CS 686: Special Topics in Big Data

Counting Streams

Lecture 24



Today's Schedule

= Cluster status and P2 Update
= Bloom Filters

= Cardinality Estimation

11/6/17 CS 686: Big Data



Today's Schedule

= Cluster status and P2 Update
= Bloom Filters

= Cardinality Estimation

11/6/17 CS 686: Big Data



Cluster Status

Things are back up and running, so you can pretend
Friday's lecture never happened ©

But now you also have the option of doing local
analysis on your own MapReduce install

Use the compressed 30% sample dataset

11/6/17 CS 686: Big Data



Clarifying our (many) Datasets

We now have three datasets:
nam_mini - this is for testing your code
nam_2015 - the original data, hosted on bass
nam_2015 S -a 30% sample of the full dataset on
bass

You can use #2 or #3 to answer the questions, but
make sure you specify which dataset you're using!

11/6/17 CS 686: Big Data



Thinking Ahead

= P3 will now include Deliverable |l
= We'll be using Hadoop and Spark

= You'll also have the chance to choose your own
dataset to analyze

= Some ideas:
= http://academictorrents.com
= Earth on AWS: https://aws.amazon.com/earth/

= Potentially (if large enough):
http://archive.ics.uci.edu/ml/index.php

11/6/17 CS 686: Big Data



Today's Schedule

= Cluster status and P2 Update
= Bloom Filters

= Cardinality Estimation

11/6/17 CS 686: Big Data



Bloom Filter (1/2)

Compact data structure to test for set membership

Supports two functions:

put(data) 2 places some information in the filter
get(data) = reports the probability of whether or not
the data was put in the filter

May produce false positives but never false
negatives

If the bloom filter says it wasn't inserted, then it
definitely wasn't!

11/6/17 CS 686: Big Data



Bloom Filter (2/2)

Bloom filters give us two answers:

Maybe (with a probability)

Definitely not
You can think of it as a HashMap that throws away
the keys and values

We can't get the data back out of the bloom filter, but

It is very compact in memory!

Great when acting as a gatekeeper to a high-latency
data source (such as disksl)

11/6/17 CS 686: Big Data



Building a Bloom Filter (1/2)

To implement a bloom filter, we need:
An array of bits

Multiple hash functions

When putting an item in the filter, the data is passed
to the hash functions

The hash space of each function is mapped to our
array of bits

Very much like a DHT

11/6/17 CS 686: Big Data

10



Building a Bloom Filter (2/2)

We take the position in the hash space, map it to our
array of bits, and then set the corresponding bit to 1

Repeat for all hash functions

To perform a lookup, we repeat the process

If all the positions in the bit array are set to 1, then we
can return a "maybe”

If any of the positions are a 0, then we return “no”

11/6/17 CS 686: Big Data

11



Collisions

If the size of our bit array is small, then there is a
good chance of collisions

Two inputs map to the same bit:

hash(my_dog.jpg) = bit #3
hash(secret_passwords.txt) = bit #3

This is the source of uncertainty in bloom filters

How do we decide how large to make our filters?

11/6/17 CS 686: Big Data 12



Pareto Principle

11/6/17

The 80/20 rule
80% of the effects come from 20% of the causes

Pareto’'s observation: in ltaly, 20% of the population
controls 80% of the land

80% of complaints are made by 20% of the
customers

So: shoot for bit arrays sized at 20% of your input

Reasonable starting point

CS 686: Big Data 13



Sizing our Bloom Filters

11/6/17

If we can accept some uncertainty, we can maintain
even smaller bit arrays in memory

Fewer than 10 bits per element are required for a 1%
false positive probability, independent of the size or
number of elements in the set

-- Bonomi et al., "An Improved Construction for
Counting Bloom Filters"

CS 686: Big Data

14



Demo Use Case

11/6/17

One big issue with our DFS is scalability

What happens when we have too many files to fit all
their names into memory on the Controller?

We could write the file names and locations to disk,
but then retrievals would be much slower

Instead, we can use bloom filters to predict whether
a hode has the file we're looking for or not

CS 686: Big Data

15



Indexing via Bloom Filter

11/6/17

We maintain a bloom filter for each storage node and
evaluate lookups against the filter

This process is parallelizable and fast

If the filter returns "no,"” then we can safely exclude
that node from our search

If it's a "yes,” we'll start our search with the highest-
probability node

We can even make requests in parallel

Downside: this costs additional network 1/0

CS 686: Big Data

16



Resizing a Bloom Filter

If our false positive probability starts to go up, we
need to resize the bloom filter

Generally accomplished by creating a new bloom
filter and then inserting the values back in

Big downside in situations where we can't predict how
many values we'll see

11/6/17 CS 686: Big Data

17



Today's Schedule

= Cluster status and P2 Update
= Bloom Filters

= Cardinality Estimation

11/6/17 CS 686: Big Data

18



Cardinality Estimation

How many unique elements are in a set?

