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Abstract
We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks.

1 Introduction
Cluster computing frameworks like MapReduce [10] and
Dryad [19] have been widely adopted for large-scale data
analytics. These systems let users write parallel compu-
tations using a set of high-level operators, without having
to worry about work distribution and fault tolerance.

Although current frameworks provide numerous ab-
stractions for accessing a cluster’s computational re-
sources, they lack abstractions for leveraging distributed
memory. This makes them inefficient for an important
class of emerging applications: those that reuse interme-
diate results across multiple computations. Data reuse is
common in many iterative machine learning and graph
algorithms, including PageRank, K-means clustering,
and logistic regression. Another compelling use case is
interactive data mining, where a user runs multiple ad-
hoc queries on the same subset of the data. Unfortu-
nately, in most current frameworks, the only way to reuse
data between computations (e.g., between two MapRe-
duce jobs) is to write it to an external stable storage sys-
tem, e.g., a distributed file system. This incurs substantial
overheads due to data replication, disk I/O, and serializa-

tion, which can dominate application execution times.
Recognizing this problem, researchers have developed

specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while HaLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps), and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning to optimize data placement, and ma-
nipulate them using a rich set of operators.

The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [24], key-
value stores [25], databases, and Piccolo [27], offer an
interface based on fine-grained updates to mutable state
(e.g., cells in a table). With this interface, the only ways
to provide fault tolerance are to replicate the data across
machines or to log updates across machines. Both ap-
proaches are expensive for data-intensive workloads, as
they require copying large amounts of data over the clus-
ter network, whose bandwidth is far lower than that of
RAM, and they incur substantial storage overhead.

In contrast to these systems, RDDs provide an inter-
face based on coarse-grained transformations (e.g., map,
filter and join) that apply the same operation to many
data items. This allows them to efficiently provide fault
tolerance by logging the transformations used to build a
dataset (its lineage) rather than the actual data.1 If a parti-
tion of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recompute

1Checkpointing the data in some RDDs may be useful when a lin-
eage chain grows large, however, and we discuss how to do it in §5.4.



just that partition. Thus, lost data can be recovered, often
quite quickly, without requiring costly replication.

Although an interface based on coarse-grained trans-
formations may at first seem limited, RDDs are a good
fit for many parallel applications, because these appli-
cations naturally apply the same operation to multiple
data items. Indeed, we show that RDDs can efficiently
express many cluster programming models that have so
far been proposed as separate systems, including MapRe-
duce, DryadLINQ, SQL, Pregel and HaLoop, as well as
new applications that these systems do not capture, like
interactive data mining. The ability of RDDs to accom-
modate computing needs that were previously met only
by introducing new frameworks is, we believe, the most
credible evidence of the power of the RDD abstraction.

We have implemented RDDs in a system called Spark,
which is being used for research and production applica-
tions at UC Berkeley and several companies. Spark pro-
vides a convenient language-integrated programming in-
terface similar to DryadLINQ [31] in the Scala program-
ming language [2]. In addition, Spark can be used inter-
actively to query big datasets from the Scala interpreter.
We believe that Spark is the first system that allows a
general-purpose programming language to be used at in-
teractive speeds for in-memory data mining on clusters.

We evaluate RDDs and Spark through both mi-
crobenchmarks and measurements of user applications.
We show that Spark is up to 20× faster than Hadoop for
iterative applications, speeds up a real-world data analyt-
ics report by 40×, and can be used interactively to scan a
1 TB dataset with 5–7s latency. More fundamentally, to
illustrate the generality of RDDs, we have implemented
the Pregel and HaLoop programming models on top of
Spark, including the placement optimizations they em-
ploy, as relatively small libraries (200 lines of code each).

This paper begins with an overview of RDDs (§2) and
Spark (§3). We then discuss the internal representation
of RDDs (§4), our implementation (§5), and experimen-
tal results (§6). Finally, we discuss how RDDs capture
several existing cluster programming models (§7), sur-
vey related work (§8), and conclude.

2 Resilient Distributed Datasets (RDDs)
This section provides an overview of RDDs. We first de-
fine RDDs (§2.1) and introduce their programming inter-
face in Spark (§2.2). We then compare RDDs with finer-
grained shared memory abstractions (§2.3). Finally, we
discuss limitations of the RDD model (§2.4).

2.1 RDD Abstraction

Formally, an RDD is a read-only, partitioned collection
of records. RDDs can only be created through determin-
istic operations on either (1) data in stable storage or (2)
other RDDs. We call these operations transformations to

differentiate them from other operations on RDDs. Ex-
amples of transformations include map, filter, and join.2

RDDs do not need to be materialized at all times. In-
stead, an RDD has enough information about how it was
derived from other datasets (its lineage) to compute its
partitions from data in stable storage. This is a power-
ful property: in essence, a program cannot reference an
RDD that it cannot reconstruct after a failure.

Finally, users can control two other aspects of RDDs:
persistence and partitioning. Users can indicate which
RDDs they will reuse and choose a storage strategy for
them (e.g., in-memory storage). They can also ask that
an RDD’s elements be partitioned across machines based
on a key in each record. This is useful for placement op-
timizations, such as ensuring that two datasets that will
be joined together are hash-partitioned in the same way.

2.2 Spark Programming Interface

Spark exposes RDDs through a language-integrated API
similar to DryadLINQ [31] and FlumeJava [8], where
each dataset is represented as an object and transforma-
tions are invoked using methods on these objects.

