
Lecture 24

CS 686: Special Topics in Big Data

Counting Streams

§ Cluster status and P2 Update

§ Bloom Filters

§ Cardinality Estimation

Today’s Schedule

11/6/17 CS 686: Big Data 2

§ Cluster status and P2 Update

§ Bloom Filters

§ Cardinality Estimation

Today’s Schedule

11/6/17 CS 686: Big Data 3

§ Things are back up and running, so you can pretend
Friday’s lecture never happened J

§ But now you also have the option of doing local
analysis on your own MapReduce install
§ Use the compressed 30% sample dataset

Cluster Status

11/6/17 CS 686: Big Data 4

§ We now have three datasets:
1. nam_mini – this is for testing your code
2. nam_2015 – the original data, hosted on bass
3. nam_2015_S – a 30% sample of the full dataset on

bass

§ You can use #2 or #3 to answer the questions, but
make sure you specify which dataset you’re using!

Clarifying our (many) Datasets

11/6/17 CS 686: Big Data 5

§ P3 will now include Deliverable II
§ We’ll be using Hadoop and Spark
§ You’ll also have the chance to choose your own

dataset to analyze
§ Some ideas:

§ http://academictorrents.com
§ Earth on AWS: https://aws.amazon.com/earth/
§ Potentially (if large enough):

http://archive.ics.uci.edu/ml/index.php

Thinking Ahead

11/6/17 CS 686: Big Data 6

§ Cluster status and P2 Update

§ Bloom Filters

§ Cardinality Estimation

Today’s Schedule

11/6/17 CS 686: Big Data 7

§ Compact data structure to test for set membership

§ Supports two functions:
§ put(data) à places some information in the filter
§ get(data) à reports the probability of whether or not

the data was put in the filter

§ May produce false positives but never false
negatives
§ If the bloom filter says it wasn’t inserted, then it

definitely wasn’t!

Bloom Filter (1/2)

11/6/17 CS 686: Big Data 8

§ Bloom filters give us two answers:
§ Maybe (with a probability)
§ Definitely not

§ You can think of it as a HashMap that throws away
the keys and values
§ We can’t get the data back out of the bloom filter, but

it is very compact in memory!

§ Great when acting as a gatekeeper to a high-latency
data source (such as disks!)

Bloom Filter (2/2)

11/6/17 CS 686: Big Data 9

§ To implement a bloom filter, we need:
§ An array of bits
§ Multiple hash functions

§ When putting an item in the filter, the data is passed
to the hash functions

§ The hash space of each function is mapped to our
array of bits
§ Very much like a DHT

Building a Bloom Filter (1/2)

11/6/17 CS 686: Big Data 10

§ We take the position in the hash space, map it to our
array of bits, and then set the corresponding bit to 1
§ Repeat for all hash functions

§ To perform a lookup, we repeat the process
§ If all the positions in the bit array are set to 1, then we

can return a “maybe”
§ If any of the positions are a 0, then we return “no”

Building a Bloom Filter (2/2)

11/6/17 CS 686: Big Data 11

§ If the size of our bit array is small, then there is a
good chance of collisions
§ Two inputs map to the same bit:

§ hash(my_dog.jpg) à bit #3
§ hash(secret_passwords.txt) à bit #3

§ This is the source of uncertainty in bloom filters

§ How do we decide how large to make our filters?

