
Polygon-Based Query Evaluation over Geospatial
Data Using Distributed Hash Tables

Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara
Department of Computer Science

Colorado State University
Fort Collins, USA

{malensek, sangmi, shrideep}@cs.colostate.edu

Abstract—Data volumes in the geosciences and related domains
have grown significantly as sensing equipment designed to contin-
uously gather readings and produce data streams for geographic
regions have proliferated. The storage requirements imposed by
these datasets vastly outstrip the capabilities of a single comput-
ing resource, leading to the use and development of distributed
storage frameworks composed of commodity hardware.

In this paper, we explore the challenges associated with sup-
porting geospatial retrievals constrained by arbitrary polygonal
bounds on a distributed hash table architecture. Our solution
involves novel distribution and partitioning of these voluminous
datasets, thus enabling the use of a lightweight, distributed
spatial indexing structure, the geoavailability grid. Geoavailability
grids provide global, coarse-grained representations of the spatial
information stored within these ever-expanding datasets, allowing
the search space of distributed queries to be reduced by eliminat-
ing storage resources that do not hold relevant information. This
results in improved response times and more effective utilization
of available resources. Geoavailability grids are also applicable in
non-distributed settings for local lookup functionality, performing
competitively with other leading spatial indexing technology.

Index Terms—Distributed Hash Tables, Cloud Infrastructure,
Polygonal Queries, Time Series Data

I. INTRODUCTION

The proliferation of observational devices such as in situ
sensors and remote sensing equipment such as satellites and
radars have contributed to ever-increasing data volumes. These
sensors measure and report on various environmental and
atmospheric phenomena that are used in weather forecasting,
ecology, hydrology, erosion, and agricultural models. The rate,
resolution, and precision at which these measurements are
performed have all increased over time, leading to the collec-
tion of extreme-scale datasets that logically fuse information
gathered from diverse equipment.

To cope with these data volumes and their concomitant I/O
loads, such datasets are dispersed over a collection of machines
for future analysis and retrieval. We investigate this problem
in the context of distributed hash tables (DHTs). DHTs are
robust, scalable mechanisms for managing large networks of
heterogeneous computing resources. Often underpinned by a
consistent hashing scheme, DHTs offer excellent load balanc-
ing properties and are well-suited for scale-out architectures
where commodity hardware can be added incrementally to
meet rising storage or processing demands. These properties

have led to DHTs underpinning a wide range of cloud-scale
infrastructures.

During analysis, there is often a need for providing spatial
bounds of interest in the form of user-specified polygon
shapes. Such polygonal queries can correspond to adminis-
trative or natural boundaries, and provide greater freedom to
apply various forms of investigation or processing.

Storage and retrieval of predefined polygon-based shapes is
well researched; a typical approach involves sorting polygon
coordinates along one dimension (such as latitude or longi-
tude) to generate a deterministic array that can be used to
compute a hash value for storage and retrieval. However, the
datasets we focus on in this work are multidimensional and
continually assimilate additional data at varying resolutions
from diverse sources. This renders solutions that rely on pre-
computed or static shapes ineffective, necessitating an alternate
approach. Consequently, the polygon-based query support in
question must be decoupled from the generation and storage
of data.

A. Research Challenges

We consider the problem of fast and scalable evaluation of
arbitrarily-shaped polygonal queries over time series datasets
with geospatial properties. The challenges involved in doing
so include:

1) The data being managed is both voluminous and dis-
tributed over multiple computing resources.

2) The system is decentralized; distributed query evalua-
tions can be performed by any of the machines that
comprise the storage network.

3) Broadcasting to all machines for query evaluation is
inefficient and latency-prone; the search space must be
reduced to efficiently service query requests.

4) Data points have multiple dimensions that represent a
variety of readings for a particular geolocation.

5) Queries may specify chronological bounds to request a
portion of the available time series information.

6) Distributed data structures used for query evaluation
must be compact to avoid excessive state exchange.

1

B. Research Questions

Key research questions that we explore in this paper include
the following:

1) How can we manage the trade-off space between mem-
ory consumption and the resolution of data structures?
How does this impact the speed of query evaluations?

2) How do we synchronize and update global views of
available data? The resolution of the data structures has
a direct correlation with update traffic.

3) How can we support polygon-based queries without
compromising the key strengths of DHTs?

4) How do we strike a balance between global and local
information maintained by each node, and what is the
impact on the overall search space?

