be the number of
records in the file that are skipped over before the next record is chosen for the
reservoir, where n is the size of the sample and where t is the number of records
processed so far. For notational simplicity, we shall often write 9 for 9(n, t),
in which case the parameters n and t will be implicit.

The basic idea for our reservoir algorithms is to repeatedly generate 9, skip
that number of records, and select the next record for the reservoir. As in
Algorithm R, we maintain a set of n candidates in the reservoir. Initially, the
first n records are chosen as candidates, and we set t := n. Our reservoir algorithms
have the following basic outline:

while not eof do
begin

(Process the rest of the records)

Generate an independent random variate Y(n, t);
SKZP-RECORDS(Y); (Skip over the next y records)
if not eof then

begin {Make the next record a candidate, replacing one at random)
A:= TRUNC (n X RANDOM()); (AT is uniform in the range 0 I A 5 n - 1)
READ-NEXT-RECORD(C[J])
end

t := t + 9 + 1;
end,

Our sampling algorithms differ from one another in the way that 9 is
generated. Algorithm R can be cast in this framework: it generates 9 in O(y)
time, using O(9) calls to RANDOM. The three new algorithms we introduce in
this paper (Algorithms X, Y, and Z) generate 9 faster than does Algorithm R.
Algorithm Z, which is covered in Sections 5-9, generates 9 in constant time, on
the average, and thus by (2.1) it runs in average time O(n(l + log(N/n))). By
the lower bound we derived above, this is optimum, up to a constant factor.

The range of 9’(n, t) is the set of nonnegative integers. The distribution
function F(s) = Prob(9 I s), for s L 0, can be expressed in two ways:

P
F(s) = l - (t + s + 1)” = l -

(t + 1 - n)”
tt + +i * (3.1)

(The notation ub denotes the “falling power” a(a - 1) . . . (a - b + 1) =
u!/(u - b)!, and the corresponding notation ub denotes the “rising power”
a(u + 1) *. . (a + b - 1) = (a + b - l)!/(a - l)!.) The two corresponding
expressions for the probability function f(s) = Prob(9 = s), for s z 0 are

-
f(s) = n L = - n (t - n)‘+’

t+s+ 1 (t+s)” t-n(t+l)“+”
(3.2)

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

42 l Jeffrey Scott Vitter

The expected value of 9 is equal to

expected(Y) = nt” C (3.3)

This can be derived using summation by parts:

a$<b 4s) Au(s) = u(sh~(s)l: - .z<* u(s + 1) Au(s),

where Au(s) = u(s + 1) - u(s). We use u = s, Au = l/(t + s + l)“+‘. The standard
deviation of 9 is approximately equal to expected (9)) but slightly greater.

A random variate 9 is generated for each candidate chosen. If the l.ast
candidate chosen is not the Nth record in the file, then 9 is generated one extra
time in order to move past the end of file; this happens with probability 1
- n/N. Combining this with (2.2), we find that the average number of times 9
is generated, after t records have already been processed, is n(H, - Ht) + 1
- n/N.

4. ALGORITHMS X AND Y

In this section we develop two new algorithms using the framework developed in
the last section. We can generate an independent random variate Y with
distribution F(s) by first generating an independent uniform random variate Y
and then setting 9 to the smallest value s 2 0 such that Z! 5 F(s). Substituting
(3.1) for F(s), the stopping condition is equivalent to

(t+1-n)“+‘51-Y

(t + l)=

The quantity 1 - % is independent and uniformly distributed because ?Y is. Hence
we can replace 1 - %! in this inequality by an independent uniform random
variate, which we call V. The new stopping condition is

(t+l-n)“+‘<v
- - .

(t + l)*+l
(4.1)

Algorithm X. Algorithm X finds the minimum value s 2 0 satisfying (4.1) by
simple sequential search, as follows:

T := RANDOM(); {Y is uniform on the unit interval)
Search sequentially for the minimum s z 0 such that (t + 1 - n)““/(t + 1)x I Y;
9 := s;

Let us denote the left-hand side of (4.1) by H(s). The speed of the method is
due to the fact that H(s + 1) can be computed in constant time from H(s); the
sequential search takes O(9 + 1) time. When n = 1, (3.3) shows that ex-
pected(9) is unbounded, and so Algorithm X should not be used. If n > 1, the
total running time of Algorithm X is 0(x 9) = O(N), on the average. The
execution times for Algorithms R and X are both O(N), but Algorithm X is
several times faster, because it calls RANDOM only once per generation of 9,
rather than O(9) times. The Pascal-like code for Algorithm X appears in the
first part of the implementation of Algorithm Z in Section 8.
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 43

Algorithm Y. An alternate way to find the minimum s satisfying (4.1) is to use
binary search, or better yet, a variant of Newton’s interpolation method. The
latter approach is the basis for Algorithm Y.