Collisions

11/6/17 CS 686: Big Data 12

§ The 80/20 rule

§ 80% of the effects come from 20% of the causes

§ Pareto’s observation: in Italy, 20% of the population
controls 80% of the land

§ 80% of complaints are made by 20% of the
customers

§ So: shoot for bit arrays sized at 20% of your input
§ Reasonable starting point

Pareto Principle

11/6/17 CS 686: Big Data 13

§ If we can accept some uncertainty, we can maintain
even smaller bit arrays in memory

§ Fewer than 10 bits per element are required for a 1%
false positive probability, independent of the size or
number of elements in the set
§ -- Bonomi et al., “An Improved Construction for

Counting Bloom Filters”

Sizing our Bloom Filters

11/6/17 CS 686: Big Data 14

§ One big issue with our DFS is scalability

§ What happens when we have too many files to fit all
their names into memory on the Controller?
§ We could write the file names and locations to disk,

but then retrievals would be much slower

§ Instead, we can use bloom filters to predict whether
a node has the file we’re looking for or not

Demo Use Case

11/6/17 CS 686: Big Data 15

§ We maintain a bloom filter for each storage node and
evaluate lookups against the filter
§ This process is parallelizable and fast

§ If the filter returns “no,” then we can safely exclude
that node from our search

§ If it’s a “yes,” we’ll start our search with the highest-
probability node
§ We can even make requests in parallel
§ Downside: this costs additional network I/O

Indexing via Bloom Filter

11/6/17 CS 686: Big Data 16

§ If our false positive probability starts to go up, we
need to resize the bloom filter

§ Generally accomplished by creating a new bloom
filter and then inserting the values back in
§ Big downside in situations where we can’t predict how

many values we’ll see

Resizing a Bloom Filter

11/6/17 CS 686: Big Data 17

§ Cluster status and P2 Update

§ Bloom Filters

§ Cardinality Estimation

Today’s Schedule

11/6/17 CS 686: Big Data 18

Cardinality Estimation

§ How many unique elements are in a set?

§ In SQL:
§ SELECT COUNT(DISTINCT ip_addr) AS Cardinality
§ Fine for thousands of records, very slow for billions

§ Rather than calculating the exact cardinality,
estimate it

11/6/17 CS 686: Big Data 19

Cardinality Estimation Goals

§ Both online and offline calculation are valid use cases

§ Memory usage must be controlled
§ Especially for online calculation!

§ Error rates must be predictable and configurable
depending on the situation at hand
§ If gmail says my search returned 6 results +/- a million,

then it’s not such a useful metric

11/6/17 CS 686: Big Data 20

Use Cases

§ A frequent query at Google: how many unique IP
addresses visited Gmail today?
§ How many from San Francisco?

§ In a given range of temperature readings, how many
were unique?

§ If the cardinality of a user’s outgoing connections is
high, could they be infected with malware?

§ How many unique words are in Hamlet?

11/6/17 CS 686: Big Data 21

Algorithms

§ Bloom Filter

§ Linear Counting

§ Probabilistic Counting
§ HyperLogLog
§ HyperLogLog++

11/6/17 CS 686: Big Data 22

Algorithms

§ Bloom Filter

§ Linear Counting

§ Probabilistic Counting
§ HyperLogLog
§ HyperLogLog++

11/6/17 CS 686: Big Data 23

Bloom Filter

§ Recall: bloom filters tell us whether an element is a
member of a set
§ False positives possible, no false negatives

§ The process:
1. Insert incoming values into our bloom filter
2. If the inserted value is not in the filter, increment the

cardinality counter

11/6/17 CS 686: Big Data 24

Bloom Filter: Issues

§ We need to have an idea of how big our set is ahead
of time
§ Bit vectors are allocated up front

§ Difficult to resize (but possible)

§ Error rates can fluctuate
§ As the number of elements increases, accuracy will

decrease
§ Causes cyclic accuracy levels

11/6/17 CS 686: Big Data 25

Algorithms

§ Bloom Filter

§ Linear Counting

§ Probabilistic Counting
§ HyperLogLog
§ HyperLogLog++

11/6/17 CS 686: Big Data 26

Linear Counting

§ Allocate a bit vector of M bits
§ Adjust M based on the expected upper bound for

cardinality

§ Apply a hash function on incoming elements

§ Use the hash value to map to a bit in the vector, and
set it to 1

§ Cardinality = M * log(M/Z);
§ Where ‘Z’ is the number of ‘zero bits’