C. Overview of Approach

The approach described in this paper is based on our
hierarchical DHT implementation, Galileo [1], [2], [3]. Galileo
is designed for high-throughput management of multidimen-
sional data streams. The network hierarchy in Galileo allows
for novel data partitioning configurations, a property that is
exploited in this work to help reduce the search space of
distributed queries by decreasing the number of machines
that must be contacted during query evaluation. Data disper-
sion is based on the Geohash [4] geocoding scheme, which
creates 1-dimensional string representations of 2-dimensional
geographic bounding boxes. The number of characters in a
Geohash corresponds to its geographical scope and precision,
with longer Geohash strings representing finer-grained spatial
regions.

To create an overall view of the spatial locations of data
stored in the system, we provide a globally-distributed spatial
index called the geoavailability grid. Updates to the grid are
disseminated through a lightweight gossip protocol, and we
rely on an eventual consistency model wherein nodes in the
system will converge on a steady state when no new updates
are available.

Since a number of geoavailability grids are used to track
locations of data for the entire system, their memory con-
sumption and traversal times could be prohibitively expensive.
To alleviate this issue, we convert the grid to a bitmap
representation where a single bit signifies the presence of data
within a given spatial region. Bitmaps are highly amenable
to specialized compression, which further reduces the size of
the data structures while also increasing the speed of bitwise
operations.

There is an inherent trade-off in the granularity of the
geoavailability grid and the efficiency of storage and query
evaluations. A coarser grid will reduce memory consumption
and accelerate query evaluation, but may not provide a sig-
nificant reduction in search space. The factors that influence
these variables are investigated thoroughly in this work.

D. Paper Contributions

This paper demonstrates the effectiveness of using globally-
distributed, bitmap-based indexes to evaluate polygonal

queries, along with how the distribution of data can alleviate
indexing load. The solution described is scalable and can
cope with increases in both data volumes and the number
of nodes that comprise the storage network. By eliminating
nodes from the search space that do not contain data that
will satisfy a given query, unnecessary communication and
processing overheads can be avoided. This functionality is
tested empirically on a dataset consisting of one billion files.

Additionally, our framework accelerates queries by evaluat-
ing them concurrently across a number of relevant nodes while
supporting expressive range-based and exact-match retrievals
on feature values in addition to polygon boundaries. When
available, the system can harness GPU acceleration for bitmap
generation on the host machines. Bitmap compression and
GPU acceleration are configured autonomously by the system
at runtime based on availability and storage conditions. Most
importantly, data generation and query specification are com-
pletely decoupled in our solution. This makes our approach ap-
plicable to other DHT-based networks or storage frameworks,
as well as non-distributed applications; depending on storage
constraints, our index can also outperform the established R-
tree spatial index in a local (single node) environment.

E. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II introduces our DHT implementation and its data
structures. Section III details our bitmap-based index, the
geoavailability grid. Section IV explores using the geoavail-
ability grid for reducing the search space of distributed queries,
followed by Section V that explores local retrieval operations
by contrasting with another spatial index. Section VI surveys
related work, followed by Section VII with discussion of our
conclusions and future work.

II. SYSTEM OVERVIEW

Galileo is a distributed storage framework that is a modeled
as a hierarchical distributed hash table (DHT). Contrasting
with the standard DHT design seen in Chord [5] or Pas-
try [6] where a hash space is partitioned among a number
of computing resources, or nodes, Galileo employs multiple
hash functions to subdivide and create logical groupings of
resources. Additionally, Galileo is a zero-hop DHT, meaning
that requests are not forwarded through intermediate nodes in
the network and instead are routed directly to their destination,
a feature also seen in DHTs such as Apache Cassandra [7]
and Amazon Dynamo [8]. This hybrid design allows for a
scale-out architecture that supports functionality generally not
implemented in traditional DHT-based systems.

The primary use case for Galileo is the storage and process-
ing of voluminous, multidimensional datasets in the scientific
domain. These datasets often have spatial and temporal charac-
teristics along with a number of additional features of interest.
Galileo supports a range of scientific storage formats such as
NetCDF [9] or HDF5 [10] alongside its own native format. For
feature value retrievals, the system allows both exact-match
and range-based queries through a layered indexing strategy

2

that incorporates a global feature graph and local metadata
graph instances.

A. Partitioning

Galileo supports flexible, user-configurable data partitioning
schemes. Unlike a standard DHT, the hash functions used for
partitioning are not required to support retrieval operations as
well; instead, queries can be resolved using the system’s mul-
tilayer index. This approach allows for novel load distribution
configurations and hierarchical network layouts.

