CS 686: Special Topics in Big Data

Distributed Hash Tables

Lecture8

9/11/17

Today's Agenda

= Recap: Distributed Lookups
= Distributed Hash Tables

= Chord

= DHT Issues and Attacks

9/11117 CS 686: Big Data

Today's Agenda

= Recap: Distributed Lookups
= Distributed Hash Tables

= Chord

= DHT Issues and Attacks

9/11117 CS 686: Big Data

Recap: Distributed Lookups

9/11/17

9/10/17

We've discussed a few approaches for finding data in
our system

HDFS: The NameNode
Or in our DFS, the controller

Napster: central catalog
Implemented as a database

Gnutella: completely decentralized, flood to peers

We need some way to map: file > node

CS 686: Big Data

Shortcomings

9/10/17

A central index component means a single point of
failure

Failover schemes can help
Scalability is an issue for both approaches
Single index: all requests funneled through
Flooding: excessive communication
Security implications

Paint a giant target on your central component

CS 686: Big Data

A Better Approach: Hierarchies

9/10/17

Spreading global state across multiple nodes helps
alleviate these issues

No single point of failure, better scalability, etc.

Lots of real-world examples

The downside: this can be difficult!

How do we keep state consistent?

Do we still keep a “root” node that contains a copy of
everything? Why or why not?
There is another alternative!

CS 686: Big Data

Today's Agenda

9/11/17

Recap: Distributed Lookups
Distributed Hash Tables
Chord

DHT Issues and Attacks

9/11/17 CS 686: Big Data

Distributed Hash Tables

Another alternative is Distributed Hash Tables
DHTs
Decentralized

Storage and retrieval are handled by the same
deterministic algorithm

Supports put(k, v) and get(k)

Also used to place replicas

Near-uniform load balancing

9/10/17 CS 686: Big Data

DHTs in a Nutshell

DHTs are just like the hash table data structures we
use (and abuse) all the time
Except when you put() something into the DHT, it's
being stored on one of the nodes in the cluster
We take a hash algorithm such as MD5 or SHA-1
and look at its complete hash space
MD5: 128 bits = 228 unique keys
SHA-1: 160 bits = 2760 unique keys

9/10/17 CS 686: Big Data

The Hash Space

9/11/17

= We represent our hash algorithm'’s hash space
asacircle
= Ina DHT, there isn't really a “start” or “end” of the hash
space
= Next, we assign nodes to be responsible for
particular portions of the hash space

= Each file is mapped to the hash space and falls under
a single node's purview
= Creates an overlay network - like our ring topology

9/10/17 CS 686: Big Data 10

Consistent Hashing

= Breaking up the hash space in this way is a form of
consistent hashing
= When the hash table is resized (adding or removing a
node), generally K/n keys must be remapped:
= K-number of keys
= n—number of nodes
= Contrasts with basic hashing schemes, such as using
hash(o) mod n to determine file destinations

9/10/17 CS 686: Big Data 1

DHT Overview: Storage

g —) Hash(Mr_Fluffers.jpg) —) 0x88F6670DBEA39

DHT Overview: Retrieval

9/11/17

g Hash(Mr_Fluffers.jpg) —) 0x88F6670DBEA39

2O

DHTs: Strengths vs. Weaknesses

= Highly scalable

= Finding data takes
O(log n) hops,
where n = # of nodes

= Uniform load distribution
= Decentralized

= No bottlenecks

= Any node can handle
incoming requests

= Dispersion: storing an
entire directory of files

= Exact key required for
retrieval

= Queries on values not
possible

= Bad for document-
oriented databases

9/10/17 CS 686: Big Data

Data Placement

= In a pure DHT, file
placement is more or less
random
= Great for keeping things
balanced

= Alternatives:
= Design a hash function
that maintains order (user
2 comes after user 1)
= Use just a portion of the
file name / path

Data Distribution (SHA-1 Hash)

35)

Percentage of Total System Data

Node

9/10/17 CS 686: Big Data

Routing Contentin a DHT (1/2)

9/11/17

Chord, Pastry

Prefix routing: Routes for delivery of messages based
on values of GUIDs to which they are addressed

CAN

Uses distance in a d-dimensional hyperspace into
which nodes are placed

Kademlia

Uses XOR of pairs of GUIDs as a metric for distance
between nodes

9/10/17 CS 686: Big Data

Routing Content in a DHT (2/2)

Cassandra
A variety of hash functions are supported:
MD5
Order-preserving
...and the initial placement of nodes can be balanced
Galileo
Geohashes (spatial proximity)

9/10/17 CS 686: Big Data

Basic Routing Strategy

No matter what algorithm, there are generally two
key rules to follow when routing in a DHT:
Each hop through the network gets you a bit closer
In other words, do not overshoot
Remember, our hash space wraps back around
Routing goes one way only
Can be clockwise or counter-clockwise, but not both!

