
9/11/17

1

Lecture 8

CS 686: Special Topics in Big Data

Distributed Hash Tables

§ Recap: Distributed Lookups
§ Distributed Hash Tables
§ Chord

§ DHT Issues and Attacks

Today’s Agenda

9/11/17 CS 686: Big Data 2

§ Recap: Distributed Lookups
§ Distributed Hash Tables
§ Chord

§ DHT Issues and Attacks

Today’s Agenda

9/11/17 CS 686: Big Data 3

9/11/17

2

§ We’ve discussed a few approaches for finding data in
our system

§ HDFS: The NameNode
§ Or in our DFS, the controller

§ Napster: central catalog
§ Implemented as a database

§ Gnutella: completely decentralized, flood to peers

§ We need some way to map: file à node

Recap: Distributed Lookups

9/10/17 CS 686: Big Data 4

§ A central index component means a single point of
failure
§ Failover schemes can help

§ Scalability is an issue for both approaches
§ Single index: all requests funneled through
§ Flooding: excessive communication

§ Security implications
§ Paint a giant target on your central component

Shortcomings

9/10/17 CS 686: Big Data 5

§ Spreading global state across multiple nodes helps
alleviate these issues
§ No single point of failure, better scalability, etc.
§ Lots of real-world examples

§ The downside: this can be difficult!
§ How do we keep state consistent?
§ Do we still keep a “root” node that contains a copy of

everything? Why or why not?
§ There is another alternative!

A Better Approach: Hierarchies

9/10/17 CS 686: Big Data 6

9/11/17

3

§ Recap: Distributed Lookups
§ Distributed Hash Tables
§ Chord

§ DHT Issues and Attacks

Today’s Agenda

9/11/17 CS 686: Big Data 7

§ Another alternative is Distributed Hash Tables
§ DHTs

§ Decentralized
§ Storage and retrieval are handled by the same

deterministic algorithm
§ Supports put(k, v) and get(k)
§ Also used to place replicas

§ Near-uniform load balancing

Distributed Hash Tables

9/10/17 CS 686: Big Data 8

§ DHTs are just like the hash table data structures we
use (and abuse) all the time
§ Except when you put() something into the DHT, it’s

being stored on one of the nodes in the cluster

§ We take a hash algorithm such as MD5 or SHA-1
and look at its complete hash space
§ MD5: 128 bits = 2128 unique keys
§ SHA-1: 160 bits = 2160 unique keys

DHTs in a Nutshell

9/10/17 CS 686: Big Data 9

9/11/17

4

§ We represent our hash algorithm’s hash space
as a circle
§ In a DHT, there isn’t really a “start” or “end” of the hash

space

§ Next, we assign nodes to be responsible for
particular portions of the hash space
§ Each file is mapped to the hash space and falls under

a single node’s purview
§ Creates an overlay network – like our ring topology

The Hash Space

9/10/17 CS 686: Big Data 10

§ Breaking up the hash space in this way is a form of
consistent hashing

§ When the hash table is resized (adding or removing a
node), generally K/n keys must be remapped:
§ K – number of keys
§ n – number of nodes

§ Contrasts with basic hashing schemes, such as using
hash(o) mod n to determine file destinations

Consistent Hashing

9/10/17 CS 686: Big Data 11

DHT Overview: Storage

Hash(Mr_Fluffers.jpg)Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39

Node 2

12

9/11/17

5

DHT Overview: Retrieval

Hash(Mr_Fluffers.jpg)Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39

Node 2

Hash(Mr_Fluffers.jpg) 0x88F6670DBEA39

Node 2

13

§ Highly scalable
§ Finding data takes

O(log n) hops,
where n = # of nodes

§ Uniform load distribution
§ Decentralized

§ No bottlenecks
§ Any node can handle

incoming requests

§ Dispersion: storing an
entire directory of files

§ Exact key required for
retrieval

§ Queries on values not
possible
§ Bad for document-

oriented databases

DHTs: Strengths vs. Weaknesses

9/10/17 CS 686: Big Data 14

§ In a pure DHT, file
placement is more or less
random
§ Great for keeping things

balanced

§ Alternatives:
§ Design a hash function

that maintains order (user
2 comes after user 1)

§ Use just a portion of the
file name / path

Data Placement

9/10/17 CS 686: Big Data 15

9/11/17

6

§ Chord, Pastry
§ Prefix routing: Routes for delivery of messages based

on values of GUIDs to which they are addressed

§ CAN
§ Uses distance in a d-dimensional hyperspace into

which nodes are placed

§ Kademlia
§ Uses XOR of pairs of GUIDs as a metric for distance

between nodes

Routing Content in a DHT (1/2)

9/10/17 CS 686: Big Data 16

§ Cassandra
§ A variety of hash functions are supported:

§ MD5
§ Order-preserving
§ …and the initial placement of nodes can be balanced

§ Galileo
§ Geohashes (spatial proximity)

Routing Content in a DHT (2/2)

9/10/17 CS 686: Big Data 17

§ No matter what algorithm, there are generally two
key rules to follow when routing in a DHT:

1. Each hop through the network gets you a bit closer
§ In other words, do not overshoot
§ Remember, our hash space wraps back around