Individual storage nodes in Galileo can be placed into a
number of groups or subgroups in the network. Depending
on the datasets being stored, a hierarchy of disparate hash
functions can be used for data placement. In this study, each
group is assigned a portion of the overall geography being
managed by the system, while node placement within groups is
determined by a SHA-1 hash of feature values. This allows for
a reasonably balanced distribution of load while also reducing
the search space of geospatial queries with known coordinates.

B. Metadata and Information Retrieval

Each node in the system maintains a metadata graph for
quickly evaluating local queries. A metadata graph instance
is populated with relevant feature information from the files
stored on the node, and traversing through the graph’s hi-
erarchical structure narrows queries down to their relevant
files. Results from the graph are returned in the form of
subgraphs called datasets, which can be traversed, modified,
and used to retrieve files from the system. The metadata graph
is composed of numeric or string-based values and allows for
quick evaluation of both exact-match and range queries.

For global lookup capabilities, a feature graph instance is
maintained at each storage node, which provides a coarse-
grained view of all the data in the system. When executing a
distributed query, the feature graph can be used to reduce the
overall search space before submitting individual subqueries
to be evaluated against local metadata graphs. In most cases,
this optimization provides a dramatic reduction in the number
of nodes that must be contacted to evaluate a given query
operation.

C. Experimental Configuration

In this study, we used real-world data from the Na-
tional Oceanic and Atmospheric Administration (NOAA)
North American Mesoscale Forecast System (NAM) [11]
project. Using our NetCDF input plugin, we sampled from
this dataset to create a test dataset consisting of one billion
(1,000,000,000) files, each around 8 KB. The features that
we indexed for this work included the spatial location of
the samples, the time they were recorded, percent maximum
relative humidity, surface temperature (Kelvin), wind speed
(meters per second), and snow depth (meters).

Tests in this paper were carried out on a 48-node cluster of
HP DL160 servers equipped with a Xeon E5620 CPU, 12 GB
of RAM, and a 15000-RPM disk. Galileo was run under the
OpenJDK Java runtime version 1.7.0 25.

III. INDEXING: THE GEOAVAILABILITY GRID

Indexing in a distributed environment with highly volumi-
nous datasets poses a number of challenges; a central “index”
server is a single point of failure and can quickly become
a bottleneck in high-load situations, but an index that is
shared across all nodes in the system can result in consistency
problems and excessive state exchange over the network.

The R-tree [12] is commonly employed in non-distributed
applications for spatial indexing due to its speed and efficiency,
but has a number of constraining properties that limit its
scalability in distributed applications. Using an R-tree as a
global index for billions of files would require a substantial
amount of memory, along with a high number of distributed
updates due to the frequent rebalancing operations that take
place within the tree. Additionally, splitting the tree across a
number of nodes and designing a storage network around the
data structure is constraining and latency-prone.

To overcome these scalability issues, we have developed the
geoavailability grid, a distributed spatial indexing data struc-
ture that is scalable and fault-tolerant. Geoavailability grids
translate points in space to a reduced-resolution coordinate
system for indexing purposes. They consist of a vector of bits
(represented by the set {0, 1}) for a given spatial area. Each
bit represents a location, and its on-off state indicates whether
or not information has been stored there. Due to their concise
and efficient nature, bitmap indexes have seen considerable
research and usage in relational database systems, decision
support systems [13], and data warehousing [14].

A. Geocoding

To partition information in our DHT and provide a coarse-
grained representation of its spatial properties, we use the
Geohash [4] geocoding algorithm. Geohash provides a hier-
archical, grid-based model of the Earth where locations are
represented by Base32 strings. The longer the Geohash string,
the more precise the bounding box around the location it refer-
ences. A Geohash is derived by interleaving bits obtained from
latitude-longitude pairs; for example, the decimal coordinates
of 44.509◦ N, −110.331◦ W would map to the Geohash string
9xct1qe7, representing 40 bits of precision (eight characters,
five bits per character). Each additional bit in a Geohash
doubles the number of hash buckets it references, representing
finer-grained spatial areas that lie deeper within the hierarchy.
Quad Trees [15] or the OpenPostcode [16] algorithm could be
used to achieve similar results.

Using a geocoding algorithm is an essential component
of our indexing scheme because it determines the ranges of
information that must be stored in each instance of the index.
In this study, the first two Geohash characters of a spatial
location are used to determine the group of nodes responsible
for storing the data. This has two key benefits: specifying the
first two characters (10 bits) of a Geohash can significantly
reduce the search space for spatial queries without additional
indexing, and it also means that individual nodes can exclude
information from their geoavailability grids that lies outside
their geographic scope.