Programmers start by defining one or more RDDs
through transformations on data in stable storage
(e.g., map and filter). They can then use these RDDs in
actions, which are operations that return a value to the
application or export data to a storage system. Examples
of actions include count (which returns the number of
elements in the dataset), collect (which returns the ele-
ments themselves), and save (which outputs the dataset
to a storage system). Like DryadLINQ, Spark computes
RDDs lazily the first time they are used in an action, so
that it can pipeline transformations.

In addition, programmers can call a persist method to
indicate which RDDs they want to reuse in future oper-
ations. Spark keeps persistent RDDs in memory by de-
fault, but it can spill them to disk if there is not enough
RAM. Users can also request other persistence strategies,
such as storing the RDD only on disk or replicating it
across machines, through flags to persist. Finally, users
can set a persistence priority on each RDD to specify
which in-memory data should spill to disk first.

2.2.1 Example: Console Log Mining

Suppose that a web service is experiencing errors and an
operator wants to search terabytes of logs in the Hadoop
filesystem (HDFS) to find the cause. Using Spark, the op-
erator can load just the error messages from the logs into
RAM across a set of nodes and query them interactively.
She would first type the following Scala code:

2Although individual RDDs are immutable, it is possible to imple-
ment mutable state by having multiple RDDs to represent multiple ver-
sions of a dataset. We made RDDs immutable to make it easier to de-
scribe lineage graphs, but it would have been equivalent to have our
abstraction be versioned datasets and track versions in lineage graphs.
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Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:

errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning

// HDFS as an array (assuming time is field

// number 3 in a tab-separated format):

errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our
third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

Aspect RDDs Distr. Shared Mem. 
Reads Coarse- or fine-grained Fine-grained 
Writes Coarse-grained Fine-grained 
Consistency Trivial (immutable) Up to app / runtime 
Fault recovery Fine-grained and low-

overhead using lineage 
Requires checkpoints 
and program rollback 

Straggler 
mitigation 

Possible using backup 
tasks 

Difficult 

Work 
placement 

Automatic based on 
data locality 

Up to app (runtimes 
aim for transparency) 

Behavior if not 
enough RAM 

Similar to existing data 
flow systems 

Poor performance 
(swapping?) 

Table 1: Comparison of RDDs with distributed shared memory.

2.3 Advantages of the RDD Model

To understand the benefits of RDDs as a distributed
memory abstraction, we compare them against dis-
tributed shared memory (DSM) in Table 1. In DSM sys-
tems, applications read and write to arbitrary locations in
a global address space. Note that under this definition, we
include not only traditional shared memory systems [24],
but also other systems where applications make fine-
grained writes to shared state, including Piccolo [27],
which provides a shared DHT, and distributed databases.
DSM is a very general abstraction, but this generality
makes it harder to implement in an efficient and fault-
tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location.3 This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.4 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture lets a system mitigate slow nodes (stragglers) by run-
ning backup copies of slow tasks as in MapReduce [10].
Backup tasks would be hard to implement with DSM, as
the two copies of a task would access the same memory
locations and interfere with each other’s updates.

Finally, RDDs provide two other benefits over DSM.
First, in bulk operations on RDDs, a runtime can sched-

3Note that reads on RDDs can still be fine-grained. For example, an
application can treat an RDD as a large read-only lookup table.

4In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.4. However, this can be
done in the background because RDDs are immutable, and there is no
need to take a snapshot of the whole application as in DSM.
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Figure 2: Spark runtime. The user’s driver program launches
multiple workers, which read data blocks from a distributed file
system and can persist computed RDD partitions in memory.

ule tasks based on data locality to improve performance.
Second, RDDs degrade gracefully when there is not
enough memory to store them, as long as they are only
being used in scan-based operations. Partitions that do
not fit in RAM can be stored on disk and will provide
similar performance to current data-parallel systems.

2.4 Applications Not Suitable for RDDs

As discussed in the Introduction, RDDs are best suited
for batch applications that apply the same operation to
all elements of a dataset. In these cases, RDDs can ef-
ficiently remember each transformation as one step in a
lineage graph and can recover lost partitions without hav-
ing to log large amounts of data. RDDs would be less
suitable for applications that make asynchronous fine-
grained updates to shared state, such as a storage sys-
tem for a web application or an incremental web crawler.
For these applications, it is more efficient to use systems
that perform traditional update logging and data check-
pointing, such as databases, RAMCloud [25], Percolator
[26] and Piccolo [27]. Our goal is to provide an efficient
programming model for batch analytics and leave these
asynchronous applications to specialized systems.

3 Spark Programming Interface
Spark provides the RDD abstraction through a language-
integrated API similar to DryadLINQ [31] in Scala [2],
a statically typed functional programming language for
the Java VM. We chose Scala due to its combination of
conciseness (which is convenient for interactive use) and
efficiency (due to static typing). However, nothing about
the RDD abstraction requires a functional language.

To use Spark, developers write a driver program that
connects to a cluster of workers, as shown in Figure 2.
The driver defines one or more RDDs and invokes ac-
tions on them. Spark code on the driver also tracks the
RDDs’ lineage. The workers are long-lived processes
that can store RDD partitions in RAM across operations.

As we showed in the log mining example in Sec-
tion 2.2.1, users provide arguments to RDD opera-

tions like map by passing closures (function literals).
Scala represents each closure as a Java object, and
these objects can be serialized and loaded on another
node to pass the closure across the network. Scala also
saves any variables bound in the closure as fields in
the Java object. For example, one can write code like
var x = 5; rdd.map(_ + x) to add 5 to each element
of an RDD.5

RDDs themselves are statically typed objects
parametrized by an element type. For example,
RDD[Int] is an RDD of integers. However, most of our
examples omit types since Scala supports type inference.