In SQL:
SELECT COUNT(DISTINCT ip_addr) AS Cardinality

Fine for thousands of records, very slow for billions

Rather than calculating the exact cardinality,
estimate it

11/6/17 CS 686: Big Data

19



Cardinality Estimation Goals

Both online and offline calculation are valid use cases

Memory usage must be controlled

Especially for online calculation!
Error rates must be predictable and configurable
depending on the situation at hand

If gmail says my search returned 6 results +/- a million,
then it's not such a useful metric

11/6/17 CS 686: Big Data 20



Use Cases

11/6/17

A frequent query at Google: how many unique IP
addresses visited Gmail today?

How many from San Francisco?

In a given range of temperature readings, how many
were unique?

f the cardinality of a user's outgoing connections is
nigh, could they be infected with malware?

How many unique words are in Hamlet?

CS 686: Big Data

21



Algorithms

= Bloom Filter
= Linear Counting

= Probabilistic Counting
= HyperLoglLog
= HyperLoglLog++

11/6/17 CS 686: Big Data

22



Algorithms

= Bloom Filter
= Linear Counting

= Probabilistic Counting
= HyperLoglLog
= HyperLoglLog++

11/6/17 CS 686: Big Data

23



Bloom Filter

Recall: bloom filters tell us whether an element is a
member of a set

False positives possible, no false negatives

The process:
Insert incoming values into our bloom filter

If the inserted value is not in the filter, increment the
cardinality counter

11/6/17 CS 686: Big Data 24



Bloom Filter: Issues

We need to have an idea of how big our set is ahead
of time

Bit vectors are allocated up front
Difficult to resize (but possible)

Error rates can fluctuate

As the number of elements increases, accuracy will
decrease

Causes cyclic accuracy levels

11/6/17 CS 686: Big Data

25



Algorithms

= Bloom Filter
= Linear Counting

= Probabilistic Counting
= HyperLoglLog
= HyperLoglLog++

11/6/17 CS 686: Big Data

26



Linear Counting

Allocate a bit vector of M bits

Adjust M based on the expected upper bound for
cardinality

Apply a hash function on incoming elements

Use the hash value to map to a bit in the vector, and
setitto 1

Cardinality = M * log(M/2);

Where 'Z' is the number of ‘zero bits'

11/6/17 CS 686: Big Data

27



Linear Counting: Implications

Very accurate for small
cardinalities

Becomes less efficient
as we scale up

Error is determined by
frequency of hash
collisions

Can be compressed to
further reduce space

Cathy

11/6/17 CS 686: Big Data

oooococcg

o
=

S
= 8
B

(=]
—
=]
=
2
=}

duplicates

(=
—
[=
-
1]
-

R - — T R - B R ]
»

28



Algorithms

= Bloom Filter
= Linear Counting

* Probabilistic Counting
= HyperLoglLog
= HyperLoglLog++

11/6/17 CS 686: Big Data

29



Probabilistic Counting (1/2)

= Assume we have a set of random binary integers

= Inspecting the bits, what is the probability that a
given integer ends in Z zeroes?

=1/2%

= 10111010 = 50%

= 10111100 = 25%
= 10011000 = 12.5%

11/6/17 CS 686: Big Data

30



Probabilistic Counting (2/2)

11/6/17

This means the likely cardinality is 24

Another way of looking at it: counting based on how
rare an eventis

Fun fact: counting the number of trailing zeroes in a
binary number is hardware accelerated

Related: recall our discussion on Bitcoin: finding a
particular number of leading zeros in a hash

CS 686: Big Data

31



Coin Flip

Let's say you are flipping a coin, and | want to
estimate how long you've been flipping it

If you tell me the longest run of 'heads’ was 3, then |
will guess you didn't flip the coin very long

If it was something like 20, then you must've been at
it for a really long timel

11/6/17 CS 686: Big Data

32



However...

Let's say you sat down and flipped a coin 10 times, all
landing ‘heads.’

Apart from possibly indicating a two-headed coin, this
would cause my “coin flipping time" estimate to be
waaaaay off

To fix this, I'd divide up your workload

Rather than reporting a single value, I'll give you 10
pieces of paper to record the number of heads/tails
on

11/6/17 CS 686: Big Data 33



HyperLoglLog

Hash incoming values to ‘randomize’ them

Reference implementation uses a 32 bit hash function

Instead of just counting trailing (or leading) zeroes,
maintain a set of registers

These divide incoming values up into several samples

Now if | have 10 registers and you flip your two-headed coin
10 times, | still make an accurate estimate

Stochastic Averaging
Average the results across sample sets
11/6/17

CS 686: Big Data 34



Which Sample?