3

B. Generating the Index

Geoavailability grids are initially configured with a width
and height based on geocoding granularity. For example, if a
gridded dataset contains readings at intervals of around 30
km, approximately 32 bits of Geohash precision would be
required to place samples in separate “bins.” Choosing an
appropriate granularity is highly dependent on the type of
information being stored and the intended analysis that will be
performed on the data. Finer-grained resolutions allow more
specific queries to be resolved, but also increase the overall
size of the index.

Each feature of interest (such as humidity or temperature)
is accompanied by a unique geoavailability grid on a per-node
basis, enabling queries to distinguish between different feature
types. For situations where there is a reading present for every
type, a catch-all geoavailability grid is generated autonomously
to reduce the overall number of bits set in each grid.

For our particular dataset, spatial locations are represented
by 30-bit Geohashes. After accounting for the first 10 bits
that are used to determine group membership, the remaining
20 bits are used to populate the geoavailability grids on each
node in the system:

9xct1q = 01001 11101︸ ︷︷ ︸
Group Hash

01011 11001 00001 10110︸ ︷︷ ︸
Location in Bitmap Index

This is accomplished by mapping spatial coordinates to
their closest bitmap coordinates, and ensuring that the relevant
bitmap location is set to a 1 to indicate that one or more
data points are present in the location. 20 bits of precision
corresponds to 220 Geohash buckets, which is the total number
of bits in each index instance. Since Geohashes interleave
latitude and longitude values, the width and height proportion
of the index changes with each additional bit. Therefore,
an index of n Geohash bits would have a width of 2bn/2c

and a height of 2dn/2e. Figure 1 illustrates how an example
geographic region could be represented as a geoavailability
grid.

C. Compression

Each node in the system has a number of associated index
bitmaps for the geographic region under its purview. The
bitmaps are distributed across all the nodes in the cluster
to ensure that (1) every node in the system is capable of
servicing queries, and (2) a node failure does not affect lookup
capabilities. This means that the memory consumed by the
bitmaps must be low; continually exchanging large amounts
of information between nodes is inefficient and reduces the
speed of index propagation.

While bitmaps provide a simple means to index a wide
variety of data types, the sheer number of bits required
for these representations can prove to be problematic both
in memory consumption and processing times for bitwise
operations. Extensive investigation has been conducted on
compressing bitmap representations, from simple run-length
encoding to more advanced schemes such as CONCISE [17] or

WAH [18]. In this work, we use the Enhanced Word-Aligned
Hybrid (EWAH) compression scheme [19], [20] to reduce the
effective sizes of our bitmaps. EWAH was chosen due to the
compression ratios it achieved on our dataset and its relative
speed. Table I illustrates the difference between uncompressed
and compressed bitmap representations for our entire dataset.
For gridded data, higher resolutions (derived from the second
half of the Geohash bits) increase the sparsity of the index
and improve compressibility.

TABLE I
BITMAP COMPRESSION FOR VARIOUS INDEX RESOLUTIONS

Resolution Original Size (KB) Compressed (KB)
15-bit 309.0 294.4

20-bit 9879.02 3196.9

25-bit 316090.28 4034.7

Compressed bitmaps are somewhat unique in that they gen-
erally do not require decompression before processing occurs.
In fact, compression can often speed up bitwise operations.
Due to the differences in performance observed across the
available bitmap compression algorithms, we provide a univer-
sal interface that allows the underlying bitmap representation
of a geoavailability grid to be changed at runtime or during
initial system configuration.

D. Updating the Index

To ensure that new files’ spatial information is disseminated
rapidly, geoavailability grid updates are gossiped between
groups on a regular basis along with other state information.
An update consists of a set of bits that have changed since the
publication of the previous update. If a storage node finds itself
out of sync with the current updates, neighboring peers can
also generate an update or transmit an entire copy of the index.
The update interval and maximum number of unpublished
updates are configurable parameters depending on network
capacity and desired consistency characteristics.

Creating an update involves performing an XOR (⊕) oper-
ation on the current index ic and the previous index state ip,
which produces a set of update bits u that will be relayed to
peer nodes: ic⊕ ip = u. When an update is received at a peer,
it can be applied by simply performing an XOR between the
update and the current copy of the remote index (u⊕ ip = ic).
The latest index version number and a checksum are also
included in an update message to help ensure consistency.
Updates are compressed in the same manner as the indexes,
meaning that they generally consume a minimal amount of
space; Table II contains update sizes (including the version
number and checksum) for different amounts of new data
points that were added in random spatial locations over a 20-
bit Geohash region. A single update will always have a size
of 36 bytes since only one bit is set in the compressed bitmap.