Although our method of exposing RDDs in Scala is
conceptually simple, we had to work around issues with
Scala’s closure objects using reflection [33]. We also
needed more work to make Spark usable from the Scala
interpreter, as we shall discuss in Section 5.2. Nonethe-
less, we did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions
available in Spark. We give the signature of each oper-
ation, showing type parameters in square brackets. Re-
call that transformations are lazy operations that define a
new RDD, while actions launch a computation to return
a value to the program or write data to external storage.

Note that some operations, such as join, are only avail-
able on RDDs of key-value pairs. Also, our function
names are chosen to match other APIs in Scala and other
functional languages; for example, map is a one-to-one
mapping, while flatMap maps each input value to one or
more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an
RDD to persist. Furthermore, users can get an RDD’s
partition order, which is represented by a Partitioner
class, and partition another dataset according to it. Op-
erations such as groupByKey, reduceByKey and sort au-
tomatically result in a hash or range partitioned RDD.

3.2 Example Applications

We complement the data mining example in Section
2.2.1 with two iterative applications: logistic regression
and PageRank. The latter also showcases how control of
RDDs’ partitioning can improve performance.

3.2.1 Logistic Regression

Many machine learning algorithms are iterative in nature
because they run iterative optimization procedures, such
as gradient descent, to maximize a function. They can
thus run much faster by keeping their data in memory.

As an example, the following program implements lo-
gistic regression [14], a common classification algorithm

5We save each closure at the time it is created, so that the map in
this example will always add 5 even if x changes.



Transformations

map( f : T⇒ U) : RDD[T]⇒ RDD[U]
filter( f : T⇒ Bool) : RDD[T]⇒ RDD[T]

flatMap( f : T⇒ Seq[U]) : RDD[T]⇒ RDD[U]
sample(fraction : Float) : RDD[T]⇒ RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)]⇒ RDD[(K, Seq[V])]
reduceByKey( f : (V,V)⇒ V) : RDD[(K, V)]⇒ RDD[(K, V)]

union() : (RDD[T],RDD[T])⇒ RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)])⇒ RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U])⇒ RDD[(T, U)]

mapValues( f : V⇒W) : RDD[(K, V)]⇒ RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

Actions

count() : RDD[T]⇒ Long
collect() : RDD[T]⇒ Seq[T]

reduce( f : (T,T)⇒ T) : RDD[T]⇒ T
lookup(k : K) : RDD[(K, V)]⇒ Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)

.map(parsePoint).persist()

var w = // random initial vector

for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)

w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20× speedup, as we show in Section 6.1.

3.2.2 PageRank

A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
sends a contribution of r

n to its neighbors, where r is its
rank and n is its number of neighbors. It then updates
its rank to α/N + (1− α)∑ci, where the sum is over
the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

ranks0 input file map 

contribs0 

ranks1 

contribs1 

ranks2 

contribs2 

links 
join 

reduce + map 

.  .  . 

Figure 3: Lineage graph for datasets in PageRank.

val links = spark.textFile(...).map(...).persist()

var ranks = // RDD of (URL, rank) pairs

for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs

// with the contributions sent by each page

val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>

links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks

ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)

}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous iter-
ation and the static links dataset.6 One interesting fea-
ture of this graph is that it grows longer with the number

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.



of iterations. Thus, in a job with many iterations, it may
be necessary to reliably replicate some of the versions
of ranks to reduce fault recovery times [20]. The user
can call persist with a RELIABLE flag to do this. However,
note that the links dataset does not need to be replicated,
because partitions of it can be rebuilt efficiently by rerun-
ning a map on blocks of the input file. This dataset will
typically be much larger than ranks, because each docu-
ment has many links but only one number as its rank, so
recovering it using lineage saves time over systems that
checkpoint a program’s entire in-memory state.

Finally, we can optimize communication in PageRank
by controlling the partitioning of the RDDs. If we spec-
ify a partitioning for links (e.g., hash-partition the link
lists by URL across nodes), we can partition ranks in
the same way and ensure that the join operation between
links and ranks requires no communication (as each
URL’s rank will be on the same machine as its link list).
We can also write a custom Partitioner class to group
pages that link to each other together (e.g., partition the
URLs by domain name). Both optimizations can be ex-
pressed by calling partitionBy when we define links:

links = spark.textFile(...).map(...)

.partitionBy(myPartFunc).persist()

After this initial call, the join operation between links
and ranks will automatically aggregate the contributions
for each URL to the machine that its link lists is on, cal-
culate its new rank there, and join it with its links. This
type of consistent partitioning across iterations is one of
the main optimizations in specialized frameworks like
Pregel. RDDs let the user express this goal directly.

4 Representing RDDs
One of the challenges in providing RDDs as an abstrac-
tion is choosing a representation for them that can track
lineage across a wide range of transformations. Ideally,
a system implementing RDDs should provide as rich
a set of transformation operators as possible (e.g., the
ones in Table 2), and let users compose them in arbitrary
ways. We propose a simple graph-based representation
for RDDs that facilitates these goals. We have used this
representation in Spark to support a wide range of trans-
formations without adding special logic to the scheduler
for each one, which greatly simplified the system design.

In a nutshell, we propose representing each RDD
through a common interface that exposes five pieces of
information: a set of partitions, which are atomic pieces
of the dataset; a set of dependencies on parent RDDs;
a function for computing the dataset based on its par-
ents; and metadata about its partitioning scheme and data
placement. For example, an RDD representing an HDFS
file has a partition for each block of the file and knows
which machines each block is on. Meanwhile, the result

Operation Meaning 
partitions() Return a list of Partition objects 

preferredLocations(p) List nodes where partition p can be 
accessed faster due to data locality 

dependencies() Return a list of dependencies 
iterator(p, parentIters) Compute the elements of partition p 

given iterators for its parent partitions 
partitioner() Return metadata specifying whether 

the RDD is hash/range partitioned 

Table 3: Interface used to represent RDDs in Spark.

of a map on this RDD has the same partitions, but applies
the map function to the parent’s data when computing its
elements. We summarize this interface in Table 3.