= We split up the hash:

= One part is used to determine how many zeros were
produced

= The other part is used to determine which register to
update

11/6/17 CS 686: Big Data

35



HyperLoglLog Benefits

With R registers, the standard error of HLL is:
1.04 / sqrt(R)

Makes configuration simple

With an accuracy level of 2%, cardinalities up to 10°
can be calculated with 1.5 KB of memory

Using this algorithm is very space-efficient!

11/6/17 CS 686: Big Data

36



Error Consistency

1.5

0.5

-0.5 F

-1.5

ﬂlong.txt“'
"long2,txt"

0

1e+0B

2e+0B

3e+0b

Source: http://antirez.com/news/75

11/6/17

de+0B Se+0B Be+06

CS 686: Big Data

7e+0b

8e+06

3e+06

1e+07

37



Pitfalls

11/6/17

After cardinalities of 109, hash collisions become
more frequent and we lose our tightaccuracy
bounds

The algorithm does not cope well with small
cardinalities

To deal with these issues, Google introduced
HyperLogLog++

CS 686: Big Data 38



64 Bit Hash Function

The hash function in HLL is limited to 32 bits

This limits us to cardinalities of 10° before collisions
start to be a problem

HLL implements special logic to deal with cardinalities
near 232

Swapping this with a 64 bit hash instead:
Results in a small increase in memory usage
Pushes our upper bound to 264

Eliminates the edge case logic

11/6/17 CS 686: Big Data 39



Error Rates

With very small datasets, HLL produces large error
rates

"SuperLoglLog” attempts to mathematically correct
this issue

...with limited success
Alternative: use Linear Counting for small
cardinalities

HLL registers are tweaked slightly to act as linear
counting bit vectors

11/6/17 CS 686: Big Data

40



Small Cardinality Error Rates

14

12

10 F

I

{

L H

ll _100_avg, txt"
lglm

M

ﬂﬂl I mﬂ\ﬂ

100 200 30

Source: http://antirez.com/news/75

11/6/17

60O ?00 800 1000

CS 686: Big Data



Error Rates: Another Look

80000 - Algorihm
""" HLLg4g:r

60000 -

imate

40000 -

Raw esti

20000 -

0 20000 40000 60000 80000
Cardinality

11/6/17 CS 686: Big Data

42



Bias Correction

= Linear Counting starts

consuming too much Moo
memory before HLL hits |
Its usual accuracy levels

0.02 -

= Switching over to HLL
early produces a small
range of high error rates

0.01-

Median relative bias

! Aaﬂd\llvww\’

-0.01

0 20000 40000 60000 80000
Cardinality

11/6/17 CS 686: Big Data



Bias Correction 1

Google calculated cardinalities for the 40-80k range
depicted previously

Using this empirical dataset, a lookup table provides
estimates for cardinalities between 40-80k

11/6/17 CS 686: Big Data

44



Bias Correction 2

Redis takes an alternative approach: polynomial
regression

Since the curve is fairly smooth, this allows the bias
for the 40-80k range to be predicted and corrected

11/6/17 CS 686: Big Data

45



Redis Bias Correction

T T T T T
"hll-vanilla,txt" + “hll-corrected,txt" +
+, "hll-vanilla-avg,txt" + + "hll-corrected-avg. txt"

FEN
++ o j:H— g Wt
4 ++:t'_* + ++1=++ +++

-3 1 1 1 1 1 1 1 1 1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Source: http://antirez.com/news/75
11/6/17 CS 686: Big Data



Interactive Demo

= http://content.research.neustar.biz/blog/hll.html

11/6/17 CS 686: Big Data

47



Wrapping Up (1/2)

11/6/17

When we deal with billions of data points, sometimes
the best way to provide answers fast is to estimate

All of the algorithms discussed today can be used
online

No need to have the entire dataset in hand

Update incrementally as we go!

Estimating is only useful when we can tie a
probability to it (such as the false positive probability)

CS 686: Big Data 48



Wrapping Up (2/2)

Cardinality estimation has been an important topic in
databases since the 70s

HyperLoglLog (2007)
HyperLog++ (2013)

Being able to estimate cardinality lets us:
Estimate other dataset parameters

Reason about data distributions

Optimize indexes

11/6/17 CS 686: Big Data

49