Random updates represent an approximate worst case in
terms of message size because the likelihood of an existing
bitmap location already being occupied is low; after all, new

4

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0

Fig. 1. A geographic region (left) containing a number of data points, with its geoavailability grid (right).

TABLE II
INDEX UPDATE SIZES, AVERAGED OVER 1000 RUNS

Modifications Update Size (bytes) SD (bytes)
1 36.0 0.0

10 179.9 1.0

100 1609.3 10.8

1000 15089.0 98.4

files that fall within a spatial range already covered by the
geoavailability grid do not require any updates to be transmit-
ted. With our test dataset, storage nodes were responsible for
approximately 5000 unique bitmap locations on average over
the lifetime of the cluster, which would only require about five
1000-bit updates.

One contributing factor in the efficiency of bitmap represen-
tations is the bit-level parallelism that can be exploited while
evaluating bitwise operations. This property makes creating
and applying updates extremely fast; considering the update
sizes and their processing times, keeping the geoavailability
grid up-to-date is mostly a function of network latencies. To
demonstrate this, we created and applied updates of size 1,
10, 100, and 1000 and averaged the results over 1000 trials.
No matter the size of the update, generation took 0.32 ms on
average with a standard deviation of 0.03, and applying the
updates took 0.19 ms with a standard deviation of 0.05.

IV. RETRIEVAL: POLYGON-BASED QUERY EVALUATION

Once spatial data has been indexed in geoavailability grids
at each storage node, the system can evaluate user-defined
geospatial queries derived from polygons surrounding areas
of interest. Queries can also contain ranges or exact values
of various features to help further reduce the search space.
Geospatial query evaluation in Galileo proceeds as follows:

1) A user submits a polygon to retrieve data from.
2) The query is decomposed into a number of subqueries

by intersecting it with the geometry each group of nodes
is responsible for.

3) The geoavailability grids are consulted to determine if
data may be available, eliminating any irrelevant nodes.

4) Specified feature values or ranges are queried from
the feature graph, allowing additional reduction of the
search space.

5) Subqueries are submitted to the remaining set of relevant
nodes for evaluation.

A. Spatial Decomposition

Each group in Galileo is responsible for storing data pertain-
ing to a particular geospatial region. These regions are known
by the other nodes in the system and maintained in memory as
polygons. To begin decomposing a spatial query, the minimum
bounding rectangle (MBR) is calculated for the query geome-
try, which is the smallest rectangle that completely surrounds
the query polygon. Any group geometries that are overlapped
by the query MBR are then intersected with the query polygon.
After the intersection operation, the remaining geometries are
used to produce a set of groups that are relevant to the query.
Figure 2 illustrates this procedure.

Decomposing queries in this manner has multiple advan-
tages. Small queries will naturally involve fewer storage
nodes, whereas larger queries that are represented by polygons
spanning greater geographic regions are processed in parallel
across a number of groups. After decomposing the query,
geoavailability grids can be consulted to further reduce the
search space.

B. Geoavailability Evaluation

Before being evaluated against the collection of pertinent
geoavailability grids, query polygons must be projected onto
a corresponding bitmap coordinate system. Once this process
has been completed, a query bitmap is created using the
polygon geometry.

To create a query bitmap, the spatial area covered by
the geoavailability grid can be thought of as a monochrome
graphical canvas that will be drawn using standard graphics
routines; using the provided query polygon, the regions of
interest are filled with color to set the relevant bits within
the polygon boundaries to 1. This effectively converts a user-
provided polygon into a geoavailability grid by leveraging
existing graphical algorithms and any hardware acceleration
available to the system. In cases where extremely large bitmaps
are being generated, GPUs can be leveraged if support is

5

9V

 D
J

 9Y

 DN

9Y DJ9V

Fig. 2. A query following the Mississippi river through the Louisiana area
and along the shoreline in the Gulf of Mexico (shown in red) decomposed
into three subqueries across Geohash group boundaries.

available. Another benefit of this strategy is that queries can
easily be visualized. Table III contains information on how
long it takes to generate a query bitmap based on index
resolution, which is the primary factor involved when drawing
query geometry at scale. For this benchmark, the subquery
polygon shown in Figure 2 for Geohash area 9V was converted
into a query bitmap.