The most interesting question in designing this inter-
face is how to represent dependencies between RDDs.
We found it both sufficient and useful to classify depen-
dencies into two types: narrow dependencies, where each
partition of the parent RDD is used by at most one parti-
tion of the child RDD, wide dependencies, where multi-
ple child partitions may depend on it. For example, map
leads to a narrow dependency, while join leads to to wide
dependencies (unless the parents are hash-partitioned).
Figure 4 shows other examples.

This distinction is useful for two reasons. First, narrow
dependencies allow for pipelined execution on one clus-
ter node, which can compute all the parent partitions. For
example, one can apply a map followed by a filter on an
element-by-element basis. In contrast, wide dependen-
cies require data from all parent partitions to be available
and to be shuffled across the nodes using a MapReduce-
like operation. Second, recovery after a node failure is
more efficient with a narrow dependency, as only the lost
parent partitions need to be recomputed, and they can be
recomputed in parallel on different nodes. In contrast, in
a lineage graph with wide dependencies, a single failed
node might cause the loss of some partition from all the
ancestors of an RDD, requiring a complete re-execution.

This common interface for RDDs made it possible to
implement most transformations in Spark in less than 20
lines of code. Indeed, even new Spark users have imple-
mented new transformations (e.g., sampling and various
types of joins) without knowing the details of the sched-
uler. We sketch some RDD implementations below.

HDFS files: The input RDDs in our samples have been
files in HDFS. For these RDDs, partitions returns one
partition for each block of the file (with the block’s offset
stored in each Partition object), preferredLocations gives
the nodes the block is on, and iterator reads the block.

map: Calling map on any RDD returns a MappedRDD
object. This object has the same partitions and preferred
locations as its parent, but applies the function passed to
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Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.

Spark can read data from any Hadoop input source
(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.

We now sketch several of the technically interesting
parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).

5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.

Overall, our scheduler is similar to Dryad’s [19], but
it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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G: 

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.



var query = “hello” 

rdd.filter(_.contains(query)) 
   .count() 

Line 1: 

Line 2: 

Closure1 
line1: 
eval(s): { return 
 s.contains(line1.query) } 

Line1 

query: 

String 

hello 

Line2 

line1: 

a) Lines typed by user b) Resulting object graph 

Figure 6: Example showing how the Spark interpreter translates
two lines entered by the user into Java objects.

5.2 Interpreter Integration

Scala includes an interactive shell similar to those of
Ruby and Python. Given the low latencies attained with
in-memory data, we wanted to let users run Spark inter-
actively from the interpreter to query big datasets.

The Scala interpreter normally operates by compiling
a class for each line typed by the user, loading it into
the JVM, and invoking a function on it. This class in-
cludes a singleton object that contains the variables or
functions on that line and runs the line’s code in an ini-
tialize method. For example, if the user types var x = 5
followed by println(x), the interpreter defines a class
called Line1 containing x and causes the second line to
compile to println(Line1.getInstance().x).

We made two changes to the interpreter in Spark:
1. Class shipping: To let the worker nodes fetch the

bytecode for the classes created on each line, we
made the interpreter serve these classes over HTTP.

2. Modified code generation: Normally, the singleton
object created for each line of code is accessed
through a static method on its corresponding class.
This means that when we serialize a closure refer-
encing a variable defined on a previous line, such as
Line1.x in the example above, Java will not trace
through the object graph to ship the Line1 instance
wrapping around x. Therefore, the worker nodes will
not receive x. We modified the code generation logic
to reference the instance of each line object directly.

Figure 6 shows how the interpreter translates a set of
lines typed by the user to Java objects after our changes.

We found the Spark interpreter to be useful in process-
ing large traces obtained as part of our research and ex-
ploring datasets stored in HDFS. We also plan to use to
run higher-level query languages interactively, e.g., SQL.

5.3 Memory Management

Spark provides three options for storage of persistent
RDDs: in-memory storage as deserialized Java objects,

in-memory storage as serialized data, and on-disk stor-
age. The first option provides the fastest performance,
because the Java VM can access each RDD element
natively. The second option lets users choose a more
memory-efficient representation than Java object graphs
when space is limited, at the cost of lower performance.8

The third option is useful for RDDs that are too large to
keep in RAM but costly to recompute on each use.

To manage the limited memory available, we use an
LRU eviction policy at the level of RDDs. When a new
RDD partition is computed but there is not enough space
to store it, we evict a partition from the least recently ac-
cessed RDD, unless this is the same RDD as the one with
the new partition. In that case, we keep the old partition
in memory to prevent cycling partitions from the same
RDD in and out. This is important because most oper-
ations will run tasks over an entire RDD, so it is quite
likely that the partition already in memory will be needed
in the future. We found this default policy to work well in
all our applications so far, but we also give users further
control via a “persistence priority” for each RDD.

Finally, each instance of Spark on a cluster currently
has its own separate memory space. In future work, we
plan to investigate sharing RDDs across instances of
Spark through a unified memory manager.

5.4 Support for Checkpointing

Although lineage can always be used to recover RDDs
after a failure, such recovery may be time-consuming for
RDDs with long lineage chains. Thus, it can be helpful
to checkpoint some RDDs to stable storage.