The value of s we want to find is the “approximate root” of the equation

Here we apply the discrete version of Newton’s method. In place of the derivative
of H(s), we use the difference function

AH(s) = H(s + 1) - H(s) = -f(s + 1).

We can show that Newton’s method converges to give the value of 9 in O(1 +
log log 9) iterations. (By convention, we define log log 9 = 0 when 9 % b,
where b is the base of the logarithm.) Each interation requires the computation
of H(s) and AH(s), which takes O(n) time. The total running time is given in
the following theorem:

THEOREM 2. The average running time of Algorithm Y used to do the sampling
is

0 n2 l+logFloglogX
cc)J

.

PROOF. By the above remarks, the running time of Algorithm Y is

0 n
(

C (1 + log log pii) f
15iC.7)

where yi denotes the ith value of 9 generated, and where 7 is the number of
times 9 is generated before the algorithm terminates. In probability language,
F is called a bounded stopping time, since it must be true that F 5 N - n. Let
us denote the quantity 1 + log log Pi by Pi. The variates 9,) 22, 93, . . . are
not independent of one another, because the distribution function F(s) of 9
depends upon the current value of t. However, we can “bound” each random
variate Pi by a random variate 9: = 1 + log log P(n, N - l), such that P;,
.L?;,L?$, . . . are independent of one another. By “bound”, we mean that the
distribution function for 9”(is everywhere greater than the distribution function
for Pi. If we imagine that .Pi and 9; are both generated by first generating Pi
and y(n, N - 1) via Algorithm X or Y using the same value of ?V, then this
condition guarantees that Pi I P”(. Hence we can bound (4.2) by

(4.3)
lsiS7

The random variates 9;) 9;) 94, . . . are independent and identically distrib-
uted. We can apply the classical form of Wald’s Lemma (see [5]) and bound the
average value of (4.3) by

O(expected(F) . (1 + expected(log log P(n, N - 1)))). (4.4)
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

44 ’ Jeffrey Scott Vitter

We showed at the end of the last section that expected(Y) = n(HN - H,) + 1 -
n/N = O(n(1 + log(N/n))). By Jensen’s inequality (see [4]), when n > 1, we have

expected(loglog9(n, N- 1)) I loglog(expected(Y(n, N - 1)))

N-n
= log log n-l

N =o loglog;
()

.

For the case n = 1, we can show that expected(log log 9(1, N - 1)) = O(1).
Putting this together, we can bound (4.4) by O(n2(1 + log(N/n)log log(N/n))). Cl

It is possible to obtain a higher-order convergence than with Newton’s method
by using higher-order differences, defined by AkH(s) = AkmlH(s + 1) - Ak-‘H(s).
For k > 1, each difference AkH(s) can be computed in constant time from a lower
order difference using the formula

AkH(s) = -
n+k-1

t+s+k+l)
Ak-‘H(s).

It may be possible to choose k so large that 9 can be generated in a constant
number of iterations. The total running time would then be bounded by O((k +
n)n(l + log(N/n))). The value of k would be at least log*(N/n), where log*x is
defined to be the number of times the log function must be applied, initially to
the argument X, until the result is 51. However, the overhead involved would
probably be too large to make this practical. A much faster algorithm is given in
the next section.

5. ALGORITHM Z

Algorithm Z follows our general format described in Section 3. The skip random
variate P(n, t) is generated in constant time, on the average, by a modification
of von Neumann’s rejection-acceptance method. The main idea is that we can
generate Y quickly by generating a fast approximation and “correcting” it so
that its resulting distribution is the desired distribution F(s).

We assume that we have a continuous random variable 2’ that can be generated
quickly and whose distribution approximates F(s) well. We denote the probability
density function of 2? by g(x). We choose a constant c 2 1 such that

for all x: 2 0.
We generate 9’ ‘by generating an independent 2 and an independent uniform

random variate % on the unit interval. If YL > f(L2YI)/cg(Z) (which occurs with
low probability), we reject La”A and start over by generating a new 2? and %.
When the condition %! 5 f(La”l)/cg(Z) is finally true, then we accept LPI and
set 9 := LF’J. The following lemma, which is easy to prove and is left to the
reader, shows that this procedure is valid.

LEMMA 1. The random variate 27 generated in the above manner has the
distribution given by (3.1).

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 45

The bottleneck in this process is computing f(LpJ)/cg($Y), which takes
O(min{n, LYJ + 11) time using (3.2). We can avoid this computation most of the
time by approximating f(s) by a more quickly computed function h(s), such that
for all s I 0, we have

h(s) = f(s). (5.2)

If %! 5 h(LZJ)/cg(F), then by transitivity we have %! 5 f(LZYJ)/cg(Z), and so
we can accept LFJ. The value of f(LS?J) must be computed only when % >
h(LS?J)/cg(ZY), which happens with small probability. This technique is some-
times called the squeeze method, since we have h(Lx J) I f (LxJ) 9 cg(x), for all 3~.