11/6/17 CS 686: Big Data 27

Linear Counting: Implications

§ Very accurate for small
cardinalities
§ Becomes less efficient

as we scale up

§ Error is determined by
frequency of hash
collisions

§ Can be compressed to
further reduce space

A Linear-Time Probabilistic Counting Algorithm for Database Applications l 213

Algorithm Basic Linear Counting:

Let keyi = the key for the ith tuple in the relation.
Initialize the bit map to “0”s.
for i = 1 to q do

hash-value = hash(keyJ
bit map(hash-value) = “1”

end for
U, = number of “0”s in the bit map
V, = UJm
iL=-mln V,

Fig. 1. Linear counting: The basic al-
gorithm.

column C hash function

I Joe I--
before scan

collision 1

0

collision 1

0

duplicates 1

1

1

collision 1

Bill

Harry

Paul

Arthur

Karen

Mike

Chris

Cathy

Norm

Brian

bit map

aRer scan

Fig. 2. Mapping a column of a relation into a bit map.

3.1 Properties of the Random Variables U, and V,
We summarize the formulas for the expectation and variance of U,. Detailed
derivation is presented in Appendix A:

E (U,,) = mevnim = me+, as m, n + 00, (3)
Var(U,) = meet(l - (1 + t)e-“), as m, n + w (4)

Since V, = UJm,

E(V,) = emt, as m, n +- a, (5)

Var(V,) = i e-“(1 - (1 + t)e-“), as m, n + w. (6)

ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990.

11/6/17 CS 686: Big Data 28

Algorithms

§ Bloom Filter

§ Linear Counting

§ Probabilistic Counting
§ HyperLogLog
§ HyperLogLog++

11/6/17 CS 686: Big Data 29

Probabilistic Counting (1/2)

§ Assume we have a set of random binary integers

§ Inspecting the bits, what is the probability that a
given integer ends in Z zeroes?
§ 1 / 2Z

§ 10111010 = 50%
§ 10111100 = 25%

§ 10011000 = 12.5%

11/6/17 CS 686: Big Data 30

§ This means the likely cardinality is 2Z

§ Another way of looking at it: counting based on how
rare an event is

§ Fun fact: counting the number of trailing zeroes in a
binary number is hardware accelerated

§ Related: recall our discussion on Bitcoin: finding a
particular number of leading zeros in a hash

Probabilistic Counting (2/2)

11/6/17 CS 686: Big Data 31

§ Let’s say you are flipping a coin, and I want to
estimate how long you’ve been flipping it

§ If you tell me the longest run of ’heads’ was 3, then I
will guess you didn’t flip the coin very long

§ If it was something like 20, then you must’ve been at
it for a really long time!

Coin Flip

11/6/17 CS 686: Big Data 32

However…

§ Let’s say you sat down and flipped a coin 10 times, all
landing ‘heads.’
§ Apart from possibly indicating a two-headed coin, this

would cause my “coin flipping time” estimate to be
waaaaay off

§ To fix this, I’d divide up your workload
§ Rather than reporting a single value, I’ll give you 10

pieces of paper to record the number of heads/tails
on

11/6/17 CS 686: Big Data 33

HyperLogLog

§ Hash incoming values to ‘randomize’ them
§ Reference implementation uses a 32 bit hash function

§ Instead of just counting trailing (or leading) zeroes,
maintain a set of registers
§ These divide incoming values up into several samples
§ Now if I have 10 registers and you flip your two-headed coin

10 times, I still make an accurate estimate
§ Stochastic Averaging

§ Average the results across sample sets

11/6/17 CS 686: Big Data 34

§ We split up the hash:

§ One part is used to determine how many zeros were
produced

§ The other part is used to determine which register to
update

Which Sample?

11/6/17 CS 686: Big Data 35

HyperLogLog Benefits

§ With R registers, the standard error of HLL is:
§ 1.04 / sqrt(R)
§ Makes configuration simple

§ With an accuracy level of 2%, cardinalities up to 109

can be calculated with 1.5 KB of memory
§ Using this algorithm is very space-efficient!