In general, checkpointing is useful for RDDs with long
lineage graphs containing wide dependencies, such as
the rank datasets in our PageRank example (§3.2.2). In
these cases, a node failure in the cluster may result in
the loss of some slice of data from each parent RDD, re-
quiring a full recomputation [20]. In contrast, for RDDs
with narrow dependencies on data in stable storage, such
as the points in our logistic regression example (§3.2.1)
and the link lists in PageRank, checkpointing may never
be worthwhile. If a node fails, lost partitions from these
RDDs can be recomputed in parallel on other nodes, at a
fraction of the cost of replicating the whole RDD.

Spark currently provides an API for checkpointing (a
REPLICATE flag to persist), but leaves the decision of
which data to checkpoint to the user. However, we are
also investigating how to perform automatic checkpoint-
ing. Because our scheduler knows the size of each dataset
as well as the time it took to first compute it, it should be
able to select an optimal set of RDDs to checkpoint to
minimize system recovery time [30].

Finally, note that the read-only nature of RDDs makes

8The cost depends on how much computation the application does
per byte of data, but can be up to 2× for lightweight processing.



them simpler to checkpoint than general shared mem-
ory. Because consistency is not a concern, RDDs can be
written out in the background without requiring program
pauses or distributed snapshot schemes.

6 Evaluation
We evaluated Spark and RDDs through a series of exper-
iments on Amazon EC2, as well as benchmarks of user
applications. Overall, our results show the following:
• Spark outperforms Hadoop by up to 20× in itera-

tive machine learning and graph applications. The
speedup comes from avoiding I/O and deserialization
costs by storing data in memory as Java objects.

• Applications written by our users perform and scale
well. In particular, we used Spark to speed up an an-
alytics report that was running on Hadoop by 40×.

• When nodes fail, Spark can recover quickly by re-
building only the lost RDD partitions.

• Spark can be used to query a 1 TB dataset interac-
tively with latencies of 5–7 seconds.

We start by presenting benchmarks for iterative ma-
chine learning applications (§6.1) and PageRank (§6.2)
against Hadoop. We then evaluate fault recovery in Spark
(§6.3) and behavior when a dataset does not fit in mem-
ory (§6.4). Finally, we discuss results for user applica-
tions (§6.5) and interactive data mining (§6.6).

Unless otherwise noted, our tests used m1.xlarge EC2
nodes with 4 cores and 15 GB of RAM. We used HDFS
for storage, with 256 MB blocks. Before each test, we
cleared OS buffer caches to measure IO costs accurately.

6.1 Iterative Machine Learning Applications

We implemented two iterative machine learning appli-
cations, logistic regression and k-means, to compare the
performance of the following systems:
• Hadoop: The Hadoop 0.20.2 stable release.

• HadoopBinMem: A Hadoop deployment that con-
verts the input data into a low-overhead binary format
in the first iteration to eliminate text parsing in later
ones, and stores it in an in-memory HDFS instance.

• Spark: Our implementation of RDDs.
We ran both algorithms for 10 iterations on 100 GB

datasets using 25–100 machines. The key difference be-
tween the two applications is the amount of computation
they perform per byte of data. The iteration time of k-
means is dominated by computation, while logistic re-
gression is less compute-intensive and thus more sensi-
tive to time spent in deserialization and I/O.

Since typical learning algorithms need tens of itera-
tions to converge, we report times for the first iteration
and subsequent iterations separately. We find that shar-
ing data via RDDs greatly speeds up future iterations.
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using 100 GB of data on a 100-node cluster.
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Figure 8: Running times for iterations after the first in Hadoop,
HadoopBinMem, and Spark. The jobs all processed 100 GB.

First Iterations All three systems read text input from
HDFS in their first iterations. As shown in the light bars
in Figure 7, Spark was moderately faster than Hadoop
across experiments. This difference was due to signal-
ing overheads in Hadoop’s heartbeat protocol between
its master and workers. HadoopBinMem was the slowest
because it ran an extra MapReduce job to convert the data
to binary, it and had to write this data across the network
to a replicated in-memory HDFS instance.

Subsequent Iterations Figure 7 also shows the aver-
age running times for subsequent iterations, while Fig-
ure 8 shows how these scaled with cluster size. For lo-
gistic regression, Spark 25.3× and 20.7× faster than
Hadoop and HadoopBinMem respectively on 100 ma-
chines. For the more compute-intensive k-means appli-
cation, Spark still achieved speedup of 1.9× to 3.2×.

Understanding the Speedup We were surprised to
find that Spark outperformed even Hadoop with in-
memory storage of binary data (HadoopBinMem) by a
20× margin. In HadoopBinMem, we had used Hadoop’s
standard binary format (SequenceFile) and a large block
size of 256 MB, and we had forced HDFS’s data di-
rectory to be on an in-memory file system. However,
Hadoop still ran slower due to several factors:
1. Minimum overhead of the Hadoop software stack,

2. Overhead of HDFS while serving data, and
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Figure 9: Iteration times for logistic regression using 256 MB
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3. Deserialization cost to convert binary records to us-
able in-memory Java objects.

We investigated each of these factors in turn. To mea-
sure (1), we ran no-op Hadoop jobs, and saw that these at
incurred least 25s of overhead to complete the minimal
requirements of job setup, starting tasks, and cleaning up.
Regarding (2), we found that HDFS performed multiple
memory copies and a checksum to serve each block.

Finally, to measure (3), we ran microbenchmarks on
a single machine to run the logistic regression computa-
tion on 256 MB inputs in various formats. In particular,
we compared the time to process text and binary inputs
from both HDFS (where overheads in the HDFS stack
will manifest) and an in-memory local file (where the
kernel can very efficiently pass data to the program).