Owing to the overhead in computing these functions, the rejection technique
generates 9 more slowly than does the method used in Algorithm X when t I
Tn, for some constant T > 1. Typical values of T can be expected to be in the
range 10-40. For example, in the implementation described in Sections 8 and 9,
we have T = 22. The outline for how Algorithm Z generates Y(n, t) appears
below:

if t 5 T x n then Use the inner loop of Algorithm X to generate Y
else begin

repeat
Generate an independent random variable 2 with density function g(x);
zz’ := RANDOM(); 1~ is uniform on the unit interval)
if Y/ 5 h(L%?“l)/cg(X) then break loop

until w 5 f(LZJ)/cg@‘);
Y := LXJ
end,

The tricky part in the development of Algorithm Z was finding appropriate
choices for the parameters g(x) (the density function of p), c, and h(s) that gave
fast running times. The following choices seem to work best:

t It g(x) = -..E- - () t+x t+x '
t+1

c=t-n+l;

x L 0;

(5.3)

(t-n+1

)

n+l

h(s) = --J!--
t+l t+s-n+l ’

x 2 0.

The random variable 2 is not a commonly encountered distribution, but it can
be generated very quickly, in constant time. Let us denote the distribution
function of r by G(x). We have

s

x

G(x) = Prob(a” I x) = (5.4)
0

It is easy to show that we can generate a random variable 2 with distribution
G(x) by setting %Y = G-‘(M) or p = G-‘(e-y), where Y” is uniformly distributed
on [0, l] and y is exponentially distributed. Substituting (5.4), we get

G-‘(y) = t((1 - y)-“” - t).
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

46 l Jeffrey Scott Vitter

Since 1 - %“‘ is uniformly distributed when %” is, we can generate Y by setting

x’ := t(T-l’” - 1) or 2P := t(eey/ln - 1). (5.5)

The following lemma shows that the choice of parameters in (5.3) satisfies
requirements (5.1) and (5.2).

LEMMA 2. The choices ofg(x), c, and h(s) in (5.3) satisfy the relation

h(s) 5 f(s) 5 cg(s + 1).

This satisfies condition (5.2). Since g(x) is a monotone decreasing function,
this also implies (5.1).

PROOF. First let us prove the first inequality. We have

i(s) =

The first quotient can be bounded by n/(t + s + l), since it is easy to show t.hat
(t + s - n + 1) (t + 1) 2 (t + s + 1) (t - n + 1). Similarly, we can bound the
second quotient by t”/(t + s) O, because we have (t - n + l)/(t + s - n + 1) 51
(t - k)/(t + s - k), for 0 5 k : n - 1. By (3.2), this proves the first inequality..
The second inequality in Lemma 2 can be proved in the same way:

f(s)=nt”= n it”
t+s+l(t+s)” t+s-n+l(t+s+l)O’

The first quotient can be bounded by n(t + l)/((t + s + l)(t - n + l)), since
(t + s - n + 1) (t + 1) 2 (t + s + 1) (t - n + 1). The second quotient is bounded
by (t/(t + s + I.))“, since (t - k)/(t +,s + 1 - k) 5 t/(t + s + l), for 0 5 k s n --
1. By (5.3), this proves the second inequality. 0

6. OPTIMIZING ALGORITHM Z

In this section we give three optimizations that dramatically improve the running
time of the naive version of Algorithm Z. These modifications are incorporated
into the implementation of Algorithm Z that appears in Section 8.

Threshold Optimization. We have already seen this important optimization
technique in the last section, where it was included as part of the basic algorithm.
We used a constant parameter T to determine how 9 should be generated: If t
% Tn, then the inner loop of Algorithm X is used to generate 9’; otherwise, the
rejection-acceptance technique is used. The value of T is typically set in the
range 10-40. The choice T = 22 worked best in the implementation described in
Sections 8 and 9; the running time was cut by a factor of roughly 4. Some
theoretical analysis is given in Section 7.3. However, there is an even more basic
reason why this optimization is important (which is why we made it part of the
basic algorithm): It guards against floating-point overflow! Numerical consider-
ations are discussed further in Section 8.

RANDOM Optimization. The rest of this section is devoted to more sophisti-
cated techniques to eliminate costly calls to mathematical subroutines. The first
optimization we shall consider allows us to cut the number of calls to RANDOh
by more than one-third. Each generation of 2 via (5.5) requires the generation
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir - 47

of an independent uniform random variate (or else the generation of an exponen-
tial random variate, which usually involves the prior generation of a uniform
variate). Let us call this random variate Y. Except for the first time S? is
generated, we can can avoid a call to RANDOM and compute %rr (and thus 2”) in
an independent way by making use of the values of Y and S? from the previous
loop. The previous loop ended for one of three reasons: %! I ql, Q < % 5 qz, or
q2 C FY, where q1 = h(LSYJ)/cg(iY) and q2 = f(LZ’J)/cg(P). We can compute 7
for the next loop, as follows:

-52

1’
if %a ql;

y-= Q-Q . .~
q2 - Ql’

if q1 < %5q2; (6.1)

I
Q- 42

1 - q2 ’

if q2 < 52.