11/6/17 CS 686: Big Data 36

Error Consistency

11/6/17 CS 686: Big Data 37

Source: http://antirez.com/news/75

Pitfalls

§ After cardinalities of 109, hash collisions become
more frequent and we lose our tight accuracy
bounds

§ The algorithm does not cope well with small
cardinalities

§ To deal with these issues, Google introduced
HyperLogLog++

11/6/17 CS 686: Big Data 38

64 Bit Hash Function

§ The hash function in HLL is limited to 32 bits
§ This limits us to cardinalities of 109 before collisions

start to be a problem
§ HLL implements special logic to deal with cardinalities

near 232

§ Swapping this with a 64 bit hash instead:
§ Results in a small increase in memory usage
§ Pushes our upper bound to 264

§ Eliminates the edge case logic

11/6/17 CS 686: Big Data 39

Error Rates

§ With very small datasets, HLL produces large error
rates

§ “SuperLogLog” attempts to mathematically correct
this issue
§ …with limited success

§ Alternative: use Linear Counting for small
cardinalities
§ HLL registers are tweaked slightly to act as linear

counting bit vectors

11/6/17 CS 686: Big Data 40

Small Cardinality Error Rates

11/6/17 CS 686: Big Data 41

Source: http://antirez.com/news/75

Error Rates: Another Look

11/6/17 CS 686: Big Data 42

Bias Correction

§ Linear Counting starts
consuming too much
memory before HLL hits
its usual accuracy levels

§ Switching over to HLL
early produces a small
range of high error rates

-0.01

0.00

0.01

0.02

0.03

0 20000 40000 60000 80000
Cardinality

M
ed

ia
n

re
la

tiv
e

bi
as

Algorihm
Hʟʟ64Bɪᴛ
HʟʟNᴏBɪᴀs

Figure 4: The median bias of HllOrig and
HllNoBias. The measurements are again based on
5000 data points per cardinality.

happen in a single linear pass over the sorted set and the
list. In the pseudo-code of Figure 6, this merging happens
in the subroutine Merge.

The computation of the overall result given a sparse rep-
resentation in phase 2 of the algorithm can be done in a
straight forward manner by iterating over all entries in the
list (after the temporary set has been merged with the list),
and assuming that any index not present in the list has a
register value of 0. As we will explain in the next section,
this is not necessary in our final algorithm and thus is not
part of the pseudo-code in Figure 6.

The sparse representation reduces the memory consumption
for cases where the cardinality n is small, and only adds a
small runtime overhead by amortizing the cost of searching
and merging through the use of the temporary set.

5.3.1 Higher Precision for the Sparse Representa-
tion

Every item in the sparse representation requires p + 6 bits,
namely to store the index (p bits) and the value of that reg-
isters (6 bits). In the sparse representation we can choose
to perform all operations with a di�erent precision argu-
ment pÕ > p. This allows us to increase the accuracy in
cases where only the sparse representation is used (and it
is not necessary to convert to the normal representation).
If the sparse representation gets too large and reaches the
user-specified memory threshold of 6m bits, it is possible to
fall back to precision p and switch to the dense represen-
tation. Note that falling back from pÕ to the lower preci-
sion p is always possible: Given a pair (idx

Õ, Í(wÕ)) that has
been determined with precision pÕ, one can determine the
corresponding pair (idx, Í(w)) for the smaller precision p as

follows. Let h(v) be the hash value for the underlying data
element v.

1. idx
Õ consists of the pÕ most significant bits of h(v), and

since p < pÕ, we can determine idx by taking the p
most significant bits of idx

Õ.