We show the results of these tests in Figure 9. The dif-
ferences between in-memory HDFS and local file show
that reading through HDFS introduced a 2-second over-
head, even when data was in memory on the local ma-
chine. The differences between the text and binary in-
put indicate the parsing overhead was 7 seconds. Finally,
even when reading from an in-memory file, converting
the pre-parsed binary data into Java objects took 3 sec-
onds, which is still almost as expensive as the logistic re-
gression itself. By storing RDD elements directly as Java
objects in memory, Spark avoids all these overheads.

6.2 PageRank

We compared the performance of Spark with Hadoop
for PageRank using a 54 GB Wikipedia dump. We ran
10 iterations of the PageRank algorithm to process a
link graph of approximately 4 million articles. Figure 10
demonstrates that in-memory storage alone provided
Spark with a 2.4× speedup over Hadoop on 30 nodes.
In addition, controlling the partitioning of the RDDs to
make it consistent across iterations, as discussed in Sec-
tion 3.2.2, improved the speedup to 7.4×. The results
also scaled nearly linearly to 60 nodes.

We also evaluated a version of PageRank written us-
ing our implementation of Pregel over Spark, which we
describe in Section 7.1. The iteration times were similar
to the ones in Figure 10, but longer by about 4 seconds
because Pregel runs an extra operation on each iteration
to let the vertices “vote” whether to finish the job.
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Figure 11: Iteration times for k-means in presence of a failure.
One machine was killed at the start of the 6th iteration, resulting
in partial reconstruction of an RDD using lineage.

6.3 Fault Recovery

We evaluated the cost of reconstructing RDD partitions
using lineage after a node failure in the k-means appli-
cation. Figure 11 compares the running times for 10 it-
erations of k-means on a 75-node cluster in normal op-
erating scenario, with one where a node fails at the start
of the 6th iteration. Without any failure, each iteration
consisted of 400 tasks working on 100 GB of data.

Until the end of the 5th iteration, the iteration times
were about 58 seconds. In the 6th iteration, one of the
machines was killed, resulting in the loss of the tasks
running on that machine and the RDD partitions stored
there. Spark re-ran these tasks in parallel on other ma-
chines, where they re-read corresponding input data and
reconstructed RDDs via lineage, which increased the it-
eration time to 80s. Once the lost RDD partitions were
reconstructed, the iteration time went back down to 58s.

Note that with a checkpoint-based fault recovery
mechanism, recovery would likely require rerunning at
least several iterations, depending on the frequency of
checkpoints. Furthermore, the system would need to
replicate the application’s 100 GB working set (the text
input data converted into binary) across the network, and
would either consume twice the memory of Spark to
replicate it in RAM, or would have to wait to write 100
GB to disk. In contrast, the lineage graphs for the RDDs
in our examples were all less than 10 KB in size.

6.4 Behavior with Insufficient Memory

So far, we ensured that every machine in the cluster
had enough memory to store all the RDDs across itera-
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Figure 12: Performance of logistic regression using 100 GB
data on 25 machines with varying amounts of data in memory.

tions. A natural question is how Spark runs if there is not
enough memory to store a job’s data. In this experiment,
we configured Spark not to use more than a certain per-
centage of memory to store RDDs on each machine. We
present results for various amounts of storage space for
logistic regression in Figure 12. We see that performance
degrades gracefully with less space.

6.5 User Applications Built with Spark

In-Memory Analytics Conviva Inc, a video distribu-
tion company, used Spark to accelerate a number of data
analytics reports that previously ran over Hadoop. For
example, one report ran as a series of Hive [1] queries
that computed various statistics for a customer. These
queries all worked on the same subset of the data (records
matching a customer-provided filter), but performed ag-
gregations (averages, percentiles, and COUNT DISTINCT)
over different grouping fields, requiring separate MapRe-
duce jobs. By implementing the queries in Spark and
loading the subset of data shared across them once into
an RDD, the company was able to speed up the report by
40×. A report on 200 GB of compressed data that took
20 hours on a Hadoop cluster now runs in 30 minutes
using only two Spark machines. Furthermore, the Spark
program only required 96 GB of RAM, because it only
stored the rows and columns matching the customer’s fil-
ter in an RDD, not the whole decompressed file.

Traffic Modeling Researchers in the Mobile Millen-
nium project at Berkeley [18] parallelized a learning al-
gorithm for inferring road traffic congestion from spo-
radic automobile GPS measurements. The source data
were a 10,000 link road network for a metropolitan area,
as well as 600,000 samples of point-to-point trip times
for GPS-equipped automobiles (travel times for each
path may include multiple road links). Using a traffic
model, the system can estimate the time it takes to travel
across individual road links. The researchers trained this
model using an expectation maximization (EM) algo-
rithm that repeats two map and reduceByKey steps itera-
tively. The application scales nearly linearly from 20 to
80 nodes with 4 cores each, as shown in Figure 13(a).
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Figure 13: Per-iteration running time of two user applications
implemented with Spark. Error bars show standard deviations.
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Figure 14: Response times for interactive queries on Spark,
scanning increasingly larger input datasets on 100 machines.

Twitter Spam Classification The Monarch project at
Berkeley [29] used Spark to identify link spam in Twitter
messages. They implemented a logistic regression classi-
fier on top of Spark similar to the example in Section 6.1,
but they used a distributed reduceByKey to sum the gradi-
ent vectors in parallel. In Figure 13(b) we show the scal-
ing results for training a classifier over a 50 GB subset
of the data: 250,000 URLs and 107 features/dimensions
related to the network and content properties of the pages
at each URL. The scaling is not as close to linear due to
a higher fixed communication cost per iteration.