We leave it as an exercise for the reader to prove the following lemma from the
definitions of independence and of 7:

LEMMA 3. The value 57 computed via (6.1) is a uniform random variate that is
independent of all previous values of 2 and of whether or not each 2 was accepted.

Similar tricks can be employed in order to compute the value of &! without
having to call RANDOM, but it does not seem to be worth the added effort. The
big savings comes about in the next optimization.

Subroutine Optimization. We can speed up Algorithm Z by a factor of almost
2 by cutting in half the number of operations of the form xy, where x and y are
either real (floating-point) numbers or large integers. The calculation of xy =
exp(y In x) involves an implicit call to the two mathematical library subroutines
EXP (exponential) and LOG (logarithm). The calculation takes constant time,
but the constant is much larger than the time for a multiplication or division.

Each loop in the naive implementation of Algorithm Z requires two operations
of the form xy: one to compute SY from Y using (5.5) and the other to compute

h(Lp”J) (t-n+l)‘(t+P) (t-n+l)(t+P) _
cg(S?) (t+1)2(t+LPJ-n+1) (t+LPJ-n+l)t

(6.2)

(The computation off (LS?l)/cg(F) also requires an operation of the form xy, but
as we shall see in the next section, the computation is seldom done.) Instead of
doing the test “Is ?Y 5 h(L~J)/cg(~)?“, we use the equivalent test of finding
whether

%!(t+1)2(t+LPJ-n+1) (t-n+l)(t+F)
(t - n + 1)2(t + P) S (t+LPJ-n+l)t’ (6.3)

If this test is true, which happens with high probability, we set w to the quotient
of the right-hand side divided by the left-hand side. The resulting random variate
W has the same distribution as y-i/“. Thus we can compute 3 without an
operation of the form xy by setting

P := t(w - 1). (6.4)
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

48 - Jeffrey Scott Vitter

(The reader should compare this with (5.5).) Hence we usually need only one
operation of the form xy per loop rather than two.

An importa:nt side effect of using the test (6.3) instead of the naive “Is Z/ :5
h(L~‘J)/cg(~)?” test is that it eliminates floating-point overflow, which can
occur in (6.2). As a practical matter, the full RANDOM optimization should not
be used when subroutine optimization is used. The Y I q1 case of the RANDOil
optimization is subsumed by subroutine optimization; the remaining two cases
of (6.1) happen rarely, and would be expensive to implement when the subroutine
optimization is in effect.

7. THEORETICAL ANALYSIS OF ALGORITHM Z

In this section we show analytically that the average number of random variates
generated and the expected running time for Algorithm Z are optimum, up to a
constant factor. We conclude the section with a theoretical basis for why the
parameter T should be set to a constant in the threshold optimization discussed
in the last section.

7.1 Average Number of Calls to Random

We shall prove that the expected number of calls to the random number generator
made by Algorithm Z is bounded by approximately 3n(ln(N/n)) and 2n(ln(N/
n)), depending on whether the RANDOM optimization is used. This shows that
the RANDOM optimization reduces the number of calls to RANDOM by a factor
of one-third.

We shall use the term “naive version of Algorithm Z” to refer to the pure
rejection technique, in which not even the threshold optimization is used. We
define RAND(n, t, N) to be the expected number of calls to RANDOM made b:y
the na’ive version of Algorithm Z in order to finish the sampling when t 5 N
records have already been processed. Similarly, we define OPT(n, t, N) to be the
average number of times RANDOM is called when the RANDOM optimization
is used, starting from the point at which t 5 N records have been processed.

THEOREM 3. The expected number of calls to RANDOM during the n.aive
version of Algorithm 2, after n + 2 I t I N records have already been processes!,
is

R.AND(n, t, N) 5 n + 3(HN - Ht) . (7.1)

PROOF. The basic idea of the proof is that 9 can be generated using ~3 -F
2n/t calls to RANDOM, on the average. At the end of Section 3, we showed that
the average number of times 9 must be generated is n(& - Ht) + 1 - n/N.
Intuitively, the total number of calls to RANDOM is thus =3n(HN - II&). The
major hurdle in the proof is to take into account the fact that t is increasing
during the course of the algorithm.