2. Routing goes one way only
§ Can be clockwise or counter-clockwise, but not both!

Basic Routing Strategy

9/10/17 CS 686: Big Data 18

9/11/17

7

§ Each node in a DHT maintains a routing table with a
limited view of the network
§ Only a small amount of state is maintained

§ In some systems the routing table is also called the
finger table

§ Predecessor – previous active node in the overlay
§ Successor – next active node in the overlay

Routing Table Terminology

9/10/17 CS 686: Big Data 19

Let’s take a look at one way to implement a DHT…

Moving On

9/11/17 CS 686: Big Data 20

§ Recap: Distributed Lookups
§ Distributed Hash Tables
§ Chord

§ DHT Issues and Attacks

Today’s Agenda

9/11/17 CS 686: Big Data 21

9/11/17

8

§ In Chord, both node IDs and file IDs are mapped to
the same hash space

§ Each node is responsible for an ID range:
§ Its own ID up to its predecessor’s ID

§ When placing data with key k, locate node n where:
§ min(id(n) >= k)

§ We also track N – number of nodes in the system

Chord

9/11/17 CS 686: Big Data 22

24 Network

9/11/17 CS 686: Big Data 23

24 Network: Populated

9/11/17 CS 686: Big Data 24

Node	2

9/11/17

9

§ Generate an ID using the current timestamp
§ Helps reduce collisions

§ An alternative: hash the hostname
§ This can lead to problems. Why?

§ Let’s say hash(timestamp) = 5
§ We need to contact 2 nodes to do this: the successor

and the predecessor

Joining the Network

9/11/17 CS 686: Big Data 25

Joining the Network, ID = 5

9/11/17 CS 686: Big Data 26

§ First, get(our_id)
§ Returns node 7

§ Let node 7 know
we’re entering the
network

§ Ask node 7 for its
predecessor
§ 2 becomes our

predecessor

§ This approach
minimizes
communication
between nodes

§ Node 10, for
instance, hasn’t a
care in the world

§ What about
routing tables?

Joining the Network

9/11/17 CS 686: Big Data 27

9/11/17

10

§ We do need to keep the routing tables (finger tables)
up to date

§ However, remember our rule: no overshooting!
§ In the worst case scenario (no routing information),

our DHT becomes a ring topology
§ To find out where data goes, do a lookup. Then

update your routing table if you discovered a new
node in the process

Updating Routing Tables

9/11/17 CS 686: Big Data 28

§ Each node maintains a finger table, which contains
the successor, predecessor, and a few nearby nodes
§ Maintaining more than just our direct neighbors is

what makes this approach more efficient than a simple
ring topology!

§ If we have a 4-bit identifier space (for a total of 24 =
16 nodes), each table contains 4 routing entries

§ Route[i] = successor(node_id + 2i)

The Finger Table

9/11/17 CS 686: Big Data 29

Route[0] =
successor(5 + 20) = 7

Route[1] =
successor(5 + 21) = 7

Route[2] =
successor(5 + 22) = 10

Route[3] =
successor(5 + 23) = 15

*See why we shouldn’t overshoot?

Demo Finger Table, 24 Network

9/11/17 CS 686: Big Data 30

9/11/17

11

Routing Requests – ID 14

9/11/17 CS 686: Big Data 31

Routing Requests – ID 9

9/11/17 CS 686: Big Data 32

Routing Requests

9/11/17 CS 686: Big Data 33

9/11/17

12

§ Recap: Distributed Lookups
§ Distributed Hash Tables
§ Chord

§ DHT Issues and Attacks

Today’s Agenda

9/11/17 CS 686: Big Data 34

§ Taking multiple hops through the network can incur
varying amounts of latency
§ Some applications want to hit more constant latencies

§ In an internal system (completely administered by
one organization), it’s possible to know more about
the network layout

§ In these cases a Zero-Hop DHT works in the same
way, except every node has the entire routing table

Other Approaches (1/2)

9/11/17 CS 686: Big Data 35

§ It’s also possible to build a hierarchy of DHTs
§ Coral CDN – used a hierarchy to load balance

between clusters
§ Galileo – allows the use of two hash functions, one for

a group and another for the physical node

Other Approaches (2/2)

9/11/17 CS 686: Big Data 36

9/11/17

13

§ What we’ve discussed thus far assumes uniform
hardware capabilities

§ How can we account for newer, better hardware?
§ Let’s not go with the HDFS approach of throwing them

in the garbage J

§ New nodes can advertise as several nodes
§ Maybe the next-gen machines each get assigned two

places in the hash ring

Dealing With Heterogeneity

9/11/17 CS 686: Big Data 37

§ Along the same lines, we can run into hotspots or
imbalances if our network is too spaced out

§ To help fill in the gaps and even out the load, nodes
may be required to initially represent several IDs
§ Used frequently in large deployments – hundreds of

IDs are assigned to each node
§ Makes dealing with heterogeneity easier as well

§ New node could take on 1.2 nodes’ worth of keys

Avoiding Hotspots

9/11/17 CS 686: Big Data 38

§ Outside a controlled environment, DHTs are
susceptible to Sybil Attacks
§ Dissociative identity disorder

§ Attacker masquerades as a huge number of false
identities
§ Given enough control of the network, data and routing

tables can be manipulated

§ Prevention: central login service, reverse lookup,
vouching for other nodes

Sybil Attacks

9/11/17 CS 686: Big Data 39