TABLE III
QUERY BITMAP CREATION TIMES, AVERAGED OVER 1000 RUNS

Resolution Bitmap Generation (ms) SD (ms)
15-bit 0.45 0.36

20-bit 1.81 1.14

25-bit 56.31 4.78

While the exact precision of a Geohash is largely dependent
on its particular location on the globe, a precision of 25
bits equates to a region of about 230 by 150 meters. For
coarser-grained query bitmaps, the storage and processing
times decrease. Figure 3 illustrates the benefits and draw-
backs associated with increasing or decreasing query bitmap
resolution; while false positives are less likely with a higher
resolution, the memory consumed by the geoavailability grids
also increases.

Once a query bitmap has been obtained, evaluating the
presence of relevant data within the polygon boundaries is
extremely simple; a logical AND (∧) is performed between
geoavailability grids (GG) and the query bitmap (QB). If
the resulting bitmap contains any bits set to 1, then there
was a region with relevant spatial data that overlapped the
query geometry, and the subquery is passed on to relevant

storage nodes. In other words, if GG ∧ QB = {} for a
particular storage node, then it can safely be eliminated from
the search without requiring any communication. Table IV
contains timing information for processing a geoavailability
lookup, which involves several AND operations.

TABLE IV
GEOAVAILABILITY EVALUATION SPEED, AVERAGED OVER 1000 RUNS

AGAINST EACH GROUP GEOHASH

Resolution Lookup Time (ms) SD (ms)
15-bit 0.012 0.021

20-bit 0.163 0.203

25-bit 0.723 0.289

A complete geoavailability evaluation returns a set of stor-
age nodes that contain spatial information within the query
boundaries. This set is intersected with results from a feature
graph lookup of any other constraints specified by the user,
which further reduces the search space by eliminating any
destinations that cannot satisfy the entire query. Subqueries
are submitted to the remaining set of storage nodes for the
final step in the query evaluation process: local retrieval.

V. LOCAL RETRIEVAL: R-TREE EVALUATION

Once a query has been decomposed and evaluated, it can
be processed in parallel as a set of subqueries at relevant
storage nodes. This process is facilitated by the metadata graph
for range-based and exact-match queries of feature values,
but additional indexing infrastructure is required to provide
results for polygon-based spatial queries. The R-tree [12] is
a fast and efficient spatial index that has seen considerable
usage and development in the geospatial domain. Similar to
B-trees, R-trees are a balanced search tree and organize data
into pages. The basic unit of storage is a rectangle, so polygon-
based shapes or queries are first converted to their minimum
bounding rectangle (MBR) before use with the index.

R-trees provide an appealing alternative to using geoavail-
ability grids for local retrieval because their accuracy is not
based on a preconfigured resolution, and the average complex-
ity of a lookup with maximum page size M is O(logMn)
versus O(n) for a bitmap representation. However, results
returned from a geoavailability evaluation do not require post-
processing to eliminate rectangles or points that were present
in the query MBR but do not fall within the query polygon.
Additionally, query bitmaps have already been generated for
the geoavailability grids in previous indexing steps, so a local
lookup only involves processing a number of AND operations.

To assess the performance of these two indexing techniques
for local retrieval, we generated a multi-MBR approximation
of the polygon subquery on region 9V shown in Figure 2
for evaluation on an R-tree, and submitted its previously-
computed query bitmap to our 25-bit geoavailability grids. We
used the Java Spatial Index (JSI) [21] implementation of R-
tree in these benchmarks due to its focus on performance.
To test the indexing methods under different retrieval loads,

6

Fig. 3. Two different query bitmap granularities and an example query polygon. Finer-grained bitmaps generally increase the amount of search space reduction
that can be achieved at the cost of consuming more memory.

1 2 4 8 16 32
Points Retrieved; 1 point = 5000 files

0

2

4

6

8

10

Qu
er

y
Ev

al
ua

tio
n

Ti
m

e
(m

s)

R-tree
Geoavailability Grid

Spatial Index Query Evaluation

Fig. 4. Comparison of geoavailability grids and R-tree for retrieval operations.
Results are averaged over 1000 runs.

we scaled the query polygon to include increasingly larger
amounts of points across all feature values and averaged the
results. Figure 4 illustrates the performance of both strategies
when retrieving points from our test dataset, with each point
containing about 5000 files. The figure provides a number
of insights into the performance profiles of both strategies:
geoavailability grids tend to have very predictable perfor-
mance, and can outperform R-trees when retrieving large
amounts of files. On the other hand, the R-tree performs well
with a small number of files, indicating it may be useful for
more sparsely-populated datasets.