The naive version of Algorithm Z calls RANDOM once each time %, 2, or 1~
must be generated. The average number of times J% is generated is n(HN - I-&)1,
as shown at the end of Section 3. Let us define UV(n, t, N) to be the average
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 49

number of times z or Y is generated, where Y” is the implicit uniform random
variate used to generate z?. To prove the theorem it suffices to show that

UV(n, t, N) 5 2n
n+l

t
-n-l

+ HN - (7.2)

We use induction on t. For t = IV, we have UV(n, IV, N) = 0, and (7.2) is trivially
true. Now let us suppose that (7.2) is true for t + 1, t + 2, . . . , N; we will show
that it remains true for t.

Both %! and Zr are generated once each time the body of the repeat loop is
executed. The average number of iterations of the repeat loop required to
generate 9(n, t) is l/(1 - r), where r is the probability of rejection. We have

Combining the two formulas, we find that each generation of 9(n, t) requires
an average of l/(1 - r) = c iterations of the repeat loop, thus accounting for 2c
calls to RANDOM. By use of the induction hypothesis, we have

~ at+11 ntF n+l
t - n + 1 - OSs<~--t c. (t + s + l)“+’ t+s-n

+Hpf-

~ at+11
t-n+l++n2(n+l)t@

c (()5--t

All three summations can be computed in closed form by using summation by
parts, as discussed at the end of Section 3. For the first summation, we use u =
1, Au = l/(t + s + l)-; for the second, we use u = 1, Au = l/(t + s + l)“+‘; and
for the third, we use u = Ht+,+I, Au = l/(t + s + l)M. Plugging in the values for
the summations and bounding the sum of the smaller terms by 0, we get

UV(n, t, N) 5
2(t+ 1) 2n2
t-n+l+t-n - + 2nHN + 2 - 2nH,+,

2(t-n+ 1)
-

t+1

2n 2n2
=t-n+l+t-n

-+2n(HN-H,)+2

This proves (7.2) and thus completes the proof of Theorem 3. 0
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

50 l Jeffrey Scott Vitter

COROLLARY 1. The average number of calls to RANDOM made by Algorith,m Z
using the threshold optimization is bounded by

Zn(Hn - II,) + 1 - g, if Tn 2 N; t7.31

+ 3HN - Hr,, - 2H,, + 3 - 1
T’

if Tn 5 N.

PROOF. In the Tn I N case, the variate 9 is always generated using the
method of Algorithm X. The number of times 9 is generated is n(HN - H,) + 1
- n/N. Each generation of 9 requires two calls to RANDOM to generate ?/ and
A, except possibly the last time Y is generated. If the Nth record is the last
record chosen for the reservoir (which happens with probability n/N), then A
must be generated; otherwise, the last time 9 is generated causes the remaining
records in the file to be skipped over, and M does not have to be generated. The
formula for the Tn I N case follows immediately.

For the Tn 5 N case, the method of Algorithm X is used until the first Tn
records have been processed. In the remainder of the algorithm, the rejection
technique makes at most RAND(n, Tn, N) calls to RANDOM. We assume that
T is large enough so that Tn z n + 2, which is always the case in actual
implementations. Combining the Tn 2 N case with Theorem 3 gives the re-
sult. cl

THEOREM 4. Let us consider the modified version of the naive Algorithm Z in
which only the RANDOM optimization is used. The expected number of times
RANDOM is called during the sampling, after t records have already been processed,
for t I n + 2, is

OPT (n, t, N) I n tfn+!1+2(HN-H,) (7.4)

PROOF. With this modification, RANDOM is not called to generate 2, except
for the first time 2 is generated. This reduces UV(n, t, N) to half its forme.r
value, plus 1. The result follows immediately, from the proof of Theorem 3. Cl

The following corollary follows from Theorem 4 in the same manner that
Corollary 1 follows from Theorem 3:

COROLLARY 2. The average number of calls to RANDOM made by Algorithm Z
using the threshold and RANDOM optimizations is bounded by

2n&-H,)+l-G, if TnrN;
(7.5:)

F~~-‘~‘-~+~(H,-H,) +3-i, if TnsN.

7.2 Average Running Time

We shall show that the average execution time of Algorithm Z is O(n(1 + log(N/
n))), which by the remarks at the beginning of Section 3 is optimum, up to a
constant factor. Let use define TIME (n, t, N) to be the expected execution time
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 51

of the naive version of Algorithm Z to finish the sampling when t records have
been processed so far.

THEOREM 5. The expected running time of the naive version of Algorithm 2
after t I N records have already been processed is

TIME(n, t, N) = O(n(1 + log:)).

PROOF. Let us assume that n 2 2. The n = 1 case is discussed later. The only
statement in Algorithm Z that takes more than constant time to execute once is
the test “Is %! I f (&‘J)/cg@‘)?” in the repeat loop, because it requires the
evaluation off (WJ), which takes O(min(n, 12’1 + 1)) time, using (5.1). Every
statement in Algorithm X is executed at most c = (t + l)/(t - n + 1) times, on
the average, each time 9 is generated. By the proof of Theorem 3, the total
running time of Algorithm Z minus the time spent executing the repeat loop test
is bounded by

On
cc

n+l
t-n-l

+*N-i?l~))=O(n(l+log~)).