6.6 Interactive Data Mining

To demonstrate Spark’ ability to interactively query big
datasets, we used it to analyze 1TB of Wikipedia page
view logs (2 years of data). For this experiment, we used
100 m2.4xlarge EC2 instances with 8 cores and 68 GB
of RAM each. We ran queries to find total views of (1)
all pages, (2) pages with titles exactly matching a given
word, and (3) pages with titles partially matching a word.
Each query scanned the entire input data.

Figure 14 shows the response times of the queries on
the full dataset and half and one-tenth of the data. Even
at 1 TB of data, queries on Spark took 5–7 seconds. This
was more than an order of magnitude faster than work-
ing with on-disk data; for example, querying the 1 TB
file from disk took 170s. This illustrates that RDDs make
Spark a powerful tool for interactive data mining.



7 Discussion
Although RDDs seem to offer a limited programming in-
terface due to their immutable nature and coarse-grained
transformations, we have found them suitable for a wide
class of applications. In particular, RDDs can express a
surprising number of cluster programming models that
have so far been proposed as separate frameworks, al-
lowing users to compose these models in one program
(e.g., run a MapReduce operation to build a graph, then
run Pregel on it) and share data between them. In this sec-
tion, we discuss which programming models RDDs can
express and why they are so widely applicable (§7.1). In
addition, we discuss another benefit of the lineage infor-
mation in RDDs that we are pursuing, which is to facili-
tate debugging across these models (§7.2).

7.1 Expressing Existing Programming Models

RDDs can efficiently express a number of cluster pro-
gramming models that have so far been proposed inde-
pendently. By “efficiently,” we mean that not only can
RDDs be used to produce the same output as programs
written in these models, but that RDDs can also capture
the optimizations that these frameworks perform, such as
keeping specific data in memory, partitioning it to min-
imize communication, and recovering from failures effi-
ciently. The models expressible using RDDs include:

MapReduce: This model can be expressed using the
flatMap and groupByKey operations in Spark, or reduce-
ByKey if there is a combiner.

DryadLINQ: The DryadLINQ system provides a
wider range of operators than MapReduce over the more
general Dryad runtime, but these are all bulk operators
that correspond directly to RDD transformations avail-
able in Spark (map, groupByKey, join, etc).

SQL: Like DryadLINQ expressions, SQL queries per-
form data-parallel operations on sets of records.

Pregel: Google’s Pregel [22] is a specialized model for
iterative graph applications that at first looks quite differ-
ent from the set-oriented programming models in other
systems. In Pregel, a program runs as a series of coordi-
nated “supersteps.” On each superstep, each vertex in the
graph runs a user function that can update state associ-
ated with the vertex, change the graph topology, and send
messages to other vertices for use in the next superstep.
This model can express many graph algorithms, includ-
ing shortest paths, bipartite matching, and PageRank.

The key observation that lets us implement this model
with RDDs is that Pregel applies the same user function
to all the vertices on each iteration. Thus, we can store the
vertex states for each iteration in an RDD and perform
a bulk transformation (flatMap) to apply this function
and generate an RDD of messages. We can then join this

RDD with the vertex states to perform the message ex-
change. Equally importantly, RDDs allow us to keep ver-
tex states in memory like Pregel does, to minimize com-
munication by controlling their partitioning, and to sup-
port partial recovery on failures. We have implemented
Pregel as a 200-line library on top of Spark and refer the
reader to [33] for more details.

Iterative MapReduce: Several recently proposed sys-
tems, including HaLoop [7] and Twister [11], provide an
iterative MapReduce model where the user gives the sys-
tem a series of MapReduce jobs to loop. The systems
keep data partitioned consistently across iterations, and
Twister can also keep it in memory. Both optimizations
are simple to express with RDDs, and we were able to
implement HaLoop as a 200-line library using Spark.

Batched Stream Processing: Researchers have re-
cently proposed several incremental processing systems
for applications that periodically update a result with
new data [21, 15, 4]. For example, an application updat-
ing statistics about ad clicks every 15 minutes should be
able to combine intermediate state from the previous 15-
minute window with data from new logs. These systems
perform bulk operations similar to Dryad, but store appli-
cation state in distributed filesystems. Placing the inter-
mediate state in RDDs would speed up their processing.

Explaining the Expressivity of RDDs Why are RDDs
able to express these diverse programming models? The
reason is that the restrictions on RDDs have little im-
pact in many parallel applications. In particular, although
RDDs can only be created through bulk transformations,
many parallel programs naturally apply the same opera-
tion to many records, making them easy to express. Sim-
ilarly, the immutability of RDDs is not an obstacle be-
cause one can create multiple RDDs to represent versions
of the same dataset. Indeed, many of today’s MapReduce
applications run over filesystems that do not allow up-
dates to files, such as HDFS.

One final question is why previous frameworks have
not offered the same level of generality. We believe that
this is because these systems explored specific problems
that MapReduce and Dryad do not handle well, such as
iteration, without observing that the common cause of
these problems was a lack of data sharing abstractions.

7.2 Leveraging RDDs for Debugging

While we initially designed RDDs to be deterministically
recomputable for fault tolerance, this property also facil-
itates debugging. In particular, by logging the lineage of
RDDs created during a job, one can (1) reconstruct these
RDDs later and let the user query them interactively and
(2) re-run any task from the job in a single-process de-
bugger, by recomputing the RDD partitions it depends
on. Unlike traditional replay debuggers for general dis-



tributed systems [13], which must capture or infer the
order of events across multiple nodes, this approach adds
virtually zero recording overhead because only the RDD
lineage graph needs to be logged.9 We are currently de-
veloping a Spark debugger based on these ideas [33].