2. For Í(w) we need the number of leading zeros of the
bits of h(v) after the index bits, i.e., of bits 63 ≠ p to
0. The bits 63 ≠ p to 64 ≠ pÕ are known by looking
at idx

Õ. If at least one of these bits is one, then Í(w)
can be computed using only those bits. Otherwise,
bits 63 ≠ p to 64 ≠ pÕ are all zero, and using Í(wÕ) we
know the number of leading zeros of the remaining bits.
Therefore, in this case we have Í(w) = Í(wÕ)+(pÕ ≠p).

This computation is done in DecodeHash of Figure 6. It is
possible to compute at a di�erent, potentially much higher
accuracy pÕ in the sparse representation, without exceeding
the memory limit indicated by the user through the preci-
sion parameter p. Note that choosing a suitable value for
pÕ is a trade-o�. The higher pÕ is, the smaller the error for
cases where only the sparse representation is used. However,
at the same time as pÕ gets larger, every pair requires more
memory which means the user-specified memory threshold
is reached sooner in the sparse representation and the algo-
rithm needs to switch to the dense representation earlier.

Also note that one can increase pÕ up to 64, at which points
the full hash code is kept.

We use the name HllSparse1 to refer to this algorithm. To
illustrate the increased accuracy, Figure 5 shows the error
distribution with and without the sparse representation.

5.3.2 Compressing the Sparse Representation
So far, we presented the sparse representation to use a tem-
porary set and a list which is kept sorted. Since the tempo-
rary set is used for quickly adding new elements and merged
with the list before it gets large, using a simple implemen-
tation with some built-in integer type works well, even if
some bits per entry are wasted (due to the fact that built-
in integer types may be too wide). For the list, however,
we can exploit two facts to store the elements more com-
pactly. First of all, there is an upper limit on the number
of bits used per integer, namely pÕ + 6. Using an integer of
fixed width (e.g., int or long as o�ered in many program-
ming languages) might be wasteful. Furthermore, the list is
guaranteed to be sorted, which can be exploited as well.

We use a variable length encoding for integers that uses vari-
able number of bytes to represent integers, depending on
their absolute value. Furthermore, we use a di�erence en-

coding, where we store the di�erence between successive el-
ements in the list. That is, for a sorted list a1, a2, a3, . . . we
would store a1, a2 ≠ a1, a3 ≠ a2, The values in such a
list of di�erences have smaller absolute values, which makes
the variable length encoding even more e�cient. Note that
when sequentially going through the list, the original items
can easily be recovered.

We use the name HllSparse2 if only the variable length en-
coding is used, and HllSparse3 if additionally the di�erence

11/6/17 CS 686: Big Data 43

Bias Correction 1

§ Google calculated cardinalities for the 40-80k range
depicted previously

§ Using this empirical dataset, a lookup table provides
estimates for cardinalities between 40-80k

11/6/17 CS 686: Big Data 44

Bias Correction 2

§ Redis takes an alternative approach: polynomial
regression

§ Since the curve is fairly smooth, this allows the bias
for the 40-80k range to be predicted and corrected

11/6/17 CS 686: Big Data 45

Redis Bias Correction

11/6/17 CS 686: Big Data 46

Source: http://antirez.com/news/75

§ http://content.research.neustar.biz/blog/hll.html

Interactive Demo

11/6/17 CS 686: Big Data 47

Wrapping Up (1/2)

§ When we deal with billions of data points, sometimes
the best way to provide answers fast is to estimate

§ All of the algorithms discussed today can be used
online
§ No need to have the entire dataset in hand
§ Update incrementally as we go!

§ Estimating is only useful when we can tie a
probability to it (such as the false positive probability)

11/6/17 CS 686: Big Data 48

§ Cardinality estimation has been an important topic in
databases since the 70s
§ HyperLogLog (2007)
§ HyperLog++ (2013)

§ Being able to estimate cardinality lets us:
§ Estimate other dataset parameters
§ Reason about data distributions

§ Optimize indexes

Wrapping Up (2/2)

11/6/17 CS 686: Big Data 49