The difficult part of the proof is bounding the execution time spent evaluating
f (LZJ) throughout the course of the algorithm, as t increases. The time per
evaluation is bounded by d.min{n, LZJ + 1) 5 d(LPJ + l), for some small
constant d 2 0. The probability that the “Is 2 5 h(La”J)/cg(Z)?” test is false
(which is the probability that f (LPJ) must be evaluated next) is 1 - h(LPJ)/
cg(%). Thus for a single evaluation of 9, we can bound the time spent evaluating
f (LZ’J) by

m

C
s 0

d(x+l)g(x)(l-~)dx=~d~m~x+l)g(x)dx-d$m~~+l)h(x)d~.

The first integral is equal to

cd(expected(P) + 1) = t 4 l : 1 d
t+n-1

n-l ’

the second integral equals

t(t - n + 1)
d (n - l)(t + 1) ’

By some algebraic simplification, the difference of the first integral minus the
second can be bounded by

3cd + s.

By the derivation of (7.2), it follows that the total amount of time spent evaluating
f (LPJ) during the course of the algorithm is at most

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

52 l Jeffrey Scott Vitter

This completes the proof for the n 2 2 case.
We shall see in Section 8 that Algorithm Z should not be used as is when n ==

1, primarily for numerical reasons. When n = 1, we instead run Algorithm Z fo:r
a larger (but still small) value of n, say, no = 5, to get a random sample of size
no. Once the sample of size no is generated, we can recover the random sample
of size n from it with a simple O(no)-time procedure given in the next section.
Thus we have TIME(1, t, N) = TIME (no, t, N) + 0 (no). This completes the
proof of Theorem 5. 0

The following corollary shows that Algorithm Z achieves optimum time, up to
a constant factor.

COROLLARY 3. The average running time of Algorithm Z using the threshold
optimization is

O(n(l + log F)).

The use of the RANDOM or subroutine optimizations would reduce the running
time further by some constant factor.

7.3 The Threshold Value

In the threshold optimization discussed in Section 6, we generate 9 using the
method of Algorithm X until t gets large enough, after which we use the rejection
technique to generate 9. It was suggested that a constant be used, which we call
T: The threshold point for switching from Algorithm X to the rejection technique
is when t 2 Tn. In this section we shed some light on why the threshold point is
approximately a linear function of n.

The average time required to generate 9 using the method of Algorithm X is
roughly

dl *expected(p) = d1
t--n+l=@

n _ 1
n ’

for some small constant d1 > 0. (The formula for expected(p) appears as (3.3).)
We can bound the average time required to generate 9 using the rejection
technique by applying the techniques of the proof of Theorem 5 as follows: The
body of the repeat loop is generated c z 1 + n/t times, on the average, in order
to generate 9. With probability 1 - h(L%‘J)/cg(,F) = n/t, we must evaluate
f (E?‘J), which takes at most O(expected(9)) = O(t/n) time, on the average..
Putting this all to&her, the average time to generate 9 using the rejection.
technique is roughly

(7.7)#

for suitable small constants d2, ds, dd > 0. Thus, the value oft at which (7.6) and
(7.7) are equal is 0(n).

In the implementation discussed in the next two sections, the initialization 7
= 22 seemed to work best. Typical values of T can be expected to be in the range
10-40.
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 53

8. IMPLEMENTATION OF ALGORITHM Z

In this section we give an efficient Pascal-like implementation of Algorithm Z.
This program incorporates the threshold, RANDOM, and subroutine optimiza-
tions discussed in Section 6. The method of Algorithm X is used until t > thresh,
where thresh is equal to T x n. The constant T should be initialized to some
integer in the range 10-40; in the timings described in the next section, perform-
ance is best when T is initialized to 22.

A few nonstandard notations are used: Statements between the reserved words
loop and end loop form the body of a loop; execution of the statement break
loop causes flow of control to exit the loop. The X symbol is used for multipli-
cation, x 7 y stands for xy, and parentheses enclosing a null argument are used
for function calls with no parameters.

Operations of the form xy, where y is either a real number or a large integer,
are computed as EXP(y x LOG(x)) using the mathematical library subroutines
EXP and LOG. The variables W, 2, 2, lhs, rhs, y, and quot have type real; all
other variables have type integer.

The random number generator RANDOM takes no arguments and returns a
uniform random variate in the range (0, 1). We will let u denote the smallest
number returned by RANDOM, max-int the largest number that can be stored
in a integer variable, and max-real the largest number that can be stored in a
real variable. In order to prevent integer and floating point overflow, we must
have

Nx-‘I” < max-int and Nx-‘I” < max-real.

This guarantees, for example, that the random variates 9 and $Y will be able to
be stored in their appropriate variables and that the computation of f(L%J) will
not cause overflow in pathological situations.