8 Related Work
Cluster Programming Models: Related work in clus-
ter programming models falls into several classes. First,
data flow models such as MapReduce [10], Dryad [19]
and Ciel [23] support a rich set of operators for pro-
cessing data but share it through stable storage systems.
RDDs represent a more efficient data sharing abstraction
than stable storage because they avoid the cost of data
replication, I/O and serialization.10

Second, several high-level programming interfaces
for data flow systems, including DryadLINQ [31] and
FlumeJava [8], provide language-integrated APIs where
the user manipulates “parallel collections” through op-
erators like map and join. However, in these systems,
the parallel collections represent either files on disk or
ephemeral datasets used to express a query plan. Al-
though the systems will pipeline data across operators
in the same query (e.g., a map followed by another
map), they cannot share data efficiently across queries.
We based Spark’s API on the parallel collection model
due to its convenience, and do not claim novelty for the
language-integrated interface, but by providing RDDs as
the storage abstraction behind this interface, we allow it
to support a far broader class of applications.

A third class of systems provide high-level interfaces
for specific classes of applications requiring data sharing.
For example, Pregel [22] supports iterative graph appli-
cations, while Twister [11] and HaLoop [7] are iterative
MapReduce runtimes. However, these frameworks per-
form data sharing implicitly for the pattern of computa-
tion they support, and do not provide a general abstrac-
tion that the user can employ to share data of her choice
among operations of her choice. For example, a user can-
not use Pregel or Twister to load a dataset into memory
and then decide what query to run on it. RDDs provide
a distributed storage abstraction explicitly and can thus
support applications that these specialized systems do
not capture, such as interactive data mining.

Finally, some systems expose shared mutable state
to allow the user to perform in-memory computation.
For example, Piccolo [27] lets users run parallel func-
tions that read and update cells in a distributed hash
table. Distributed shared memory (DSM) systems [24]

9Unlike these systems, an RDD-based debugger will not replay non-
deterministic behavior in the user’s functions (e.g., a nondeterministic
map), but it can at least report it by checksumming data.

10Note that running MapReduce/Dryad over an in-memory data store
like RAMCloud [25] would still require data replication and serializa-
tion, which can be costly for some applications, as shown in §6.1.

and key-value stores like RAMCloud [25] offer a simi-
lar model. RDDs differ from these systems in two ways.
First, RDDs provide a higher-level programming inter-
face based on operators such as map, sort and join,
whereas the interface in Piccolo and DSM is just reads
and updates to table cells. Second, Piccolo and DSM sys-
tems implement recovery through checkpoints and roll-
back, which is more expensive than the lineage-based
strategy of RDDs in many applications. Finally, as dis-
cussed in Section 2.3, RDDs also provide other advan-
tages over DSM, such as straggler mitigation.

Caching Systems: Nectar [12] can reuse intermediate
results across DryadLINQ jobs by identifying common
subexpressions with program analysis [16]. This capabil-
ity would be compelling to add to an RDD-based system.
However, Nectar does not provide in-memory caching (it
places the data in a distributed file system), nor does it
let users explicitly control which datasets to persist and
how to partition them. Ciel [23] and FlumeJava [8] can
likewise cache task results but do not provide in-memory
caching or explicit control over which data is cached.

Ananthanarayanan et al. have proposed adding an in-
memory cache to distributed file systems to exploit the
temporal and spatial locality of data access [3]. While
this solution provides faster access to data that is already
in the file system, it is not as efficient a means of shar-
ing intermediate results within an application as RDDs,
because it would still require applications to write these
results to the file system between stages.

Lineage: Capturing lineage or provenance information
for data has long been a research topic in scientific com-
puting and databases, for applications such as explaining
results, allowing them to be reproduced by others, and
recomputing data if a bug is found in a workflow or if
a dataset is lost. We refer the reader to [5] and [9] for
surveys of this work. RDDs provide a parallel program-
ming model where fine-grained lineage is inexpensive to
capture, so that it can be used for failure recovery.

Our lineage-based recovery mechanism is also similar
to the recovery mechanism used within a computation
(job) in MapReduce and Dryad, which track dependen-
cies among a DAG of tasks. However, in these systems,
the lineage information is lost after a job ends, requiring
the use of a replicated storage system to share data across
computations. In contrast, RDDs apply lineage to persist
in-memory data efficiently across computations, without
the cost of replication and disk I/O.

Relational Databases: RDDs are conceptually similar
to views in a database, and persistent RDDs resemble
materialized views [28]. However, like DSM systems,
databases typically allow fine-grained read-write access
to all records, requiring logging of operations and data
for fault tolerance and additional overhead to maintain



consistency. These overheads are not required with the
coarse-grained transformation model of RDDs.

9 Conclusion
We have presented resilient distributed datasets (RDDs),
an efficient, general-purpose and fault-tolerant abstrac-
tion for sharing data in cluster applications. RDDs can
express a wide range of parallel applications, including
many specialized programming models that have been
proposed for iterative computation, and new applications
that these models do not capture. Unlike existing storage
abstractions for clusters, which require data replication
for fault tolerance, RDDs offer an API based on coarse-
grained transformations that lets them recover data ef-
ficiently using lineage. We have implemented RDDs in
a system called Spark that outperforms Hadoop by up
to 20× in iterative applications and can be used interac-
tively to query hundreds of gigabytes of data.

We have open sourced Spark at spark-project.org as
a vehicle for scalable data analysis and systems research.
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