One of the strengths of our geoavailability grid implementa-
tion is bounded memory consumption: for a given resolution,
there is a maximum size of the resulting bitmap whether com-
pression is used or not. We tested the memory consumption
of three different geoavailability grid resolutions and an R-
tree to gain insights on their resource consumption. Since our
billion-file NOAA dataset is divided among 48 storage nodes,
approximately 20 million points were indexed and tested at

each node. Table V contains the results of this benchmark.

TABLE V
MEMORY CONSUMPTION OF GEOAVAILABILITY GRIDS AND A JSI R-TREE.

Implementation Memory Consumed (KB)
15-bit Geoavailability grid 3.98

20-bit Geoavailability grid 44.37

25-bit Geoavailability grid 56.03

JSI R-tree 1120634.88

Geoavailability grids are clearly more compact than the R-
tree used in this benchmark, making them a good candidate
for virtualized infrastructure or other scenarios where memory
is scarce. On the other hand, an R-tree does not store its
contents in a reduced-resolution form, making it better-suited
for situations that require extreme query precision. Ultimately,
choosing between an R-tree or geoavailability grid is highly
dependent on the use case scenarios being dealt with and the
constraints of the operating environment; for this reason, we
created a spatial index interface in Galileo that allows the local
retrieval index to be changed depending on the use case.

VI. RELATED WORK

Cassandra [7] is similar to Galileo in its network lay-
out and storage capabilities. It allows users to create their
own partitioning schemes and has similar scalability goals.
Contrasting with Galileo, the partitioning algorithm used in
Cassandra directly affects possible retrieval operations; using
the random data partitioner backed by a simple hash algorithm
does not allow for range queries or later reconfiguration of
the partitioning scheme. While Cassandra supports tabular,
multidimensional data representations, it is primarily designed
for text rather than feature vectors or device readings.

MongoDB [22] is a distributed document store that includes
rich geospatial indexing capabilities. Its storage format sup-
ports dynamic schemas with a binary representation similar
to JSON. Like Galileo, MongoDB utilizes Geohashes for its
spatial index. The Geohashes can then be stored directly in
MongoDB’s B-tree index for lookup operations. For load

7

balancing and scalability, MongoDB supports sharding that
divides ranges of data between nodes in the system. Range
queries, data replication, and MapReduce are also supported.

P2PR-Tree [23] provides a P2P-based version of the R-Tree
spatial index. The system is decentralized and can also service
spatial queries while peers are leaving or joining the network.
In P2PR-Tree, queries are routed to nodes that may have perti-
nent information, with a traversal through the network closely
resembling a traversal through an R-Tree. Initially, the range
of possible spatial values is broken up into blocks, with each
block being statically divided into a pre-set number of groups.
Nodes in the system are then divided into multiple levels of
subgroups with neighboring peers maintaining more detailed
information about one another. Each peer also maintains a
local R-Tree for performing lookups on the data it holds.

SD-Rtree [24] aims to provide a scalable distributed R-Tree
implementation. The resulting system takes inspiration from
both R-Trees and AVL trees, and provides a number of access
methods with differing scalability and performance. Similar
to a traditional R-Tree, the SD-Rtree inserts information at its
leaf nodes, splitting them when they overflow. This property
greatly increases the amount of communication required in
the early stages of the tree creation, but gradually decreases
as more information is stored and the tree structure settles. A
key strategy incorporated in SD-Rtree is client-side caching
to speed up queries and reduce the amount of traffic directed
towards the root of the tree, which also reduces the number
of messages sent during insertions and query resolution.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

When combined with hierarchical data partitioning, our
geoavailability grid indexing scheme provides significant re-
ductions in the search space of user-defined polygonal queries
in a distributed hash table. Instead of indexing every spatial
location in the system, grid coordinates are converted to a
coarser-grained compressed bitmap representation. The low
memory footprint of the data structures used in this strategy
makes distributing snapshots of global information fast and
efficient, even for large datasets. This allows any node in the
DHT to facilitate distributed queries by first eliminating any
nodes that do not contain relevant data from the search before
submitting subqueries for local retrieval. At each storage node,
local retrievals can also be evaluated using the geoavailability
grid, an approach that compares favorably with the established
R-tree spatial index depending on use case and storage proper-
ties. Overall, our approach provides an avenue for coping with
extreme-scale data volumes across a number of distributed
computing resources and allows fast and flexible retrieval of
the information for analysis and processing.