These conditions can be satisfied easily on most computers, in the following
way: Some bound on N can be obtained, even if it is only a weak bound. The
next step is to determine the minimum value of n that satisfies the two conditions,
substituting for N the upper bound just obtained. Let us call that value n,,;
typically, n,, should be a fairly small number. If the desired sample size n is less
than no, the solution is to apply the basic philosophy of reservoir sampling
recursively. First we run Algorithm Z to find a random sample of size no. Then
we generate a random sample of size n from the random sample of size rzo using
the simple procedure below:

for j := 0 to no - 1 do already-selected := false;
num-selected = 0;
while num-selected < n do

begin
JZ := TRUNC(nO x RANDOM());
if not already-selected[d] then

begin
OUTPUT(C[J?]);
already-selected [A] := true;
num-selected := num-selected + 1
end

end

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

54 l Jeffrey Scott Vitter

An alternative to this procedure is to use one of the sequential sampling methods
given in [lo].

The optimized code for Algorithm Z appears below. The first part of t;be
program is essentially the code for Algorithm X, which does the sampling until t
gets large enough.
(Make the first n records candidates for the sample)
for j := 0 to n - 1 do READ-NEXT-RECORD(C[j]);
t := n;] t is the number of records processed so far)
{Process records using the method of Algorithm X until t is large enough)
thresh := T X n;
num := 0; [num is equal to t - nl
while not eof and (t 5 thresh) do

begin
Y” := RANDOM(); {Generate V)
27 := 0;
t := t + 1; num := nun + 1;
quot := numjt;
while quot > V do

begin
y .= a/” + 1.
t := t + 1; n;m := num + 1;
quot := (quot X num)/t
end;

IFind min Sa satisfying (4.1))

SKIP-RECORDS(Y); (Skip over the next 9 records]
if not eof then

begin {Make the next record a candidate, replacing one at random)
J+? := TRUNC(n x RANDOM()); {A is uniform in the range 0 s A I n - 1)
READ-NEXT-RECORD(C[J])
end

end;

(Process the rest of the records using the rejection technique)
W := EXP(- LOG(RANDOM())/n); {Generate W]
term := t - n + 1; (term is always equal to t - n + 11
while not eof do

begin
loop

(Generate SY and 2)
zl := RANDOM();
2 := t x (W - 1.0); .
9?= TRUNC(Z); 19 is tentatively set to WJ 1
{Test if % 5 h(Y)/cg(a”) in the manner of (6.3))
lhs := EXP(LOG((@ x (((t + l)/term) T 2)) x (term + p))/(t + %?))/n);
rhs := (((t + F)/(term + 9)) X term)/t;
if lhs 5 rhs then

begin ZV := rhs/lhs; break loop end;
{Test if W 5 f (Y)/cg(Z)l
y := ((@Y X (t + l))/term) X (t + 9 + l))/(t + 2);
if n < .9 then begin denom := t; numer-lim := term + 50 end
else begin denom := t - n + 9; numer-lim := t + 1 end;
for numer := t + 9 downto numer-lim do

begin y := (y X numer)/denom; denom := derwm - 1 end;
W := EXP(- LOG(RANDOM())/n); {Generate W in advance)
if EXP(LOG(y)/n) zs (t + ?)/t then break loop

end loop;
SKIP-RECORDS(Y); (Skip over the next 9 records]

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 55

Table II. Timings for Algorithms R, X, and Z (in seconds)

N = lo6
n = 10’
n = lo2
n= lo3
n = 10’
n = lo6

N= 10’
n = 10’
n= lo2
n= 103
n = 10’
n= 106

Algorithm R Algorithm X Algorithm Z

171 41 0.1
153 35 0.8
155 37 5
158 47 31
176 95 96

1595 430 0.1
1590 356 1
1553 371 8
1560 387 55
1604 500 303

if not eof then
begin (Make the next record a candidate, replacing one at random]
d := TRUNC (n x RANDOM()); (& is uniform in the range 0 5 L I n - 1)
READ-NEXT-RECORD(C[L])
end,

t := t + s + 1;
term := term + Y + 1
end;

9. EMPIRICAL COMPARISONS

This section presents the results of empirical timings for Algorithms R, X, and
Z run on a VAX 11/780 computer. The programs were written in FORTRAN 77,
in order to get high speed. The random number generator used was a machine-
independent version of the linear congruential method, similar to the one de-
scribed in [9]. The programs for Algorithms X and Z were direct translations of
those given in the last section. For Algorithm R we optimized the basic code by
putting it into the framework discussed in Section 3.

The running times of the algorithms (in microseconds) are as follows:

= 160N (Algorithm R),

.e 40N (Algorithm X),

= 950n In N - 1250n (Algorithm Z).
n

The actual timings for Algorithm R and X were much higher for very small and
very large values of n. The formula for Algorithm Z was obtained using least
squares curve fitting.