9/10/17 CS 686: Big Data

9/11/17

Routing Table Terminology

Each node in a DHT maintains a routing table with a
limited view of the network

Only a small amount of state is maintained

In some systems the routing table is also called the
finger table

Predecessor - previous active node in the overlay

Successor — next active node in the overlay

9/10/17 CS 686: Big Data 19

Moving On

Let's take a look at one way to implement a DHT...

9/11117 CS 686: Big Data 20

Today's Agenda

Recap: Distributed Lookups
Distributed Hash Tables
Chord

DHT Issues and Attacks

9/11117 CS 686: Big Data 21

Chord

9/11/17

= In Chord, both node IDs and file IDs are mapped to
the same hash space

= Each node is responsible for an ID range:
= Its own ID up to its predecessor's ID

= When placing data with key k, locate node n where:
= min(id(n) >= k)

= We also track N — number of nodes in the system

9/11/17 CS 686: Big Data 22

24 Network

9/11117 CS 686: Big Data 23

24 Network: Populated

9/11117 CS 686: Big Data 24

Joining the Network

9/11/17

= Generate an ID using the current timestamp
= Helps reduce collisions

= An alternative: hash the hostname
= This can lead to problems. Why?

= Let's say hash(timestamp) = 5

= We need to contact 2 nodes to do this: the successor
and the predecessor

9/11/17 CS 686: Big Data 25

Joining the Network, ID =5

= First, get(our_id)
= Returns node 7
= Let node 7 know
we're entering the
network
= Ask node 7 for its
predecessor

= 2 becomes our
predecessor

9/11117 CS 686: Big Data 26

Joining the Network

= This approach
minimizes 1.0
communication
between nodes

= Node 10, for a2 1n
instance, hasn't a
care in the world ° 6.4.3)
= What about
routing tables?

{10,9,8)

9/11117 CS 686: Big Data 27

Updating Routing Tables

9/11/17

We do need to keep the routing tables (finger tables)
up to date

However, remember our rule: no overshooting!

In the worst case scenario (no routing information),
our DHT becomes a ring topology
To find out where data goes, do a lookup. Then

update your routing table if you discovered a new
node in the process

9/11/17 CS 686: Big Data 28

The Finger Table

Each node maintains a finger table, which contains

the successor, predecessor, and a few nearby nodes
Maintaining more than just our direct neighbors is
what makes this approach more efficient than a simple
ring topology!

If we have a 4-bit identifier space (for a total of 24 =

16 nodes), each table contains 4 routing entries

Routeli] = successor(node_id + 2)

9/11117 CS 686: Big Data 29

Demo Finger Table, 24 Network

Route[0] =
successor(5 +20) =7

Route[1] =
successor(5 +27) =7

Route[2] =
successor(5 +22) =10

Route[3] =
successor(5 +2%) =15

*See why we shouldn't overshoot?

9/11117 CS 686: Big Data 30

10

Routing Requests - 1D 14

9/11/17

~ann

(2)

/\

(5

“5 H
°)

Lookup = 14 °

9/11/17 CS 686: Big Data

31

Routing Requests—-1D 9

~amn

)é
)
1

(2
—
Lookup =9

s
5)
J

S~oo

7

9/11117 CS 686: Big Data

32

Routing Requests

~amn

9/11117 CS 686: Big Data

33

11

Today's Agenda

9/11/17

Recap: Distributed Lookups
Distributed Hash Tables
Chord

DHT Issues and Attacks

9/11/17 CS 686: Big Data 34

Other Approaches (1/2)

Taking multiple hops through the network can incur
varying amounts of latency

Some applications want to hit more constant latencies
In an internal system (completely administered by
one organization), it's possible to know more about
the network layout
In these cases a Zero-Hop DHT works in the same
way, except every node has the entire routing table

9/11117 CS 686: Big Data 35

Other Approaches (2/2)

It's also possible to build a hierarchy of DHTs

Coral CDN —used a hierarchy to load balance
between clusters

Galileo — allows the use of two hash functions, one for
a group and another for the physical node

9/11117 CS 686: Big Data 36

12

Dealing With Heterogeneity

9/11/17

What we've discussed thus far assumes uniform

hardware capabilities

How can we account for newer, better hardware?
Let's not go with the HDFS approach of throwing them
in the garbage ©

New nodes can advertise as several nodes

Maybe the next-gen machines each get assigned two
places in the hash ring

9/11/17 CS 686: Big Data 37

Avoiding Hotspots

Along the same lines, we can run into hotspots or
imbalances if our network is too spaced out

To help fillin the gaps and even out the load, nodes
may be required to initially represent several IDs

Used frequently in large deployments — hundreds of
IDs are assigned to each node

Makes dealing with heterogeneity easier as well

New node could take on 1.2 nodes' worth of keys

9/11117 CS 686: Big Data 38

Sybil Attacks

Outside a controlled environment, DHTs are
susceptible to Sybil Attacks
Dissociative identity disorder

Attacker masquerades as a huge number of false
identities
Given enough control of the network, data and routing
tables can be manipulated

Prevention: central login service, reverse lookup,
vouching for other nodes

9/11117 CS 686: Big Data 39

13