B. Future Work

One key insight derived from this work is that low-
resolution geoavailability grids are extremely fast and space-
efficient. This property could be exploited by allowing
variable-resolution subgrids to be embedded within the

geoavailability grid for regions that require higher precision,
enabling higher accuracy to be achieved. Furthermore, this ad-
dition would also be amenable to autonomous reconfiguration
at run time, allowing for dynamic performance improvements
without user intervention.

ACKNOWLEDGMENTS

This research has been supported by funding (HSHQDC-
13-C-B0018) from the US Department of Homeland Security’s
Long Range program.

REFERENCES

[1] M. Malensek, S. Pallickara, and S. Pallickara, “Exploiting geospatial and
chronological characteristics in data streams to enable efficient storage
and retrievals,” Future Generation Computer Systems, 2012.

[2] ——, “Expressive query support for multidimensional data in distributed
hash tables,” in Utility and Cloud Computing (UCC), 2012 Fifth IEEE
International Conference on, nov. 2012.

[3] ——, “Autonomously improving query evaluations over multidimen-
sional data in distributed hash tables,” in Proceedings of the 2013 ACM
International Conference on Cloud and Autonomic Computing, aug.
2013, (To appear).

[4] Wikipedia Contributors. (2013) Geohash. [Online]. Available:
http://en.wikipedia.org/wiki/Geohash

[5] I. Stoica et al., “Chord: A scalable peer-to-peer lookup service for inter-
net applications,” ACM SIGCOMM Computer Communication Review,
vol. 31, no. 4, pp. 149–160, 2001.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” in Middleware
2001. Springer, 2001, pp. 329–350.

[7] A. Lakshman et al., “Cassandra: a decentralized structured storage
system,” ACM SIGOPS Op. Sys. Rev., vol. 44, no. 2, pp. 35–40, 2010.

[8] D. Hastorun et al., “Dynamo: amazon’s highly available key-value
store,” in SOSP. Citeseer, 2007.

[9] R. Rew et al., “Netcdf: an interface for scientific data access,” Computer
Graphics and Applications, IEEE, vol. 10, no. 4, pp. 76–82, 1990.

[10] Q. Koziol et al., “Hdf5–a new generation of hdf: Reference manual
and user guide,” National Center for Supercomputing Applications,
Champaign, Illinois, USA, http://hdf. ncsa. uiuc. edu/nra/HDF5, 1998.

[11] NOAA. (2013) The north american mesoscale forecast system. [Online].
Available: http://www.emc.ncep.noaa.gov/index.php?branch=NAM

[12] A. Guttman, R-trees: A dynamic index structure for spatial searching.
ACM, 1984, vol. 14, no. 2.

[13] C.-Y. Chan and Y. E. Ioannidis, “Bitmap index design and evaluation,”
ACM SIGMOD Record, vol. 27, no. 2, pp. 355–366, 1998.

[14] T. L. Lopes Siqueira, R. R. Ciferri et al., “A spatial bitmap-based index
for geographical data warehouses,” in Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 2009, pp. 1336–1342.

[15] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974.

[16] Open Postcode Ireland. (2013) Ireland’s postcode. [Online]. Available:
http://www.openpostcode.org/

[17] A. Colantonio and R. Di Pietro, “Concise: Compressed ‘n’ composable
integer set,” Info. Proc. Ltrs, vol. 110, no. 16, pp. 644–650, 2010.

[18] K. Wu, E. J. Otoo, and A. Shoshani, “An efficient compression scheme
for bitmap indices,” 2004.

[19] D. Lemire et al., “Sorting improves word-aligned bitmap indexes,” Data
& Knowledge Engineering, vol. 69, no. 1, pp. 3–28, 2010.

[20] K. Wu et al., “Notes on design and implementation of compressed
bit vectors,” Technical Report LBNL/PUB-3161, Lawrence Berkeley
National Laboratory, Berkeley, CA, Tech. Rep., 2001.

[21] Jsi (java spatial index) rtree library. [Online]. Available:
http://jsi.sourceforge.net/

[22] mongoDB Developers, “Mongodb,” http://www.mongodb.org/, 2013.
[23] A. Mondal et al., “P2pr-tree: An r-tree-based spatial index for peer-to-

peer environments,” in Current Trends in Database Technology-EDBT
2004 Workshops. Springer, 2005, pp. 516–525.

[24] C. du Mouza, W. Litwin, and P. Rigaux, “Sd-rtree: A scalable distributed
rtree,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on. IEEE, 2007, pp. 296–305.

8