The timings were done for a large range of values of n and N. The values given
in Table II are representative of the results. All times are given in seconds. When
N = 107, Algorithm R requires roughly 26 minutes of CPU time, Algorithm X
requires about 6 minutes, but Algorithm Z uses only a few seconds.

To put these CPU timings in perspective, let us consider the corresponding
I/O time required for the N = 107, n = 10’ example, assuming an average record

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

56 l Jeffrey Scott Vitter

size of 15-20 bytes. The total file size would be roughly 150-200 megabytes. IBM
3380 disk drives can read/write information at the rate of 6 megabytes per second,
and IBM 3420 model 8 tape drives can read/write at the rate of 1.25 megabytes
per second. Roughly 800 megabytes can be stored in a 3360, whereas tapes for a
3420 can store roughly 180 megabytes.

In the disk case, the sequential read time for the file is roughly 30 seconds.
However, the algorithms we have developed for this paper do not need to read
all the records; several records can be skipped at once. If the record length is
fixed, then I/O time is reduced to roughly n ln(N/$ short seeks and reads; the
corresponding I/O time is reduced to less than 2 seconds. Even if record lengths
are varying, the number of records in each track can be stored in the track
header; skipping is done by reading consecutive track headers until the desired
track is found. The resulting I/O time is substantially less than 30 seconds. The
corresponding CPU times for this example are 1590 seconds (Algorithm R), 356
seconds (Algorithm X), and 1 second (Algorithm R).

For the tape example, the time for a sequential read is about 150 seconds.
However, tape drives can make use of their fast-forward capabilities to skip over
unwanted records at a higher speed, and so the I/O time can be reduced, especially
if the records are of fixed length. The CPU times are the same as above.

In smaller examples, the CPU time used by Algorithm X might be roughly as
small as the I/O time required; however, the internal processing and the I/O
might not be able to be overlapped, and so the total running time could be double
the I/O time. The advantage of Algorithm Z is that the CPU time is insignificant.
The algorithm is fast enough so that it is useful even when the value of N is
known.

10. SUMMARY OF THE RESULTS

In this paper we have considered algorithms for selecting a random sample of
size n from a file containing N records, in which the value of N is not known to
the algorithm. We have shown that any sampling algorithm for this problem that
processes the file sequentially can be characterized as a reservoir algorithm. The
distinguishing feature of reservoir algorithms is that a sample of size L n is taken
during a sequential pass through the file; the final sample is obtained by selecting
n records at random from this larger sample. All reservoir algorithms require
Q(n(1 + log(N/t))) time.

The main result of the paper is the design and analysis of Algorithm Z, which
uses a rejection-acceptance technique to do the sampling in optimum time, up
to a constant factor. Several optimizations are given that improve the running
time of the naive version by a factor of roughly 8. Central processing unit timings
done on a VAX 11/‘780 computer indicate that Algorithm Z is significantly faster
than the reservoir-sampling algorithms in use today. An efficient Pascal-like
implementation of Algorithm Z suitable for general use appears in Section 8.

REFERENCES

1. BENTLEY, J. L. Personal communication, Apr. 1983; see [ll].
2. ERNVALL, J. AND NEVALAINEN, 0. An algorithm for unbiased random sampling. Cornput. J. 25,

1 (Jan. 1982), 45-47.

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

Random Sampling with a Reservoir l 57

3. FAN, C. T., MULLER, M. E., AND REZUCHA, I. Development of sampling plans by using
sequential (item by item) selection techniques and digital computers. Am. Stat. Assoc. J. 57 (June
1962), 387-402.

4. FELLER, W. An Introduction to Probability Theory and Its Applications, vol. I, 3rd ed. Wiley,
1968.

5. FELLER, W. An Introduction to Probability Theory and Its Applications, vol. II, 2nd ed. Wiley,
1971.

6. JONES, T. G. A note on sampling a tape file. Commun. ACM 5,6 (June 1962), 343.
7. KAWARASAKI, J., AND BBUYA, M. Random numbers for simple random sampling without

replacement. Keio Math. Sem. Rep. No. 7 (1982), l-9.
8. KNUTH, D. E. The Art of Computer Programming. vol. 2: Seminumerical Algorithms, 2nd ed.

Addison-Wesley, Reading, Mass., 1981.
9. SEDGEWICK, R. Algorithms. Addison-Wesley, Reading, Mass., 1981.

10. VITTER, J. S. Faster methods for random sampling. Commun. ACM 27, 7 (July 1984). 703-718.
11. VI’ITER, J. S. Optimum algorithms for two random samplingproblems. In Proceedings of the 24th

Annual IEEE Symposium on Foundations of Computer Science (Tucson, AZ., Nov. 7-9), IEEE,
New York, 1983 pp. 65-75.

Received February 1984 accepted October 1984.

ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985.

